Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук пространственная структура

    Иногда элементарные звенья, имея одинаковый химический состав, различаются по своему пространственному строению. В этом случае вся макромолекулярная цепь будет состоять из многократно повторяющихся участков, имеющих совершенно одинаковую пространственную структуру. Такие участки называются периодами идентичности. Они определяют расстояние между двумя одинаково расположенными в пространстве группами нли атомами. Классическим примером высокомолекулярных соединений, у которых разные периоды идентичности обусловлены различной пространственной структурой (строением), несмотря на одинаковый химический состав элементарных звеньев, являются натуральный каучук и гут- [c.374]


    При вулканизации резиновая смесь, содержащая серу и ускорители, нагревается до 130—160 °С. В результате сложного физико-химического процесса макромолекулы каучука образуют пространственную структуру и каучук из пластичного превращается в прочный эластичный материал. [c.191]

    В случае образования прочных валентных связей между цепями всегда в той или другой степени изменяется эластичность материала и повыщается его твердость. Это происходит, например, при твердении феноло-формальдегидных смол или при вулканизации каучука , В предельном случае при образовании сплошной пространственной структуры материал приобретает свойства упруго-твердого (непластичного) тела, примером чего может служить эбонит. [c.568]

    Пространственные полимеры набухают ограниченно, так как растворение их потребовало бы разрыва химических связей, образующих пространственную структуру, а на такой разрыв анергии сольватации недостаточно. Полимеры, сшитые короткими мостичны-ми связями, как правило, вообще не набухают. Так, натуральный каучук (линейный полимер) неограниченна набухает в бензоле, вулканизированный каучук (пространственная структура) ограниченно набухает в беа-золе, а эбонит (сшитый вулканизированный каучук) совсем не набухает. [c.182]

    Усиление каучука наполнителями обусловлено образованием упрочненных структур полимера вследствие адсорбции участков полимерных молекул на частицах наполнителя [50, 53, 54]. Наполненные каучуки более прочны и менее эластичны, чем ненаполненные. Активный наполнитель приводит к образованию в каучуке пространственной структуры, которая при достаточной степени наполнения пронизывает весь объем полимера. При этом важную роль в усилении полимера наполнителем играет природа поверхности и дисперсность частиц наполнителя. Наличие наполнителей в полимере усложняет процессы релаксации напряжения [55]. В связи с этим представляло интерес исследовать влияние природы поверхности и дисперсности частиц наполнителя на процессы релаксации напряжения в литьевых полиуретанах. [c.72]

    Бурно продолжала развиваться эта отрасль промышленности и в послевоенные годы. Время показало, что несмотря на свои очевидные преимущества — дешевизну, возможность быстрого производства в массовых количествах — бутадиен-стирольные, бутадиеновые, хлоропреновые и другие синтетические каучуки все-таки не в состоянии полностью заменить натуральный. Дело в том, что каучук с дерева на 97—99% является цис-полиизопреном со строго определенной пространственной структурой (стереорегулярной структурой)  [c.124]


    Исследования показали, что фактическая непредельность нат-рий-дивинилового каучука ниже теоретической. Отсюда можно предположить, что часть двойных связей используется при полимеризации на образование поперечных связей между отдельными молекулами, т. е. образуется трехмерная (пространственная) структура. Трехмерные сетчатые полимеры дивинила отличаются большой жесткостью и нерастворимостью. [c.52]

    Кроме цепных молекул, в определенных технологических условиях или в результате специальной обработки могут быть получены полимеры с пространственной структурой. Конечно, понятие молекулы у трехмерных полимеров теряет смысл, так как пространственные сетки могут достигать весьма больших размеров. Типичным примером полимера с пространственной структурой может служить вулканизованный каучук, состоящий из каучуковых молекул, сшитых друг с другом серными мостиками, [c.426]

    Основным направлением реакции взаимодействия серы с каучуком является сшивание линейных макромолекул каучука сульфидными, полисульфидными или иными связями с образованием пространственной структуры и резким изменением свойств системы. При этом может происходить присоединение серы к обоим углеродным атомам с раскрытием двойной связи [c.253]

    Доказательством того, что основной реакцией при вулканизации каучука является образование пространственной структуры, служит то обстоятельство, что присоединение к каучуку 0,16% серы достаточно для полного изменения его физико-механических свойств. Содержание серы в технически пригодных вулканизатах колеблется от 0,01 до 1 атома на одно элементарное звено полимера. С возрастанием количества связанной серы возрастают твердость и плотность каучука и изменяются другие физико-механические свойства. Эбонит — продукт присоединения предельного количества серы (32%), по механическим свойствам близок к кристаллу. [c.254]

    При развитии подобных реакций и межмолекулярного взаимодействия в каучуке все большая часть молекулярных цепей участвует в образовании пространственной структуры. Возникновение единой пространственной структуры приводит к потере растворимости и термопластичности (способности размягчаться при нагревании). Вследствие образования поперечных химических связей между молекулярными цепями и увеличения межмолекулярного взаимодействия затрудняются пластические деформации, связанные со взаимным скольжением молекул вулканизат становится эластичным. [c.79]

    Основной процесс производства регенерата — процесс девулканизации-обычно осуществляется путем нагревания измельченной резины с мягчителями в течение нескольких часов при температуре 160—190 °С. В процессе девулканизации вулканизованный каучук деструктируется, вследствие этого пространственная структура его частично разрушается. Разрыв пространственной сетки при девулканизации происходит как по месту присоединения серы, так и в основных молекулярных цепях. Пространственная структура вулканизата разрыхляется , то есть уменьшается густота пространственной сетки за счет распада части поперечных связей и некоторой части основных молекулярных цепей, что приводит к образованию растворимой фракции со средним молекулярным весом 6000—12 ООО. Установлено, что каучуковое вещество в регенерате находится в двух различных по строению состояниях в виде массы разрыхленного и набухшего в мягчителе геля (нерастворимая часть) и распределенных в ней частиц золя (растворимая часть)  [c.369]

    К вулканизующим веществам относятся соединения, с помощью которых осуществляется химическое связывание (сшивание) макромолекул каучука и формирование пространственной структуры. [c.52]

    Метод жидкого формования применяется для изготовления массивных шин на основе уретановых каучуков. При впрыскивании в пресс-форму диизоцианатов, сложного полиэфира и отвердите-ля протекает процесс полимеризации с образованием пространственной структуры, которая по своим свойствам аналогична структуре вулканизованной резины. Это позволяет исключить операции заготовки, сборки и вулканизации изделий. [c.258]

    Наполнитель может участвовать в образовании структур двух типов 1) частицы наполнителя или их агрегаты беспорядочно распределены в массе каучука и в основном изолированы друг от друга прослойками каучука, 2) частицы наполнителя образу>от пространственную сетку. Характер образующейся структуры зависит от количества введенного наполиителя, его дисперсности, и также от соотношения прочностей связей наполнитель—каучук и наполнитель—наполнитель. Если связи наполнителя с каучуком прочнее, то образуется преимущественно структура первого гипа (такую структуру образуют неактивные и мaJизaктивIiыe наполнители). Если же прочнее связи наполнитель—наполнитель, то образуются цепные структуры, служащие матрицей, на которой укладываются и ориентируются молекулы каучука. Такие структуры образуют активные наполнители. [c.197]


    Вулканизацией называется процесс перехода пленкообразующего вещества каучука из пластического или вязкотекучего состояния, обусловленного малой прочностью сил межмолекулярного взаимодействия, в эластическое в результате соединения отдельных макромолекул каучука в единую пространственную структуру, обладающую связями повышенной прочности. [c.45]

    Сущность процесса вулканизации заключается в сложных физико-химических процессах, протекающих при определенных температурных режимах за счет присутствия в смесях вулканизующей группы, влияния радиации, токов СВЧ и других факторов, в результате которых макромолекулы каучука соединяются (сшиваются) силами главных валентностей с образованием единой трехмерной пространственной структуры, определяющей комплекс физико-механических показателей вулканизата. В вулка-низате образуются химические поперечные связи—ковалентные, ионные или координационные — и увеличиваются силы межмолекулярного взаимодействия. Наряду со структурированием при [c.45]

    Влияние строения и состава. Природа каучука — его молекулярная масса и строение — регулярность, линейность, присутствие функциональных реакционноспособных групп, энергия связи в основной цепи и характер мостиковых связей вулканизата — существенно влияют на прочность и долговечность резины. При увеличении молекулярной массы каучука прочность растет до определенного предела, а затем практически не изменяется. Применяемые вулканизующие вещества, ускорители вулканизации и активаторы, наполнители обеспечивают определенную прочность пространственной структуры вулканизата. [c.113]

    Для получения каучука с заданными свойствамн надо не только обеспечить создание очень длинной неразветвленной цепи из молекул изопрена (для этого полимеризацию надо осуществить только в 1,4-положения), но кроме того создать определенную пространственную структуру полимерной цепи. Дело в тем, что содержащая двойные связи полимерная цепь может иметь две различных пространственных конфигурации — цис- или транс-. Свойствами натурального каучука обладает цш -полимер  [c.257]

    В результате разрыва ковалентных связей образуются свободные макрорадикалы, которые могут вызвать либо дальнейший распад пространственной структуры резины — процесс деструкции, либо увеличение густоты пространственной сетки — процесс структурирования. Обычно деструкция и структурирование протекают одновременно. Преобладание того или иного процесса зависит от вида каучука и состава резиновой смеси, а также от длительности термического воздействия. [c.174]

    Радиационное старение. В связи с интенсивным развитием ракетостроения, космического приборостроения, освоения и использования атомной энергии большое значение приобретает старение, возникающее при радиационном облучении. В результате его в резинах происходит возбуждение молекул каучука и образование свободных радикалов, являющихся центрами реакции рекомбинации и образования сшитых пространственных структур с повышенной густотой сетки, или деструкция и окисление вулканизатов. [c.177]

    Всевозрастающее значение приобретает химия полимеров. Полимеры— химические соединения с большой молекулярной массой от нескольких тысяч до многих миллионов единиц. Большинство таких макромолекул состоят из повторяющихся группировок, звеньев, например целлюлоза, поливинилхлорид, поликапроамид, а также полимеры живых организмов белки, нуклеиновые кислоты. Если выделить вещества с молекулами из таких отдельных группировок или фрагментов, полностью сохранив их строение, то будут утеряны почти все полезные свойства полимеров. Именно способность макромолекул приобретать в процессе увеличения, рск та полимерной цепи или объемной пространственной структуры особые качества выделила науку о полимерах в самостоятельную ветвь органической химии. Полимеры, пожалуй, наиболее многочисленный класс химических соединений, исчисляемый миллионами. Это и природные высокомолекулярные соединения и синтетические каучуки, химические волокна, лаки, краски, иониты, меи и, конечно, пластмассы. [c.32]

    К природным полимерам этой группы относится шерсть, известно также большое количество синтетических полимеров, обладающих пространственной структурой (феноло-формальдегид-ные полимеры, вулканизованные каучуки). [c.371]

    Резиновые смеси изготовляют на основе высокоэластичных полимеров, называемых эластомерами, или каучуками. Существенная составная часть резиновых смесей — вулканизирующие агенты. Благодаря им макромолекулы соединяются поперечными связями, образуются полимерные соединения пространственной структуры. Вулканизирующим агентом для каучуков, имеющих двойные связи, служат сера или серусодержащие [c.29]

    Важнейшим завершающим процессом резинового производства является вулканизация. В процессе вулканизации под действием нагрева, химических добавок (например, серы и др.) или радиационного излучения сырая резиновая смесь преобразуется в резину или вулканизат. В процессе вулканизации происходит сшивание макромолекул каучука с образованием пространственной структуры, отличающей резину от сырого каучука, что коренным образом изменяет свойства материала (стр. 519). [c.478]

    Синтез этих новых высокомолекулярных продуктов [1—26, 135] оказался возможным благодаря работам Циглера п Натта по нрнмененнго металлорганических смешанных или координационных катализаторов. Такие катализаторные системы позволили наряду с полимеризацией этилена и пропилена осуществить и стереоспеци-фпческую полимеризацию 1,4-бутадпена и изопрена с получением стереокаучуков. По своей пространственной структуре этн новые продукты очень похожи на натуральный каучук и обладают многими ценными свойствами этого каучука. [c.308]

    Структура и релаксационные свойства резин — саженаполнен-ных вулканизатов каучуков — еще сложнее. Деформационные свойства саженаполненных резин могут быть описаны моделью, в котЬрой каучуковая часть резины состоит из двух составляющих мягкой и твердой (см. гл. I). Мягкая составляющая по структуре идентична ненаполненному сшитому каучуку, структура которого рассматривается как состоящая из упорядоченной и неупорядоченной частей. Первая представляет собой совокупность элементов надмолекулярной структуры — упорядоченных микроблоков, связанных в единую пространственную структуру с неупорядоченной частью и состоящих из свободных полимерных цепей и сегментов. Вторая представляет собой объем связанного, т. е. адсорбированного на частицах наполнителя, слоя каучука. Этот адсорбированный слой каучука менее эластичен, чем каучук в мягкой составляющей. В целом сажекаучуковая часть резины состоит из частиц наполнителя, образующих макросетчатую пространственную структуру, и твердой составляющей каучука, связанной с частицами наполнителя. Подвижности сегментов, находящихся в адсорбированном слое каучука, соответствует на рис. II. 14 а -процесс. В ненаполненной резине а -процесс не наблюдается. Более медленные процессы релаксации ф и б объясняются подвижностью самих частиц сажи и химических узлов сетки резины. [c.100]

    Чем больше серы вводится в каучук, тем больше возникает поперечных 5-мостиков и тем в более прочную пространственную структуру сшиваются макромолекулы каучука, а эластичность понижается. При содержании 25—50% 5 каучук превращается в твердое неэластичное вещество черного цвета — эбонит (греч. еЬепоз — черное дерево). Эбонит — электроизоляционный материал. Применяется в электротехнике. Из эбонита готовят радиоприборы, медицинские инструменты, галантерейные изделия и т. д. [c.240]

    Вулканизация — превращение пластичного сырого каучука в эластичную резину — материал, обладающий лучшими физико-механическими и эксплуатационными свойствами, чем у каучука. При горячей вулканизации смесь каучука с серой и другими веществами (ускорителями, наполнителями, мяг-чителями и т. д.) подвергают нагреванию выше 100 °С. При взаимодействии серы с каучуком происходит образование сульфидных и полисульфидных связей между макромолекулами каучука с формированием пространственной структуры ( сшивание линейных макромолекул). Продукты вулканизации мягкие резины (содержат 5—10 % 5) и твердые резины (30—50 % 8). Для получения резины, пригодной для изготовления тонкостенных изделий, проводят холодную вулканизацию с помощью дихлорида дисеры ЗгСЬ. [c.584]

    Катализаторами вулканизации являются органические перекиси, например перекись бензоила (СеН5С0)202. Предполагают, что пространственная структура может возникать за счет сшивания молекул каучука метиленовыми мостиками —СНа— Hj— или кислородными мостиками . Вулканизация осуществляется в два приема. Сначала вулканизуют резиновую смесь в прессе под давлением 25—35 кгс/см в течение 10—30 мин при температуре 120—150 °С, при этом резиновая смесь доходит до такого состояния, когда она не меняет своей формы и размеров под действием собственного веса. Затем производят довулканизацию при температуре 200 °С в термостате в течение 12—24 ч. Во избежание образования пор охлаждение производят под давлением. [c.364]

    Этим условиям удовлетворяют эластомеры, полученные вулканизацией высокомолекулярных натурального и синтетических каучуков Часто высокоэластичиостью обладают ие только сшитые эластомеры, но и линейные высокомолекулярные полимеры, например нсвулканизованные каучуки В них тоже образуются пространственные структуры, однако поперечные связи между линейными макромолекулами каучуков непрочны, имеют временный характо]) являются лабильными, неустойчивыми. [c.251]

    Столь же часто в то время объектом рентгеноструктурного анализа был коллаген - самый распространенный в клетках и живых организмах структурный белок. Рентгеновскую дифракцию на коллагене в его нативном и аморфном (желатине) состояниях наблюдали П. Шеффер (1920 г.), Дж. Катц и О. Гернгросс (1925 г.), Г. Герцог и У. Янеке (1926 г.) и др. Период идентичности по оси волокна у коллагена, согласно Н. Су-зиху, равен 8,4 А, а у фиброина шелка, по данным О. Кратки, - 7,0 А. Значительное отличие этих величин свидетельствовало о разной пространственной структуре двух молекул, что, в свою очередь, указывало на различие в их химическом строении. К. Мейер впервые провел аналогию между свойствами коллагена и каучука. В нагретом, съежившемся состоянии белок по механическим свойствам напоминал аморфный каучук, получавшийся при нагревании, а в естественных условиях проявлял свойства растянутого каучука. Был сделан вывод о том, что белковые цепи могут существовать в полностью растянутой и свернутой формах, конкретный вид которых остался, однако, неизвестным. [c.68]

    Алкениллитий вновь может присоединяться к новой молекуле изопрена и в результате многократного повторения реакции возникает высокополимер — изопреновый каучук со стереоспецифической (а не хаотической) пространственной структурой, идентичной природному каучуку. Литийорганические соединения широко используются для целевых органических синтезов. [c.575]

    Для смесей битума типа гель с любыми каучуками характерна малая растяжимость при 25 и при 0°С (значения их близки). Низкая растяжимость вообще является свойством исходного геля, это связано с наличием собственной пространственной структуры. При введении каучуков за счет нарастания вязкости системы этот показатель уменьшается. Согласно Л. М. Гохману [9] наличие структуры у битумов препятствует развитию эластических деформаций. Действительно, несмотря на распределение каучука СКМС-ЗО-АРКМ-15 в виде сплошной сетки, деформатив-ная способность смесей ограничена (в среднем 5—8 см при 25 и 3—5 см при 0°С), хотя и выше, чем в случае добавок СКЭП (3—4 см при 25 и 1,5—2,5 см при 0°С). [c.134]

    Интересно использование для сшивания СКЭП некоторых полимеризующихся мономеров, которые, принимая участие в образовании поперечных связей, одновременно подвергаютс полимеризации, образуя пространственную структуру типа сетка в сетке Ввиду того, что свободные радикалы атакуют в пер вую очередь двойные связи, которые более реакционноспособны, чем атомы водорода насыщенной цепи полимера, можно предположить что первой стадией реакции будет инициирование Полимеризации мономера перекисью Радикалы мономера могут рекомбинировать с макрорадикалами каучука, предотвра Щая их диспропорционирование [c.103]

    В результате вулканизации сера, служащая вулканизующим агентом, сшивает молекулы каучука в пространственную структуру. Основой процесса регенерации резин является дезулканизация. Цель ее — максимальное разрушение структурных связей и перевод эластичной резины в пластичный продукт, способный вновь обрабатываться в резиновых смесях. [c.145]

    Подобные же результаты были получены для натурального и бутилкаучуков. В случае полимеров с пространственной структурой изменения при воздействии механических сил могут быть оценены, как ни странно, по равновесному набуханию в определенных растворителях. Так, изучение набухания ненаполнен-ных вулканизатов бутилкаучука или натурального каучука, подвергнутых деформациям сдвига, одноосного сжатия или растяжения, выявляет заметное изменение способности к набуханию и разрыву поперечных связей, способствующее проникновению растворителя между молекулярными цепями. Способность к набуханию вулканизатов бутилкаучука в вазелиновом масле сильно повыщается после механических воздействий. В случае вулканизатов натурального каучука после многократных продолжительных деформаций степень набухания растет в полярных жидкостях и уменьшается в неполярных (например, в вазелиновом масле). Следовательно, в отличие от вулканизатов бутилкаучука вулканизаты натурального каучука вследствие механической деструкции становятся более полярными, что указывает на развитие реакций окисления во время процесса деформации. [c.188]

    Имеющиеся данные можно дополнить данными по взаимодействию неполимеризующихся систем полимер — мономер (со-мономеры), которые выполняют роль полифункциональных акцепторов и приводят к образованию трехмерных рещеток. Мастикация смеси двух полимеров, способных сшиваться в присутствии полифункционального агента, приводит к образованию привитого сополимера с пространственной структурой. В этом смысле можно упомянуть исследованную Церезой систему натуральный каучук — полиэтилен в присутствии аценафтена. [c.348]

    Другой областью применения механодеструкп.ии является восстановление пространственных структур. Так, механической переработкой каучуков в присутствии акцепторов или мономеров можно получить регенераторы без особого расхода химических реактивов и тепловой энергии, что позволяет с помощью простой технологии обеспечить высокие качества вулканизатов. [c.350]

    Исследована смешанная композиция битумов с полиэтиленовым воском, полиэтиленом, полипропиленом, разнообразными латексами и каучуками. Показано, что при содержании в битуме полимера в пределах 0,1—6,0% (масс.) он после охлаждения расплава образует в массе битума дискретную структуру нри концентрациях полимера 6—15% (масс.) образуется пространственная структура, решающим образом влияющая на свойства системы при концентрациях выше критической (более 15% масс.) система неоднородна, так как происходит разрушение макроассоциатов битума и коагуляция асфальтенов. [c.150]


Смотреть страницы где упоминается термин Каучук пространственная структура: [c.401]    [c.240]    [c.96]    [c.47]    [c.160]    [c.118]    [c.6]    [c.291]   
Химия высокомолекулярных соединений (1950) -- [ c.404 ]




ПОИСК





Смотрите так же термины и статьи:

Структуры пространственные



© 2024 chem21.info Реклама на сайте