Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны биологические состав

    Синапсы — это область функциональных контактов между плазматическими мембранами нейронов. Вещества, влияющие на нервную активность, такие, как эндогенные нейромедиаторы или многочисленные экзогенные лекарственные препараты (например, местные анестетики, нейротоксины), действуют на уровне мембраны. Биологические или патологические изменения в нервной системе часто возникают как следствие изменений нейрональных мембран. Следовательно, в описание основ нейрохимии нужно обязательно включать сведения об образовании и свойствах биологических мембран. В гл. 2 и 3 рассматривается строение молекул веществ, входящих в состав мембран, описываются модели мембран, а также функционирование и [c.26]


    Все клетки, даже самые простые, имеют мембраны. Мембраны отделяют внутреннее содержимое клетки от окружающей среды, поэтому нарушение целостности мембраны приводит к гибели клетки. Мембраны не только сохраняют молекулы веществ, входящих в ее состав, но и реализуют специфику химического состава клеточной цитоплазмы. С помощью специальных устройств мембрана избирательно выбрасывает из клетки ненужные вещества и поглощает из окружающей среды необходимые. Главные компоненты биологических мембран живых организмов — это сложные липиды. Следует обратить внимание на то, что все сложные липиды, описанные в разд. 9, имеют характерное строение для поверхностно-активных веществ, т. е. две большие неполярные углеводородные группы и полярную часть, способную к образованию водородных связей. Таким образом, эти молекулы способны самопроизвольно агрегировать, образуя в воде бислойные структуры, составляющие основу мембраны. В состав мембранного бислоя входят и молекулы белков, и свободные жирные кислоты. Последние встраиваются в бислой так, что их жирные хвосты погружены внутрь, а полярные группы во внешнюю среду и контактируют с ионами натрия с внешней, а с ионами калия с внутренней стороны бислоя (см. рис. 73). Биологические мембраны не только регулируют обмен веществ в клетке, но и воспринимают химическую информацию из внешней среды с помощью специальных рецепторов. Биологические мембраны обеспечивают иммунитет клетки, нейтрализуя чужие и свои вредные вещества. Они также способны передавать информацию соседним клеткам о своем состоянии. Наконец, совсем недавно было обнаружено, что многие белки-ферменты могут работать только внутри мембраны, запрещая, разрешая или сопрягая ферментативные процессы. [c.407]

    Развитие радиоизотопных методов позволило получить точные количественные данные о скоростях обновления в организмах биологически активных соединений. Было показано, что клетка много раз обновляет свой состав за время своего существования. Особенно интересно, что скорость замены той или иной составной части макроструктуры (например, мембраны) зависит от химической природы этой части и скорости переноса ее от места синтеза к месту функционирования высокая степень кинетической согласованности обеспечивает сохранение всей макроструктуры. Время полужизни ядерных белков около 120 ч, белков плазматической мембраны —50, фосфолипидов — от 15 до 80, холестерина от 24 до 140, цитохрома (65) —около 100 ч и т. д. [c.347]


    Макроциклические лиганды вводят в состав многих мембран с целью разделения ионов металлов [61] и создания ион-селективных электродов [62—63] Макроциклические лиганды используют в биохимии и в биофизике для моделирования процессов селективного переноса ионов через биологические мембраны [16] [c.22]

    Состав и строение биологических мембран. Биологические мембраны состоят из белков и липидов. Углеводы присутствуют лишь в качестве составных частей сложных белков (гликопротеинов) и сложных липидов (гликолипидов). Нуклеиновые кислоты в небольшом количестве бывают ассоциированы с мембранами, но в состав мембранных структур не включаются. Вода составляет 20% от мембранного материала, а отношение белок/липид в зависимости от вида мембран колеблется от 0,25 (клетки миелиновой оболочки) до 3,0 (митохондриальные мембраны). [c.298]

    В то же время существуют неоспоримые аргументы в пользу применения твердотельного ЯМР в биологии величины, отражающие зависимость от направления, которые усредняются за счет быстрых движений в растворителе, содержат весьма важную и часто однозначно интерпретируемую дополнительную информацию о структуре исследуемых веществ. Кроме того, в биологических системах содержатся компоненты, нерастворимые в воде, В основном они образуют надмолекулярные структуры. К ним относятся мембраны, рассмотрение которых будет проведено нами в дальнейшем, волокнистые протеины, строение которых напоминает структуру коллагена. Коллаген является компонентой клеточного остова. К ним относятся также большие системы, состоящие из большого числа отдельных компонент, каждая из которых является водорастворимой, таких, как актомиозиновая система мышечных клеток или фрагментов, входящих в состав сложных вирусов. Эти системы иногда могут кристаллизоваться, и в этом случае, конечно, они могут достаточно эффективно анализироваться с использованием методов рентгеноструктурного анализа. В ряде случаев эти системы можно ориентировать в сильных постоянных магнитных полях за счет наличия у них магнитных дипольных моментов, что существенно упрощает проблемы, возникающие в ЯМР-спектроскопии. [c.144]

    Биологические функции углеводов разнообразны. Углеводы служат источником энергии для клетки, так как при их окислении выделяется много теплоты. Углеводы входят в состав веществ, образующих клеточные мембраны, им принадлежит ис- [c.43]

    В биологически активных средах (смеси активных илов с водой, вода в отводных каналах) мембрана датчика покрывается биологической пленкой, отчего прибор теряет чувствительность. Поэтому необходимо периодически промывать мембрану. Опыт эксплуатации приборов ЭГ-152-003 на многих очистных станциях показал, что чистку мембраны и корректировку выходного сигнала можно производить в летнее время через две недели, в зимнее —через три недели и более. Указанные сроки регламентных работ зависят от активности жизнедеятельности микроорганизмов и интенсивности перемешивания жидкости в месте установки датчика. Температура воды, состав и концентрация загрязнений играют весьма важную роль. При использовании прибора в окситенках и на модельных установках, где биологическая активность во много раз выше, сроки регламентных работ прибора сокращаются. [c.134]

    Хлор не входит в состав биологически активных веществ. Хлорид-ионы — главные отрицательно заряженные ионы внутриклеточного раствора и межклеточных жидкостей, они образуют тонкие ионные слои по обеим сторонам клеточных мембран и участвуют таким образом в создании электрического мембранного потенциала, который регулирует процессы переноса неорганических и органических веществ сквозь мембраны. Гидратированные хлорид-ионы участвуют в поддержании физиологически требуемой наполненности клетки водой. [c.510]

    Ключевыми компонентами биологических мембран являются полярные липиды (см. рис. 20, Б), в основном фосфолипиды. У большинства бактерий в их состав входят две жирные кислоты обычно с 16—18 атомами углерода в цепочке и с насыщенными или одной ненасыщенной связями. Состав жирных кислот бактерий может варьировать в ответ на изменения окружающей среды, особенно температуры. При понижении температуры в составе фосфолипидов увеличивается количество ненасыщенных жирных кислот, что в значительной степени отражается на текучести мембраны при низких температурах. Некоторые жирные кислоты могут [c.32]

    Иммобилизованная вода сосредоточена в замкнутых структурах различных молекул или мембран, но не входит в состав их гидратных оболочек. Эта вода находится в порах, пронизывающих биологические мембраны и рибосомы, в ядрах, митохондриях, других структурах и прочно с ними [c.64]

    Контраст, создаваемый в электронном микроскопе, определяется атомным числом веществ образна. Чем выще атомное число, тем больще электронов рассеивается и тем выще контраст. В состав биологических молекул входят атомы с очень низким атомным числом (в основном кислород, водород, углерод и азот). Для усиления контраста образцы до и после резки импрегнируют солями тяжелых металлов, таких, как осмий, уран и свинец. Компоненты клетки выявляются с разной степенью контраста согласно степени их импрегнации (или окраски) этими солями Как правило, липиды окрашиваются осмием в темный цвет и это позволяет выявлять мембраны (рис. 4-16). [c.183]


    Все биологические мембраны, включая плазматическую мембран и внутренние мембраны эукариотических клеток, имеют общие структурные особенности они представляют собой ансамбли липидных и белковых молекул, удерживаемых вместе с помощью нековалентных взаимодействий. Благодаря этим взаимодействиям поддерживается структурная целостность мембран Однако сами по себе клеточные мембраны являются подвижными, текучими структурами и большинство входящих в их состав молекул способны перемещаться в плоскости мембраны. Как показано на рис. 6-1, липидные молекулы образуют непрерывный двойной слой толщиной около 5 нм. Липидный бислой - это основная структура мембраны, которая и создает относительно непроницаемый барьер для большинства водорастворимых молекул. Белковые молекулы как бы растворены в липидном бислое. С их помощью выполняются разнообразные функции мембраны. Одни мембранные белки обеспечивают транспорт молекул внутрь клетки или из нее, другие являются ферментами и катализируют ассоциированные с мембраной реакции. Еще один класс белков осуществляет структурную связь плазматической мембраны с цитоскелетом, с одной стороны, и(или) с внеклеточным матриксом либо с соседней клеткой - с другой. Отдельную группу составляют белки, выполняющие роль рецепторов для получения и преобразования химических сигналов из окружающей среды. Как и следовало ожидать, мембраны асимметричны оба их слоя различаются по липидному и белковому составу, что отражает, по-видимому, функциональные различия их поверхностей. [c.349]

    Электрохимический подход может оказаться полезным в познании элементарной природы основных биологических процессов. Именно поэтому привлекает внимание новая пограничная область науки — биоэлектрохимия, возникшая на границе электрохимии и биологии. На данном этапе большинство вопросов биоэлектрохимии связано с изучением свойств биологических мембран и их моделей. Клеточные или плазменные мембраны отделяют внутреннюю часть любой клетки живого организма от окружающей клетку среды. Так как состав раствора внутри клетки и в окружающей среде различен, то между ними всегда имеется некоторая разность потенциалов, а следовательно, вдоль мембраны всегда образуются двойные слои. Образование и взаимодействие двойных слоев позволяет объяснить целый ряд процессов в живом организме, например, такой важный процесс, как передача информации посредством нервного импульса. [c.406]

    Интересные результаты получены при изучении ионного транспорта через подобные мембраны и электропроводности элементарных пленок обратных эмульсий, стабилизированных природными и синтетическими ПАВ различной природы. Выяснилось, в частности, что электропроводность таких мембран резко возрастает при добавлении некоторых биологически-активных ПАВ. Например, введенне во внешнюю водную среду липидной мембраны ничтожных количеств антибиотика валиномицина приводит к увеличению электропроводности мембраны на пять порядков величины вместе с тем мембрана становится проницаемой для ионов калия и водорода, но не пропускает через себя ионы натрия. Резкое понижение электрического сопротивления искусственных мембран может наблюдаться и при введении в их состав молекул белков, а та,кже ферментов с добавкой в систему соответствующего субстрата. Изучение свойств таких мембран позволяет моделировать ряд важных биологических процессов, например прохождение нервного импульса, образование фоточувствительной ячейки и др. [c.291]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Большинство других биологических мембран имеет более высокое содерукаиие белка (50—60 % ) ив их состав входят углеводы (О—10 % ) Вследствие более высокого содержания белка такие мембраны, сохраняя разделяющую способность, обладают большей проницаемостью для различных метаболитов. Мембраны обладают избирательной проницаемостью по отношению к отдельным метаболитам некоторые мембраны способны осуществлять перенос против градиента концентрации (его называют активным в противоположность обычному — пассивному ). Для обеспечения специфической проницаемости мембран необходимо наличие широкого спектра белков. [c.107]

    Биологические мембраны, состоящие из сложных смесей различных классов липидов с разными алкильными цепями, при физиологических температурах находятся, по-видимому, в состоянии латерального разделения фаз. Высокая способность к латеральному сжатию, обусловленная одновременным существованием твердой и жидкой фазы, может влиять на активность находящихся внутри мембраны ферментов, что позволяет включаться в мембрану новым компонентам и сказывается на процессах транспорта. Исследованы [23] свойства мембран клеток мутантных щтаммов Е. oli, для роста которых необходимо наличие жирных кислот состав их внутренней мембраны может быть обогащен определенными алкильными цепями путем прибавления к питательной среде соответствующих жирных кислот. Изменение текучести бислоя и скорости транспорта -глюкозида для внутренней мембраны соИ, выращиваемой на среде с добавкой линолевой кислоты, в зависимости от температуры показано на рис. 25.3.6. Точки перегиба на графике Аррениуса соответствуют экстремумам латерального разделения фаз. Наблюдается также изменение энергии эктивации транспорта, которое приблизительно коррелирует с гра- [c.119]

    Фазовый переход из кристаллического в жидкокристаллическое состояние является эндотермическим процессом количество тепла, необходимое для плавления цепей жирных кнслот, можно определить в калориметре (рис. 3.5). Если липпдный бислой состоит только из одного липида, то фазовый переход пропсходит в узком интервале температур. Так как биологические мембраны обычно состоят из большого количества разных липидов, они не имеют четко выраженного фазового перехода и при физиологических температурах являются жидкокристаллическими. Однако очевидно, что текучесть биологических мембран может быть весьма различной как в разных органах, так даже и в разных частях мембраны одной клетки. На это указывает различный липидный состав разных мембран или их доменов. Хотя еще не установлена общая зависимость между текучестью мембран и их биологической функцией, некоторые факторы, влияющие на текучесть, были выявлены в экспериментах на искусственных липидных мембранах. Накапливаются данные, свидетельствующие о том, что те же факторы действуют и в биомембранах. Температура фазового перехода зависит от природы боковых цепей жирных кислот. [c.71]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Рассмотрим сначала биологические полимеры, образующие истинные мезофазы. Благодаря своим парафиновым цепям жирные кислоты — это небольшие полимерные молекулы. Они входят в состав некоторых наиболее важных биологических жидких кристаллов [13—16]. В частности, клеточные мембраны и их основные производные содержат фосфолипиды, образующие бислойные структуры, подобные смектическим фазам, уменьшенным до двух молекулярных слоев. Такая структура обусловлена дифильным характером этих молекул и относительно постоянной длиной парафиновых цепей. Структурные формулы основных из этих соединений хорошо известны и могут быть найдены в статье Луззати [17]. Многие жидкокристаллические включения наблюдаются в эндокринных тканях, таких, как кора надпочечников и желтое те- [c.277]

    Биоэлектрохимия. Электрохимические закономерности лежат в основе переноса веществ через биологические мембраны. Это направление электрохимии интенсивно развивается в настоящее время и получило наименование биоэлектрохимия. Клеточные или плазменные мембраны отделяют внутреннюю часть клетки от окружающей среды. Состав растворов внутри и снаружи клеток различен, а сами мембраны обладают избирательной проницаемостью. Потенциал на клеточной мембране создается разностью концентраций ионов в клетке и в окружающей среде и зависит от проницаемости мембраны. Величина потенциала составляет для нервных и мышечных волокон в состоянии покоя 60—80 мВ и может быть определена по уравнению [c.158]

    Калий-селективный (калиевый) электрод. Калий-селективный электрод фирмы Орион (модель 93-19) представляет собой электрод с жидкой мембраной, предназначенный для определения концентрации ионов, де.мв калия в водных растворах и в биологических жидкостях. Используется в сочетании с подходящим электродом сравнения. ко Электрод, конструкция которого представлена на рис. К-5, имеет 180 сменный модуль с пластифицированной мембраной, в состав которой вхо- -220 дит жидкий селективный ионообменник. При контакте мембраны с раство- -2во ром, содержащим ионы калия, на разделе фаз мембрана — раствор воз- -зоо никает разность потенциалов, величина которой зависит от концентрации pjj j .g типичный калибровочный график калия в растворе. При для калий-селективного электрода. [c.47]

    Состав липидов бактерий представлен прежде всего сложными липидами — фосфо- и гликолипидами. Нейтральные липиды составляют очень небольшую часть общего количества липидов. Фосфатидилинозиты являются основными фосфатидными компонентами сложных гликолипидов микобактерий и коринебактерий. Биологические функции их неизвестны. Фосфати-днлхолины (лецитины) у большинства видов бактерий не обнаружены. Фосфатидилэтаноламииы (кефалины) являются основными фосфатидными компонентами грамотрицательных бактерий, выполняют структурную функцию. Фосфатидилсерин — предшественник фосфатидилэтаноламина — является липидным компонентом мембраны АТФ-й системы в клетках. [c.331]

    Электродная мембрана имеет следующий состав, в % (масс.) МАК — 5,8 три (2-этилгексил) фосфат— 62,8 поливинилхлорид — 31,4. Благодаря высокой ли-пофильности Ы-комплексона время жизни электрода составляет более 8 месяцев. Ы+-Электрод находит важное применение для определения ионов Ь1+ в биологических средах (например, при психиатрических исследованиях). [c.86]

    Электроды с К+-функцией успешно применяли некоторые авторы при анализе ионного состава биологических сред, в частности крови [343, 344]. Сотрудниками ЛГУ [47, с. 191, 208 160, 344] изучена возможность применения высокоселективного К" -элек-трода, мембраны которого имеют состав [в % (масс.)] поливнилхлорид — 24,95, дибутилфталат —73,92 и валиномицин— 0,13. Высокая специфичность электрода в присутствии посторонних ионов, стабильность в работе, функционирование при повышенной температуре (до 50 °С) открывают большие возможности для применения его в медицинских исследованиях [344]. [c.181]

    Опыт эксплуатации приборов ЭГ-152-003 на многих очистных станциях показал, что чистку мембраны и корректировку выходного сигнала в летнее время можно производить через две недели, в зимнее — через три недели и более. Указанные сроки регламентных работ зависят от активности жизнедеятельности микроорганизмов и интенсивности пере-мещивания жидкости в месте установки датчика. Температура воды, состав и концентрация загрязнений в этом процессе играют весьма важную роль. При использовании прибора в сооружениях типа окситенков и на модельных установках, где биологическая активность во много раз выше, сроки регламентных работ прибора сокращаются. [c.243]

    Биологическое действие. Убихинон — очень важный кофермент процессов биологического окисления питательных веществ и образования энергии в клетках. Входя в состав компонентов дыхательной цепи в митохондриях, он осуществляет перенос водорода через мембраны к цитохро-мам. Кофермент О включен во многие пищевые смеси, которые используются для коррекции массы тела, повышения физической работоспособности, а также в растирочные препараты для улучшения энергообразования в суставах и мышцах. [c.125]

    Состав внеклеточной жидкости близок к составу морской воды в пред-кембрийскую эпоху, когда появились животные с замкнутой системой кровообращения. С тех пор соленость моря продолжала возрастать, тогда как состав внеклеточной жидкости остался постоянным. Основным катионом во внеклеточной жидкости является ион Ка , а из анионов преобладают СГ и НСОВнутри клеток преобладают катион и анион НРО Для соблюдения физико-химического закона электронейтральности, которому подчиняется любой живой организм в целом, некоторый недостаток неорганических анионов компенсируется анионами органических кислот (молочной, лимонной и др.) и кислых белков, несущих отрицательный заряд при физиологических значениях pH. Если вне клетки органические анионы компенсируют незначительную нехватку отрицательного заряда, то внутри клетки они должны компенсировать около 25 % положительных зарядов, создаваемых неорганическими катионами. Поскольку клеточные мембраны легко проницаемы для воды, то они могут разрушаться при незначительных различиях в давлении жидкости внутри и снаружи клеточной мембраны. Поэтому осмотическое давление внутри клетки должно быть равно таковому во внеклеточной жидкости, т. е. живая клетка подчиняется закону изоосмоляльности. Повышенное содержание катионов по отношению к концентрации анионов во внеклеточных жидкостях в сравнении с внутриклеточными средами приводит к тому, что наружная поверхность мембран клеток оказывается заряжена положительно относительно ее внутренней поверхности, и это имеет огромное биологическое значение (см. главу 15). В биологических жидкостях концентрацию осмотически активных частиц (независимо от их заряда, размера и массы) выражают в единицах осмоляльности — миллиосмомолях на 1 кг воды. Так как главные катионы и анионы внутриклеточных жидкостей многозарядные, то (при одинаковых осмоляльностях) концентрация электролитов, выраженная в миллиэквивалентах на 1 л, будет значительно выше внутри клетки, чем во внеклеточных жидкостях, где в основном содержатся однозарядные ионы. [c.180]

    Теория Опарина предполагает, что жизнь возникла в несколько стадий. Первая стадия — это процесс образования простейших углеводородов. Вторая стадия — освобождение углеводородов в атмосферу Земли, где они реагировали с парами воды, аммиаком и другими газами. Коротковолновое УФ-излучение и электрические разряды в атмосфере инициировали протекание этих реакций. УФ-излучение разлагало воду (фотоокисление) на водород и кислород. Водород уходил в космическое пространство, тогда как кислород окислял аммиак до молекулярного азота, а углеводороды — до спиртов, альдегидов, кетонов и органических кислот. Затем эти соединения с дождями выпадали из влажной, холодной атмосферы в моря и океаны, где они накапливались, а потом благодаря процессам полимеризации и конденсации становились близкими по строению к тем химическим соединениям, которые входят в состав живых организмов. Так возникли первые биологически активные химические полимерг-ные соединения, подобные белкам и нуклеиновым кислотам. На третьей стадии образовывались так называемые коацерватные (от лат. асегиаШз — скрученный) капли, которые, достигая определенной величины, становились способными к обмену с окружающей средой. Затем в ходе эволюции эти коацерватные капли приобрели способность к самостоятельному существованию, т. е. они обособились от среды, и в них стали протекать элементарные химические превращения. На четвертой стадии у коа-церватов совершенствовался химический обмен (первоначальный метаболизм), синтезировались и упорядочивались мембраны, происходила самосборка первичных носителей информации — нуклеопротеинов. [c.531]

    Плоские бислойные липидные мембраны. Липиды, спонтанно образующие ламеллярные слои, обычно способны формировать бислойные структуры (БЛМ или черные пленки) на небольших отверстиях в тонких гидрофобных материалах. Это явление впервые было описано О. Мюллером и соавторами (1962), которые получили БЛМ из фосфолипидов мозга на небольших отверстиях (0,5-5,0мм ) в тефлоновой перегородке, разделяющей две водные фазы. Доказав бислойность сформированных мембран, авторы с помощью простой электроизмерительной техники охарактеризовали важнейшие электрические параметры этих мембран. Относительная простота получения БЛМ, широкий спектр применения разнообразных электроизмерительных методов исследования, возможность изменять в широких пределах липидный состав БЛМ и состав омывающих растворов, включать в БЛМ разнообразные модификаторы барьерных свойств мембран, функционально активные элементы биологических мембран — все это быстро обеспечило этим искусственным мембранным системам центральное место в современной экспериментальной мембранологии. [c.15]


Смотреть страницы где упоминается термин Мембраны биологические состав: [c.28]    [c.392]    [c.392]    [c.351]    [c.392]    [c.317]    [c.390]    [c.88]    [c.94]    [c.65]    [c.50]    [c.47]    [c.179]    [c.17]    [c.85]    [c.355]   
Биофизика Т.2 (1998) -- [ c.6 ]




ПОИСК





Смотрите так же термины и статьи:

Мембрана биологическая



© 2025 chem21.info Реклама на сайте