Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фишера окисления

Таблица 24. Выход и характеристика смолы полукоксования в реторте Фишера окисленных углей в лабораторных условиях при 105 С Таблица 24. Выход и <a href="/info/65684">характеристика смолы</a> полукоксования в реторте <a href="/info/1028529">Фишера окисленных</a> углей в лабораторных условиях при 105 С

    Как и при других процессах, подобных окислению парафинов, в реакцию вступает только та часть кислорода, которая растворена в парафине., Поэтому скорость окисления будет тем больше, чем больший процент кислорода растворится в парафине. Повышение растворимости кислорода в свою очередь почти пропорционально его давлению. Следовательно, окисление протекает тем быстрее, чем выше давление. Фишер и Шнейдер исследовали эту зависимость и получили результаты, приведенные в табл. 121 [64]. [c.451]

    Хорошее перемешивание реагирующих фаз при высоте рабочей зоны колонны около 15 м делает малоэффективной установку в колонне устройств, предназначенных для дополнительного перераспределения внутренней циркуляции потоков газа и жидкости. Были проведены сопоставительные испытания двух промышленных колонн диаметром 2,2 м и высотой рабочей зоны 14—15 м одна из колонн была пустотелая, другая — снабжена рассекателями, представляющими собой смонтированные под углом 45° к горизонтальной плоскости и расходящиеся из центра стальные пластины. Сравнение сделано для битумов с температурой размягчения по КиШ, равной 53 4 °С, при температуре окисления 280 5°С и расходе воздуха 3400 100 м /ч. В результате установлено отсутствие значимой разницы между средними квадратичными ошибками и средними значениями измерений содержания кислорода в испытуемых колоннах (оценка по критериям Фишера и Стьюдента). Следовательно, эффективность обеих колонн одинакова [82]. [c.59]

    Работы Бона, Френсиса и Уилера, Фишера и Шрадера по окислению каменных углей перманганатом калия или кислородом в щелочной среде, озоном, азотной кислотой и другими окислителями легли в основу современных представлений о структуре углей. Из продуктов окисления эти авторы выделили и идентифицировали щавелевую, адипиновую, меллитовую, терефталевую, бензойную, бензолпентакарбоновые и другие подобные кислоты и таким образом доказали ароматический характер углей. [c.167]

    В настоящее время возродился интерес к процессу Фишера-Троп-ша (синтез углеводородов из оксида углерода и водорода), направленному на получение фракций, выкипающих в пределах дизельного топлива. Достоинством этого процесса является возможность производства топлива, практически не содержащего серы. По указанной технологии сооружен ряд промышленных установок [353-357]. В частности, фирмой Шелл в Малайзии пущен завод по синтезу углеводородов из природного газа мощностью 570 тыс. т/год. Разработанный этой фирмой процесс получил название Синтез средних дистиллятов . Он включает стадии некаталитического парциального окисления метана с получением синтез-газа, последующий синтез высокомолекулярных парафинов и их гидрокрекинг с получением смеси средних дистиллятов. [c.364]


    Строение этих биологически важных соединений доказано их синтезом. Так, например, урацил получают окислением продукта присоединения мочевины к акриловой кислоте — 2,4-диоксидигидропиримидина (гидроурацила), образование которого уже было описано выще (Э. Фишер). Окисление производится бромом при этом промежуточно образуется монобромгидроурацил, от которого пиридин отщепляет 1 молекулу бромистого водорода. [c.1034]

    Окисление парафина с целью получения жирных кислот получило большое развитие в Германии во время второй мировой войны. В качестве исходного материала здесь применяют или очищенный нефтяной парафин, или что дает более благоприятные результаты, буроугольпый нарафип (ТТН-процесс), или синтетический парафин, полученный процессом Фишера-Тропша. [c.162]

    Благодаря разработанным в последнее время, особенно в Германии, метода-м химической переработки средних и вышекирящих фракций продуктов синтеза ло Фишеру — Тропшу (когазин II и парафиновый гач) путем их хлорирования, сульфохлорирования, нитрования, окисления, сульфоокисления и др., эти продукты нашли ряд специальных областей использования. Они не могут быть здесь заменены нефтепродуктами с тем же интервалом кипения в силу сложного углеводородного составе этих нефтяных фракций. [c.71]

    Синтез 1П0 Фишеру—Тропшу рассматривался первоначально как синтез бензина, и переработка первичных продуктов была полностью подчинена задаче получения максимального количества бензина. Позднее выяснились большие возможности использования средних фракций синтеза как сырья для проведения различных реакций замещения и-парафинового гача как сырья для окисления или для производства синтетических смазочных масел. После этого основной операцией переработки продуктов синтеза стала их ректификация. [c.105]

    В соответствии с часто высказывавшимся взглядом, что хорошими смазочными свойствами обладают только углеводороды, в молекуле которых имеются циклы, исследовались возможности получения смазочных масел конденсацией высших хлористых алкилов с ароматическими углеводородами. Исходным сырьем для этого применяли газойль с (пределами кипения приблизительно 230—320" , получаемый при синтезе углеводородов по Фишеру — Тропшу, известный под названием когазин П. Этот исходный материал хлорировали и затем подвергали его взаимодействию с ароматическими углеводородами по Фриделю — Крафтсу в присутствии безводного хлористого алюминия. Таким спосо-болМ удавалось получать смазочные масла любой требуемой вязкости, отличавшиеся хорошими низкотемпературными свойствами, стойкостью к окислению и низкой коксуемостью. Однако важнейшая характеристика смазочных масел — их вязкостно-температурная зависимость, выражаемая высотой полюса вязкости или индексом вязкости, для таких масел оказывалась неудовлетворительной. Вязкость этих масел сравнительно круто падает с повышением температуры. Высота полюса вязкости таких масел лежит около 3 индекс вязкости соответственно равен около 30. [c.235]

    Процесс получения смесей окиси углерода и водорода частичным окислением природного газа (метана), поставляющий исходный продукт для проведения синтеза по Фишеру — Тропшу, в промышленном масштабе, играет в настоящее время очень большую роль з обеспечении двигателей внутреннего сгорания горючим эта роль в будущем может стать решающей. Подробности об этом процессе сообщаются ниже. Реакция протекает по уравнению [c.439]

    Особыми преимуществами для окисления обладает парафиновое сырье, выделенное из продуктов синтеза по Фишеру—Тропшу, проводимого под средним давлением, поскольку оно в большей степени содержит углеводороды с прямой цепью, чем продукт, полученный при нормальном давлении. В результате жирные кислоты, в которые окисляют это сырье, имеют меньше примесей с разветвленной структурой, что очень важно, так как нежелательный, иногда резкий запах синтетического мыла главным образом зависит от присутствия кислот изостроения. Все же это сырье еще содержит до 15—20% углеводородов изостроения, тогда как в гаче, полученном при нормальном давлении, их находится 30—40 %. [c.445]

    Нефтяной парафин производят в Германии в небольших количествах, так что остается только рассчитывать на синтетический парафин, тем более что последний, как это уже отмечалось раньше, особенно подходит для окисления и доступен в любых количествах. Если при работе по методу Фишера—Тропша при нормальном давлении в том впде, как он был впервые внедрен в промышленность, получается всего 5—6% парафина, кипящего выше 320°, то при синтезе, проводимом под средним давлением (10 ат), этого парафина получается в 4— [c.445]

    Парафиновый гач, полученный в синтезе по Фишеру—Тропшу— Рурхеми под нормальным давлением, можно непосредственно использовать для окисления, так как содержание примесей, кипящих выше 460°, настолько незначительно, что они не влияют на выходы кислот, пригодных для мыловарения, и на процесс окисления. Из приведенных ниже данных можно получить приблизительное представление о составе синтетического парафинового гача, пригодного для окисления [45] (в % объемн.)  [c.446]


    А. Н. Башкиров и Я. Б. Чертков [П9] показали, что окисление контактного парафина, иолученного в процесса Фишера—Тропша (температура плавления 95—100°, средний молекулярный вес 1007, что соответствует формуле С70Н140), происходит с относительно большими выходами низших кислот, чем окисление чистого эйкозана (Витцель) или тетракозана (Янтцен). Окисление проводили при 115—120° в присутствии 0,2% перманганата калия как катализатора до содержания кислот в оксидате около 56%. [c.586]

    Оксо-синтез—реакция между олефинами, водородом и окисью углерода, проводимая с целью получения окисленных соединений, главным образом альдегидов, которые впоследствии можно гидрировать в спирты. При этом применяются температура 150—205 °С и давление 150—300 ат катализатором служит кобальт (в первоначальном процессе использовали твердый катализатор Фишера— Тропша). Активным агентом является дикобальтоктакарбонил [Со(С04) з. в установке с неподвижным слоем твердого катализатора сырьем может Служить жидкий гептен, который подается с объемной скоростью 0,4 ч . В случае применения пасты ее прокачивают через реактор с объемной скоростью 1,3—3 тогда как объемная скорость газа составляет 250 Катализатором является 2,5%-ный нафтенат кобальта на носителе. Порядок величины константы скорости реакции в жидкой фазе к= =0,02—0,07 мин при температуре 110 °С и давлении около 200 ат. В настоящее время опубликованы обзоры по оксо-синте- [c.330]

    ИЗ простых веществ и некоторые реакции частичного окисления, например синтез этилена из этана, ацетилена из метана и получение синтез-газа из метана, для реакции Фишера—Тропша в этих последних реакциях для обеспечения высоких температур допускается частичное сгорание смеси. [c.382]

    Идентифицировать индивидуальные жирные кислоты, содержащиеся в оксидате, удавалось лишь немногим исследователям. Оксидат обычно содержит небольшие количества низших (летучих) кислот в большем количестве содержатся в оксидате тяжелые водонерастворимые предельные кислоты. Сообщается, что выход таких кислот со средним молекулярным весом 250 может доходить до 60—70% [327. В табл. ХП1-5 приведены данные по составу оксидата после окисления парафина, полученного путем синтеза из СО и водорода по Фишеру — Тропшу, в присутствии 0,5% стеарата марганца. [c.587]

    Парафины иного происхождения (например, из углей или получаемые в различных процессах по реакции Фишера — Тропша) могут содержать 15—20% углеводородов изостроения, а неочищенные парафинистые фракции (гач, петролатум) с пониженной точкой плавления — также циклические углеводороды. Состав жидких фракций (керосин, газойль) зависит от природы исходной нефти и процессов ее переработки. Содержание масла в твердых парафинах — важный критерий выбора сырья для окисления. [c.148]

    Согласно Фишеру и Шнейдеру к реакциям окисления парафина можно приложить правило, по которому повышение темпера-1<уры на 10° отвечаегг удвоению скорости реакции. [c.84]

    Наконец отметим метод Болега, который проводил окисление под давлением в присутствии сильно щелочного канифольного мыла Однако все же обширные исследования Фишера и Шнейдера (см. выше) покажи, что имеется мало надежд на осуществление производства мыла в широком промышленном масштабе методами каталитического окисления. [c.87]

    В предыдущих разделах были описаны реакторы с неподвижным слоем, предназначенные для процессов, играющих важную роль в промышленности синтеза ЫНз и окисления 502. Реакторы этого типа применяются также при производстве метанола, конверсии СО в СО2 и во многих других случаях. Они широко используются при производстве синтетического бензина по методу Фишера и Тропша. Реакторы, получившие распространение ранее, работали как при низком, близком к атмосферному давлении, так и при давлении 10—30 ат. [c.344]

    Обрыв цепи показан как обычный процесс десорбции, гидрирования или окисления комплексов IV и V. Именно исходя из этого можно объяснить образование всех хорошо известных продуктов синтеза Фишера — Тропша. Можно заметить, что многие стадии обрыва цепи включают гидрирование, поэтому отсутствие адсорбированного водорода только увеличивает вероятность роста цепи за счет внедрения СО или СНг. Таким образом, можно предположить, что вероятность обрыва цепи (а следовательно, и распределение продуктов по числу атомов углерода) зависит от заполнения поверхности хемосорбирован-ным водородом. Связь между распределением продуктов по числу атомов углерода и соотношением ар" нг/( Р со+ср со2 + - -dp n o) обсуждена в разд. VI.Б. [c.207]

    Из них следует, что эрыгро-гидроксильные группы находятся в транс-положении, а грео-гидроксильные группы — в цыс-поло-жении (проекционные формулы Фишера не дают возможности определить наивыгодную конформацию молекулы и затрудняют объяснение некоторых реакций). Например, работами Хокетта [59], а позднее Шварца [60] показано, что при окислении перйодатом гекситов преимущественно разрываются трео-гидроксильные группировки (у сорбита — положения 2,3 и 3,4, у дульцита — положения 2,3 и 4,5). Комплексообразование ионов металлов также происходит преимущественно с участием трео-расположенных гидроксильных групп (см. гл. 1, раздел 1.3.4). [c.88]

    Окисление. Неполным окислением метана кислородом воздуха получают газовую смесь, состоящую из оксида углерода (II) и водорода в таком соотношении, в каком необходимо для синтез-газа, из которого по Фишеру—Тропшу получают алканы и алкены нормального строения, а также кислородные соединения, главным образом спирты. [c.198]

    Когда будут введены в строй новые разделительные заводы на Ближнем Востоке, СНГ можно будет использовать вместо дистиллята при производстве аммиака в этом районе, а также в Европе и Японии. Удельный расход природного газа составляет примерно 932 м т аммония. Следовательно, для обеспечения типового завода мощностью до 1000 т/сут аммония потребуется 238 тыс. т бутана в год. Синтетические газы для производства метанола, которые получаются по методу Фищера—Тропща или методу окисления спиртов, отличаются по своему составу от тех, которые используются для синтеза аммиака. При производстве метанола смесь, состоящая из 1 объема СО и 2 объемов Нг, проходит над поверхностью катализатора (активированной окиси цинка) при температуре 350 °С и давлении 25,33—35,46 МПа. Разработанные компаниями ИСИ и Лурги новые катализаторы позволили снизить рабочее давление до 5066—12 160 кПа. Процессы, происходящие как при высоком, так и при низком давлении, базируются на равновесии реакций и нуждаются в многократной рециркуляции непрореагировавщих газов. Наиболее употребительным сырьем для производства метанола являются дистиллят и природный газ, однако с ними могут конкурировать и СНГ, если их имеется достаточное количество и доступны цены. Синтетические углеводороды, получаемые по методу Фишера—Тропша из СНГ, можно использовать для получения парафинов с прямой цепью при экзотермической реакции и давлении около 1013 кПа, что дает возможность избежать применения железного и кобальтового катализаторов. Если соотношение СО и Нз увеличивается, то конечной стадией процесса являются олефины с преобладанием двойных связей. Для синтеза окисленных спиртов требуется газ с соотношением СО и Нг, равным 1 1. При давлении 10,13— 20,26 МПа в присутствии кобальтового катализатора этот газ конвертирует олефины в альдегиды К— H = H2 - 0 -Hг- R— —СНг—СНг—СНО. [c.244]

    Вначале в качестве сырья для окисления использовали алканы, синтезируемые из СО и На по методу Фишера — Тропша, затем парафин буроугольного и нефтяного происхождения. В настоящее время основным источником сырья являются среднедистиллятные нефтяные дизельные фракции. [c.285]

    Исследованию подвергали продукты действия двуокиси серы на низшие [123] и высшие (например, додецеп-1) [124] олефины, образующиеся при синтезе Фишера-Тропша. В присутствии окисленного этилбензола как катализатора из пропилепа был получен при —70° полисульфон с большим молекулярным весом [123]. [c.490]

    Синтез природных сахаров. Действие щелочей на формальдегид (Лев) или на смесь глицеринового альдегида и диоксиацетона (так называемую глицерозу), получающуюся при окислении глицерина (Э. Фишер), или, наконец, на гликолевый альдегид (Фентон) приводит к образованию смеси различных сахаров — так называемой ф о р-м о 3ы. Эти сахара могут образоваться из указанных альдегидов в результате однократной или многократной альдольной конденсации  [c.435]

    Эта формула была подтверждена синтезом продукта окисления глюкозамина — глюкозамнновой кислоты. Синтез этой кислоты был осуществлен Э. Фишером и Лейхсом путем присоединения к D-араби-нозе аммиака и синильной кислоты с последующим омылением полученного аминонитрила. [c.444]

    Гетерогенным называют катализ на поверхности твердых тел, находящихся в контакте с реагирующими веществами в газовой фазе или в растворах. Основные теоретические положения, необходимые для понимания сущности гетерогенного катализа, уже изложены в гл. 14 в связи с обсуждением роли адсорбции в гетерогенных реакциях. При проведении реакции на поверхности твердых тел последняя играет вполне определенную роль благодаря адсорбции на поверхности понижается энергия активации катализируемой реакции. До настоящего времени еще не существует удовлетворительной количественной теории катализа. В любой каталитической реакции важнейшее значение имеет структура поверхности. Катализ протекает не на всей поверхности твердого тела, а главным образом на активных центрах (дислокациях, ребрах кристаллов и других дефектах кристаллов). Кроме того, известно, что каталитическая активность зависит от кристаллографической плоскости, — кристаллы, ориентированные в некоторых определенных направлениях, обладают максимальной активностью. Большое значение в гетерогенном катализе имеют смешанные катализаторы. Примером могут служить почти все известные газовые реакции, используемые в химических технологических процессах (синтез аммиака, синтез 50з, гидрирование угля по Бергиусу или Фишеру— Тропшу, окисление аммиака по Оствальду и многие другие). [c.196]

    Катализаторы обладают специфическим действием. Вещество, значительно ускоряющее одну реакцию, часто оказывается совершенно неэффективным для другой. В то же время для данной реакции может существовать целый набор катализаторов. Так, термическое разложение хлората калия ускоряется не только в присутствии МпОг, но и некоторых других оксидов (РегОз, СггОз). Существуют катализаторы, обладающие так называемой групповой специфичностью. Она проявляется в том, что при помощи их ускоряется целая группа однотипных реакций. Например, никель Ренея (мелкодисперсный никель с сильно развитой поверхностью) служит специфическим катализатором реакций гидрирования, а иентоксид ванадия ускоряет многие реакции окисления (ЗОг, N1 3 и т. д.). Многие катализаторы, в частности ферменты, обладают сугубо индивидуальным каталитическим действием. Такие катализаторы называются индивидуально-специфическими. По образному выражению Э. Фишера, реакцию, катализируемую ферментом, можно сравнить с замком, а сам фермент — с ключом. Как не каждый ключ может открыть замок, так не каждый фермент способен ускорить реакцию в данном направлении. Например, один фермент способствует сбраживанию сахара до спирта и диоксида углерода, другой — до молочной кислоты. [c.234]

    Манноза. —В 1888 г. Э. Фишер при восстановлении Л-глюкозы амальгамой натрия наряду с глаЬным продуктом нормального восстановления — сорбитом получил сахарный спирт, из которого после окисления образуется не глюкоза, а новая альдогек-соза, которую удалось выделить в виде фенилгидразона. Полученный новый гексит оказался маннитом, образующимся в результате чаСтич- [c.536]

    Окислительное расщепление углерод-углеродных связей в алифатичоских углеводородах как правило, не имеет препаративного значения, гак как при этом модаег происходить разрыв связи в любом месте углеродной цепи с образованием шеей карбоновых, дикарбоновых, оксикарбоновых кислот и других продуктов расщепления. Только при точно установленных условиях проведения реакции высокомолекулярные парафины можно, например по Фишеру — Трошпу — Гачу, каталитическим окислением кислородом воздуха относительно однозначно расщеплять до жирных кислот со средней длиной цепи Qie — С is- Такой способ приобрел большое техническое значение в мыловаренной промышленности. [c.830]

    Азосоединения могут быть получены окислением ароматических гидразинов, конденсацией их же с хинонамн, разложением солей диазония нли перегруппировкой триазенов (перегруппировка типа Фишера—Геппа). Азоксисоединения претерпевают перегруппировку Валлаха с образованием окси-азосоединений. Интересным, хотя практически и невыгодным является диспропорционирование гидразосоединений. Было показано, что гидр азобензол пиролизуется на анилин и азобензол без разрыва связи N—N в получающемся азобензоле, т. е, гидр азобензол окисляется в азосоединение. [c.42]

    Синтетическим путем она получена окислением никотина или анабазина (А. М. Халецкий, 1944 А. Садыков, 1945), окислением Р-пиколина (Вейдель, 1879 Ост, 1883), декарбоксилированием хинолиновой кислоты (Сухарда, 1925), гидролизом 3-цианпиридина (О. Фишер, 1882), карбоксилированием [c.657]


Смотреть страницы где упоминается термин Фишера окисления: [c.203]    [c.444]    [c.446]    [c.281]    [c.587]    [c.176]    [c.294]    [c.285]    [c.57]    [c.572]    [c.574]   
Основы органической химии (2007) -- [ c.59 , c.60 , c.105 , c.106 , c.116 , c.144 , c.148 , c.161 , c.174 , c.179 , c.180 , c.260 , c.261 , c.264 , c.266 , c.267 , c.290 , c.292 , c.320 , c.321 , c.341 , c.342 , c.359 , c.360 , c.389 , c.396 , c.406 , c.427 , c.460 , c.464 , c.499 , c.601 ]




ПОИСК





Смотрите так же термины и статьи:

Фишер



© 2025 chem21.info Реклама на сайте