Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты асимметрические, определение конфигурации

    Асимметрический синтез с помощью магнийорганических соединений получил широкое применение в работах Прелога с (.отр.185-190 (1953— 958 гг.) изучения стереохимии реакций и определения относительной конфигурации реагирующих молекул. Так, при асимметрическом синтезе а-оксикислот , образующихся при воздействии реактива Гриньяра на этерифицирован-ную оптически-активным спиртом а-кетокислоту, конфигурация образующейся а-оксикислоты может быть определена, если известна конфигурация оптически-активного спирта. И, наоборот, может быть определена конфигурация последнего, если известна конфигурация а-оксикислоты, как, например, в случае 0- —)-молочной, 0- —)-миндальной, 0- —)-атролактиновой кислот . [c.68]


    В последнее время основное внимание уделяли использованию асимметрических реакций для определения абсолютной конфигурации органических соединений. Реакции рацемических соединений (в основном, кислот с асимметрическим углеродом в а-положении к карбоксильной группе) с оптически активными спиртами или аминосоединениями, в которых гидроксильная или аминогруппа присоединена к асимметрическому углероду, дают в неравных количествах два возможных диастереомерных эфира или амида. Если известна конформация переходного состояния или интермедиата, образующегося в ходе реакции, приводящей к преимущественному образованию одного диастереомера, то можно приписать абсолютную конфигурацию спирту или амино-соединению, исходя из знака вращения выделенной оптически активной кислоты. Оро описал метод определения абсолютной конфигурации спиртов. Он основан на их преимущественной этерификации одним из энантиомеров а-фенил масляной кислоты,, используемой в реакции в форме рацемического ангидрида. При использовании спиртов с абсолютной конфигурацией, выраженной пространственной формулой (X), не вступающая в реакцию оптически, активная а-фенилмасляная кислота имеет абсолютную конфигурацию (XI)  [c.176]

    В этом разделе мы рассмотрим все описанные примеры асимметрического синтеза на основе эфиров а-кетокислот, причем особое внимание будет уделено (где это возможно и оправдано) количественным результатам. Мы систематически рассмотрим примеры, в которых можно проследить а) влияние на асимметрический синтез различного строения хирального спирта в эфире а-кетокислоты б) влияние изменения К-группы в а-кетокислоте в) влия-ние природы присоединяющегося реагента на стереоселективность г) асимметрическое восстановление хиральных эфиров а-кетокислот д) определение конфигурации методом асимметрического синтеза атролактиновой кислоты и е) применение соединений других классов в этой реакции. [c.83]

    Реакции, при которых не затрагивается асимметрический атом углерода, могут быть использованы для получения более важной информации — определения удельных вращений оптически чистых соединений. Например, 2-метилбутанол-1, полученный из сивушного масла 1и имеющий удельное вращение —5,756° (0,100 рад)1, является оптически чистым, как и большинство других диссимметричных соединений, выделяемых из природных источников, т. е. он состоит только из одного оптического изомера. При обработке этого соединения хлористым водородом образуется 1-хлор-2-метилбутан, который имеет удельное вращение 4-1,64° (0,029 рад). В про цессе реакции асимметрический центр не затрагивается, и, следовательно, каждая молекула спирта, имеющая конфигурацию П1, превращается в молекулу хлорида с конфигурацией IV поскольку спирт был оптически чистым, то и хлорид с удельным вращением -fl,64° (0,029 рад) также будет оптически чистым. Если максимальное вращение известно, то можно опреде- [c.215]


    Другой пример подмены асимметрического центра описан в работе [42], посвященной определению конфигурации циклогексен-2-ола-1. Правовращающий изомер этого спирта [c.204]

    Использовать эту последовательность превращений для определения конфигурации стало возможным благодаря знанию пространственного направления первой реакции в подобных соединениях при реакции Симмонса—Смита циклопропа-новое кольцо всегда образуется в г ис-положении к имеющейся гидроксильной группе. Таким образом, вместо положения гидроксильной группы относительно кольца (а этим определяется конфигурация циклогексен-2-ола-1) достаточно знать положение циклопропанового кольца в образующемся производном. Для того, чтобы установить это положение, би-циклический спирт последующими двумя реакциями (уничтожая старый асимметрический центр, но не затрагивая нового) превращают в (—)-3-метилциклогексанон, конфигурация которого известна. В то же время из стереоспецифичности реакции Симмонса — Смита следует, что ОН-группа в исходном веществе должна находиться на той же стороне циклогексанового кольца, что и СНз-группа в (—)-3-метилциклогексаноне  [c.205]

    В работах по асимметрическому синтезу Прелог [226] изучил характер пространственного течения реакций сложных эфиров оптически активных спиртов и а-кетокислот с магнийорганическими соединениями, а также реакций сложных эфиров ментола, неоментола, борнеола, изоборнеола и фенилглиоксиловой кислоты с иодистым метилмагнием [227[. Разработанный им метод определения конфигурации оптически активных спиртов был использован для определения конфигурации тритерпенов и стероидов [228]. [c.208]

    Таким образом, определение конфигурации кислоты с помощью асимметрического синтеза возможно на основе конфигу-ративного соответствия образующейся а-оксикислоты активирующему оптически-активному спирту. С точки зрения предложенной для этой цели теории направление асимметрического синтеза с преимущественным образованием (+)- или (—)-антиподов обусловливается частотой, с которой образуются в переходном состоянии энантиоморфные промежуточные формы сложного эфира I. По- [c.68]

    Промежуточный диастереоизомерный комплекс образуется и при гомогенном асимметрическом синтезе кислот из эфиров непредельных кислот с оптически-активными эфирами, например при восстановлении эфиров амальгамой (работы Маккензи ). По правилу стерического контроля (см. стр. 70) данная конфигурация активирующего оптически-активного спирта при асимметрическом синтезе индуцирует преимущественное образование кислоты строго определенной конфигурации. [c.34]

    Определение конфигурации спирта с помощью асимметрического синтеза атролактиновой кислоты  [c.96]

    Асимметрический синтез может быть использован, например, для определения абсолютной конфигурации оптически деятельных спиртов, у которых асимметрический атом углерода связан с гидроксилом и тремя существенно различными по величине заместителями (Б — наибольший заместитель, Ср — средний, М — меньший по эффективному объему)  [c.597]

    Предложенный метод определения относительной конфигурации был проверен на примере асимметрического синтеза атролактиновой кислоты, образующейся при действии на оптически-активный эфир фенилглиоксиловой кислоты метилмагнийиодида . В качестве активирующих оптически-активных спиртов, конфигурация которых должна определять конфигурацию образующейся а-оксикислоты, обычно применяют (+)-неоментол, (—)-ментол, (-г)-борнеол, (—)-изоборнеол, имеющие следующие пространственные структуры  [c.71]

    Метод был разработай Хоро [1,2] для определения конфигурации оптически акпшиых вторичны спиртов в основе его лежит правило асимметрического синтеза Крама [3] — Пролога [41. Хоро иоказал, [c.494]

    Тнокарбонильные соединения. Джерасси и Хербст [179] показали, что слабый максимум тиокетонной группы около 500 ммк оптически активен. Так, андростантион-17 и А -прегненон-3-тион-20 обнаруживают сильный положительный эффект Коттона в этой области. Особенно многообещающими с точки зрения определения конфигурации асимметрического углерода, несущего гидроксильную или аминогруппу, являются ксантаты (этил-дитиокарбонаты) [338] и дитиокарбаматные производные [339]. Эти производные не только дают характерный эффект Коттона, который может оказаться полезным при сопоставлении одного спирта с другим или одного амина с другим, но могут быть, видимо, использованы и при сопоставлении конфигураций спиртов и аминов. [c.432]

    Совершенно очевидно, что метиловые эфиры N-ТФА-дипептидов, образующихся при частичном гидролизе высшего пептида,— это не единственно возможные диастереомерные производные, пригодные для определения конфигурации аминокислот методом ГЖХ. Исследуемый пептид можно подвергнуть также полному гидролизу, а получающиеся аминокислоты превратить затем в подходящие производные, вводя для образования разделяемых ГЖХ диастереомеров второй асимметрический центр. Длг этой цели успешно используются метиловые эфиры N-ТФА-аминокислот, если, как сообщалось Гил-Авом [32], применять стеклянный капилляр, покрытый оптически активной жидкой фазой в таких условиях разделение энантиомерных производных l- и о-амино-кислот достигается за счет образования водородносвязанного дцастереомерного ассоциативного комплекса с жидкой фазой. В качестве производного можно взять также эфир с оптически активным спиртом, согласно Чарльзу [37] и Гил-Аву [38, 39], применившими 2-бутиловые или 2-н-октиловые эфиры. Аналогичной методикой пользовались Поллок и сотр. [40—42, 78]. [c.172]


    Этот метод применен для определения конфигурации вторичных спиртов тритерпенового и стероидного ряда а-амирина, дигидроланостерина и эйфола. Применение этих спиртов в реакции способствует образованию -(-+)-атролактиновой кислоты с удельным вращением и степенью асимметрического синтеза, соответственно +3,66° 10% +13,0 34,5% и +9,1° 24%. Отсюда сделан вывод, что эти спирты обладают одинаковой конфигурацией при атоме углерода в положении 2 у а-амирина и в положении 3 у дигидроланостерина и эйфола и, следовательно, конфигурации всех этих спиртов принадлежат к типу (А). В соответствии с этим структурные формулы для этих спиртов и частичная проекционная формула для атома углеродг , связанного с гидроксилом, имеют вид  [c.72]

    Как указывалось выше, при реакции с магнийорганическими соединениями возможно присоединение второй молекулы RMgX к эфиру а-оксикислоты с образованием соответствующего гликоля. Эта стадия протекает также асимметрически и может оказать влияние на результат основной реакции, особенно, если оптический выход атролактиновой кислоты незначителен. В этом слу чае во избежание ошибки при определении конфигурации опти-чески-активного спирта необходимо исследовать оптическое вращение и установить конфигурацию образующегося в качестве побочного продукта гликоля. Так, при реакции эфира фенилглиоксиловой кислоты и андростанола (17 ) с метилмагнийиодидом с последующим омылением продукта щелочью выделен 2-метил- -фенилбутандиол-2,3 с [а]о=—0,64°  [c.81]

    Этот метод применен для определения конфигурации вторичных спиртов тритерпенового и стероидного ряда а-амирина. дигидроланостерина и эйфола. Применение этих спиртов в реакции способствует образованию -(+)-атролактиновой кислоты с удельным вращением и степенью асимметрического синтеза. [c.72]

    Спектроскопия ЯМР вносит значительный вклад в определение энантиомерного состава и конфигурации. Специфические различия в спектрах компонентов диастереомерных пар сложных эфиров различных кислот были отмечены несколькими группами исследователей. Наиболее полно изучены стереохимические соотношения для эфиров (25) 2-трифторметил-2-метоксифенилуксус-ной кислоты (реагент Мошера) [22]. Привлекательность этих сложных эфиров (25) объясняется доступностью конфигурационных моделей, учитывающих относительные химические сдвиги и Н (как в метокси-, так и алкильной группе), связанных с двумя хиральными центрами. Еще более удобной является интерпретация различий в спектрах энантиомеров в асимметрическом окружении, которое обеспечивается использованием хираль-ного растворителя или хирального сдвигающего реагента. При изучении сольватации диастереомеров Пиркл установил, что в случае алкиларилметанолов в (+)-1-(1-нафтил)этиламине резонанс а-водорода для энантиомера с конфигурацией (24) находится в более слабом поле. Позднее основное внимание было привлечено к использованию хиральных сдвигающих реагентов, дающих прекрасное различение. Такие реагенты, как например, производные камфоры (26), исключительно эффективны для определения энантиомерного состава частично разделенных спиртов, однако корреляции между спектральными и конфигурационными характеристиками справедливы, по-видимому, только для родственных соединений [23]. [c.24]

    Взаимодействие магнийорганических реагентов с а-кетоэфи-рами (особенно с фенилглиоксиловыми эфирами) может рассматриваться как общий метод определения конфигурации асимметрических спиртов. Этим методом Прелог с сотрудниками установили, например, абсолютную конфигурацию стероидных гидроксипроизводных, а также абсолютную конфигурацию всей стероидной молекулы. Сделанные Прелогом выводы находятся в соответствии с результатами, полученными независимо с помощью трехмерного рентгенографического анализа. Также удалось показать, что пентациклические тритерпены имеют ту же самую абсолютную конфигурацию, что и соответствующая часть стероидной молекулы. Это исследование имеет большое значение для установления генетических связей между растительными продуктами обоих типов. Надежность выводов позднее была подтверждена сравнением кривых дисперсии оптического вращения. В принципе, этот метод можно расширить, включив определение абсолютной конфигурации аминов, так как в амиде а-кетокислоты в основном реагирует с реактивом Гриньяра карбонильная группа кетонного типа. [c.173]

    При применении этого метода к определению конфигурации вторичных спиртов наиболее целесообразно действовать на оптически активный эфир бензоилмуравьиной кислоты метилмагнийиодидом. Если Кь и Км— остатки насыщенных углеводородов, которые различаются только разветвлением цепи, то порядок групп Км и Кь следует порядку групп, принятому в систедге Капа — Ингольда — Прелога. Если выбрать примеры, которые подходят к этой упрощенной модели, и использовать реакцию метилмагнийгалогенида с эфиром бензоилмуравьиной кислоты, то спирты с /г-копфигурацией у атома углерода, связанного с гидроксилом, приведут к (й)-(—)-атролактиновой кислоте, тогда как спирты с -конфигурацией дадут (5 )-(4-)-атролактиновую кислоту. Но этот параллелизм между размерами групп и правилом старшинства в системе Кана — Ингольда — Прелога нарушается при введении пепасыщенных групп или гетероатомов, и, следовательно каждый случай необходимо анализировать отдельно. Далее, могут возникнуть осложнения, обусловленные общей молекулярной структурой (нанример, наличием дополнительных асимметрических центров в Км и Кь), которые не позволят применить простой анализ, основанный на учете степени разветвления у атомов углерода, соседних с центром, связанным с гидроксилом. [c.76]

    Как уже было показано, наиболее важное наблюдаемое отличие одного энантиомера от другого связано с их различным действием на поляризованный свет. На протяжении более чем столетия после открытия оптической изомерии единственным неизменным способом обозначения различия между энантиомерами была ссылка на направление вращения плоскости света, с тех пор и используется ( + )- и (—)-номенклатура. Хотя уже давно было ясно, что вращение поляризованного света обусловлено различной конфигурацией молекулы, не было способа определения абсолютной конфигурации (т. е. истинного пространственного расположения групп в молекуле). Очень скоро было обнаружено, что нет простого соотношения между знаком вращения поляризованного света и конфигурацией молекулы. Так, правовращающий спирт мог образовать левовращающий ацетат и правовращающий бензоат или левовра-щающпй амии мог дать правовращающий протонированный катион. Существует немало подобных примеров, где реакции, не изменяющие конфигурацию у асимметрического центра, дают продукты с другой оптической активностью по сравнению с активностью исходного вещества. [c.200]

    Такое определение основано на том, что если асимметрическое соединение вступает в реакцию, в процессе которой происходит разрыв связи между одной из групп и асимметрическим центром, то может произойти (хотя и не обязательно) обращение конфигурации. Если же соединение вступает в реакцию, в ходе которой не происходит разрыва связи с асимметрическим центром, то конфигурация этого асимметрического центра должна остаться неизменной. Так, например, известно, что серия реакций тозилирования спиртов III /г-толуолсульфохлоридом не со-проволсдается разрывом связи С—О спирта и, следовательно, возникающий тозилат IV должен иметь ту же конфигурацию, что и исходный спирт. Известно далее, что при реакции этого сложного эфира с ионом ацетата группа /г-МеСбН45020 вытесняется и на ее место вступает МеСОО", т. е. происходит разрыв связи С—О и, следовательно, возможно обращение конфигурации. Можно показать, что щелочной гидролиз ацетата (V->VI) происходит без расщепления связи алкил—кислород , так что спирт VI должен иметь ту же конфигурацию, что и ацетат V, [c.102]

    Известны многочисленные примеры, показывающие, что растворитель играет первостепенную роль в определении стереохимии реакций, нфи-гурация при асимметрическом атоме углерода может изменяться в зависимости от среды реакции. При обработке а-хлорфенилуксусной кислоты (К) аммиаком в воде или спирте получают фенилглицин (5) (обращение конфигурации), а в аиетонитриле и жидком аммиаке образуется фенилглицин (К) (сохранение конфигурации). [c.537]

    Приведенная выше схема позволяет избежать разрыва связей Н-С или —ОН у важного асимметрического центра. Ключевой является та часть схемы, которая позволяет установить относительную конфигурацию бутен-З-ола-2 по изомеру emo/7-бутилового спирта, а также по D-глицериновому альдегиду. Если восстановление D-глйцеринового альдегида дает пропандиол-1,2 с таким же враш,ением, как и в случае соединения, полученного из определенного изомера бутен-З-ола-2, тогда этот изомер является о-изомером, а продукт его гидрирования представляет собой D-emo/7-бутиловый спирт. [c.809]

    Основной принцип химической корреляции, запрещающий проведение реакций непосредственно по асимметрическому центру, однако, не допускает образования аналогичных соотношений между описанными выше рядами. Таким образом, химическая корреляция вынуждает априори определять стандартное соединение для каждого типа асимметрических соединений. Были уже приведены примеры четырех стандартов глицериновый альдегид и серии, принятые международными химическими организациями, а также оптически активный амиловый спирт и динитродифеновая кислота, последние пока не имеют международного признания. Взаимная корреляция серий, а именно корреляция между этими стандартными соединениями, может быть достигнута иным образом. С этой точки зрения очень важны физические и энзиматические методы определения абсолютной конфигурации, которые будут обсуждены позже методами синтетической химии также нельзя пренебрегать. Для решения указанной проблемы используются три химических метода. [c.57]

    Присоединение в этой координационно-анионной полимеризации происходит по а-углеродному атому мономера, который содержит ключевой атом. Стереорегулирование осуществляется путем взаимодействия группы К в мономере с лигандом катализатора или с группой К в полимерной цепи. Мономер, координирующий с двумя центрами катализатора, сохраняет определенное положение в иространстве по отношению к концу полимерной цепи и к катализатору. Присоединение следующего мономера происходит в той же конфигурации с образованием изотактической структуры. Целесообразность такого подхода следовала из сообщения Прайса [630] и опытов Фурукавы [637] и была подтверждена в ряде работ Цуруты, Фурукавы и др. [638—644]. Асимметрическая индукция при этом осуществляется путем стереорегулирования реакции алкоксигруп-пой ОК оптически активного спирта, связанной с комплексным катализатором [639] [c.171]

    Предложи -1 и конформационная модель для сгфвделения абсолютной конфигурации. Она основывается на учете неэквивалентности химических сдвигов протонов групп и В" ь диастереомерных производных 24. Различия в химических сдвигах в ЯМР-спектрах диастереомерных карбаматов [ 72] также можно коррелировать со стереохимией асимметрического центра в исходном спирте. Синтезирована оптически активная перфтор-2-пропоксипропионовая кислота и изучено ее использование для определения энантиомерной чистоты спиртов методом ПМР- и 1 Р-ЯМ Р- Л1ектроскопии [73]. [c.171]


Смотреть страницы где упоминается термин Спирты асимметрические, определение конфигурации: [c.81]    [c.199]    [c.24]    [c.145]    [c.85]    [c.422]   
Основы стереохимии и конформационного анализа (1974) -- [ c.172 , c.173 , c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Конфигурация определение



© 2025 chem21.info Реклама на сайте