Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жизни волны

    Хотя подобные расчеты не так уж сложны, они не дают ответа на вопрос-что же представляют собой электроны - волны или частицы И что представляют собой световые лучи-потоки волн или частиц Ученые много лет терзались этими сомнениями, пока постепенно не осознали, что спор идет скорее о терминологии, чем о научных фактах. Большинство объектов, с которыми нам приходится иметь дело в повседневной жизни, ведут себя так, что их можно назвать волнами, либо так, что их можно назвать частицами, и мы создали для этих объектов такие идеализированные названия и пользуемся словами волна или частица, чтобы различать наблюдаемые свойства. Но поведение столь малых, микроскопических частиц вешества, как электроны, не поддается точному описанию на языке, [c.356]


    И е — коэффициенты экстинкции при длинах волн возбуждения А и А-в соответственно у — вероятность реакции за время жизни возбужденного комплекса  [c.60]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    Малоустойчивые пены с временем жизни от нескольких секунд до нескольких десятков секунд образуются из разбавленных растворов детергентов ( <. i) и из растворов низкомолекулярных поверхностно-активных веществ. Продолжительность их существования определяется временем, за которое толщина жидких пленок достигает критической величины Это время сильно зависит от h r, так как процесс утончения существенно замедляется при уменьшении толщины пленки. Маловероятно, чтобы устойчивость таких пен определялась их эластичностью, поскольку последняя не связана с вытеканием раствора из пленки. Согласно нашей формуле (6.21), величина h r зависит от длины X поверхностной волны  [c.237]

    В. Динамические методы позволяют определять лишь неравновесное (динамическое) поверхностное натяжение, причем в условиях, далеких от равновесия. К ним относится, например, метод колеблющейся струи. Он основан на том, что струя жидкости, вытекающая из трубки с эллиптическим сечением, под действием поверхностного натяжения приобретает колебательное движение, при котором по длине струи наблюдаются чередующиеся расширения и сжатия (стоячие волны). Длина стоячей волны связана определенной зависимостью с поверхностным натяжением. В этом случае динамическое поверхностное натяжение характеризует непрерывно обновляющуюся поверхность с временем жизни порядка нескольких миллисекунд. [c.89]


    Для успешного использования метода должны выполняться следующие условия время жизни исследуемой частицы должно быть много больше длительности вспышки, растворитель должен быть прозрачен в области длин волн, где поглощают изучаемые частицы, должна быть известна или выяснена схема реакций, в которые вступает изучаемый радикал. [c.345]

    В идеале, для установления механизма фотохимической реакции следовало бы знать состояния всех молекул, участвую-ш,их в реакции, их энергию и время жизни, а также все побочные реакции. Практически далеко не все эти данные бывают доступны. Установление истинных путей превраш,ения всех молекул, поглотивших квант света, и всех свободных радикалов, образуюш,ихся в фотохимическом процессе, представляет собой аналитическую задачу, решение которой до настоящего времени едва ли было возможно... [47]. Методы определения механизмов фотохимических реакций по существу не отличаются от методов определения механизмов обычных органических реакций (гл. 6) идентификация продуктов, изотопная метка, детектирование и улавливание интермедиатов, изучение кинетики. Однако в случае фотохимических реакций появляется ряд новых факторов 1) образование большого числа продуктов, до 10—15 соединений 2) возможность изучать кинетику реакции в зависимости от большего числа переменных, так как на скорость реакции влияет интенсивность или длина волны падающего света 3) возможность детектировать исключительно короткоживущие интермедиаты, используя технику флеш-фотолиза. Кроме того, имеются еще два специальных метода. [c.321]

    В атмосфере Земли на высоте 25 км существует озоновый слой, который поглощает мощное коротковолновое излучение Солнца (с длиной волны короче 290 нм), что спасает от гибели все живое. В воздухе, которым мы дышим, объемная доля О3 составляет 10 %. Малое содержание озона придает воздуху приятный, освежающий запах, но его повышение вызывает раздражение дыхательных путей и становится опасным для жизни. Предельно допустимое содержание О3 в воздухе равно 0,8 10- % (об. доля). [c.312]

    Даже в отсутствие тушителя могут наблюдаться нестационарные явления, связанные с релаксацией растворителя. Молекула в возбужденном состоянии имеет другую геометрию, другой диполь-ный момент по сравнению с молекулой, находящейся в основном состоянии. Переход в возбужденное состояние происходит практически мгновенно, а растворителю нужно время для того, чтобы перестроиться в наиболее энергетически выгодную конфигурацию. Экспериментально это явление проявляется в том, что чем больше прошло времени после вспышки, тем дальше сдвинут спектр испускания в красную область. Так, например, для 4-аминофталимида в н-пропаноле сдвиг достигает 50 нм и время релаксации — десятков наносекунд при температуре —70° С. В связи с этим времена жизни, измеренные на разных длинах волн, отличаются более чем в 2 раза. Релаксация происходит примерно по экспоненциальному закону. [c.97]

    Бензофенон — нафталин. При импульсном облучении бензофенона в присутствии нафталина происходит триплет — триплетный перенос энергии с бензофенона на нафталин. Поскольку триплетное состояние бензофенона является очень реакционноспособным, его время жизни мало ( 5 мкс). Триплетные молекулы бензофенона отрывают атом водорода от растворителя и образуют кетильный радикал (Я = 545 нм). При добавлении нафталина уменьшается выход кетильных радикалов и появляется триплет — триплетное поглощение нафталина Х = А 2 нм). Используя величину е для кетильных радикалов (3220 л моль см ), можно по уменьшению оптической плотности на длине волны 545 нм и по оптической плотности триплет — триплетного поглощения нафталина определить коэффициент экстинкции для нафталина  [c.192]

    Чему равна предельная резкость спектральной линии с длиной волны 500 нм, допускаемая принципом неопределенности, если считать, что средняя продолжительность жизни возбужденного состояния атомов равна 10 с  [c.17]

    Если собрать весь атмосферный озон в один слой, то при нормальных условиях, т. е. при давлении 1 атм и температуре 273° С, он будет иметь толщину всего лишь 0,3 см, а средняя его концентрация будет примерно 4-10 об.%. Несмотря на такую малую концентрацию, значение озона для жизни в биосфере огромно. Оно предопределяется не только тем, что озон поглощает инфракрасное излучение Земли, создавая парниковый эффект, но и его способностью поглощать жесткое ультрафиолетовое излучение Солнца (в диапазоне длин волн 2200—2900 А). [c.613]

    Вторичные реакции являются обычными термическими реакциями фотохимические они лишь в том смысле, что вступающие в реакцию частицы не появились бы в отсутствие света. Некоторые частицы встречаются гораздо чаще как промежуточные в фотохимических реакциях, нежели в термических. Сюда относятся свободные атомы и радикалы, а также электронно-возбужденные частицы. Такие промежуточные частицы обычно высокоактивны, и их время жизни в реакционной системе соответственно мало. Однако активность не следует путать с нестабильностью свободный радикал или атом в изолированном состоянии имели бы совершенно нормальную стабильность, тогда как время жизни электронно-возбужденной частицы определяется вероятностью потери энергии путем излучения. Образующиеся атомы и радикалы могут также иметь некоторый избыток энергии например, при фотолизе кетена метилен может выделяться как в основном, так и в возбужденном электронном состоянии в зависимости от длины волны поглощаемого излучения. [c.18]


    Распределение фотонов, достигающих поверхности Земли, по длинам волн оказывает глубокое воздействие на жизнь. Например, сильное поглощение ультрафиолетового излучения озоном уменьшает потенциальную угрозу мутагенных эффектов, вызываемых коротковолновым излучением. Широкий максимум в области 680 нм для фотонов, достигающих поверхности Земли (рис. 62), совпадает с полосой поглощения хлорофилла. [c.161]

    Помимо измерения спектров люминесценции изучение люминесценции может включать в себя измерение спектров возбуждения, поляризации люминесценции, определение квантового выхода люминесценции и времени жизни возбужденного состояния. При измерении спектров люминесценции сканируется длина волны излучаемого света. При изучении спектров возбуждения, наоборот, монохроматор анализатора устанавливается на определенной длине волны (например, в максимуме спектра флуоресценции), а сканируется длина волны возбуждения. [c.62]

    Экологические колебания известны также иод названием волны жизни ... волны жизни , как всякие волны, состоят из подъема и падения те случаи, когда происходит внезапное массовое появление какого-либо вида, продолжающееся некоторое время и кончающееся уменьшением численности его снова до прежней нормы, будем назьшать приливами жизни . И обратно - в тех случаях, когда численность какого-нибудь вида внезапно опускается ниже его обычной нормы, происходят отливы жизни . Вот вся совокупность этих явлений, этих приливов и отливов видовой жизни, и образует волны жизни ... можно без всякого преувеличения сказать, что фауна ни минуты не бьшает постоянной. С каждым днем, с каждым почти мгновением ее равновесие нарушается, одни виды переживают приливы жизни, другие отливы и в то же время с полным правом можно утверждать, что нет такого вида, который бы время от времени не испытьшал этих приливов или отливов [112, с. 77-78]. Это писал С. С. Четвериков в статье, опубликованной в 1905 г. А в двадцатых годах нашего века А. Лотка и В. Вольтерра независимо друг от друга ностроили математическую теорию колебаний численности [25. После ряда усовершенствований эта теория смогла описать такие грозные явления, как вспышки массового размножения лесных насекомых, уничтожающие норою гигантские массивы леса [40.  [c.150]

    Способность высокомолекулярных соединении нефти к люминесценции лежит в основе методов дистанционного зондирования [102]. Проводится анализ флуоресцентного отклика нефтяной системы на зондирующий импульс лазерного излучения. Интенсивность, форма и структура сигнала соотносятся с репером, в качестве которого служит сигнал комбинационного рассеяния воды. В качестве каналов информации при идентификации нефтей и нефтепродуктов можно использовать не только ширину спектра и положение максимума длины волны флуоресценции, но и такие зависимости, как зависимость продолжительности жизни возбужденного состояния по снектрз, зависимость параметров спектров от длины волны возбужденного света. Про- [c.57]

    Под действием электрического поля волны молекулы в частице дисперсной фазы приобретают преимущественную ориентацию в пространстве. В то же время тепловое движение молекул дисперсионной среды стремится их разориентировать. Поступательная комтонента броуновского движения не оказывает никакого влияния на поляризационные характеристики свечения. Вращательное броуновское движение вызывает деполяризацию свечения. Молекулы в частице поглощают падающее излучение практически мгновенно, переходя в возбужденное состояние. В возбужденном состоянии они находятся в течение некоторого времени, называемом средней продолжительностью жизни возбужденного состояния. Затем происходит высвечивание. Именно за период пока молекулы возбуждены происходит поворот час-Т1ЩЫ на некоторый угол. Вращательная деполяризация флуоресценции определяется параметра.ми, характеризующими саму частицу, т. е. объемом и средней длительностью возбужденного состояния и величинами, характеризующими дисперсионную среду, т. е. вязкостью и температурой. [c.97]

    Скорости переходов. При изучении фотолюминесценции необходимо знать временные характеристики излучательных и конкурирующих с ними безызлучательных процессов дезактивации возбужденных состояний. Для излучательных процессов характерны следующие времена. Поглощение света происходит за время порядка одного колебания световой волны, т. е. около 10 с. Флуоресценция из самого нижнего возбужденного синглетного состояния происходят от 10 с (для я —я-переходов) до 10 (для я —п-переходов). Излучательные времена триплетных состояний лежат в пределах от 10 2 до с. Безызлучательные переходы из верхних возбужденных состояний происходят за время порядка 10 2 с. Скорость внутренней конверсии с нижнего возбужденного синглета в основное состояние часто сравнима со скоростью флуоресценции. Интеркомбинационная конверсия из нижнего синглетного состояния протекает за время порядка излучательного времени жизни флуоресценции. Р1нтеркомбинационные переходы из триплета в основной синглет происходят сравнительно медленно (Ю — 10 с в зависимости от условий). [c.57]

    Вторая половина XX столетия характеризуется резко возросшим интересом к познанию механизмов жизнедеятельности. Эпоха наблюдения и достаточно поверхностного анализа мира животных, растений и микроорганизмоп сменилась периодом решительного проникновения на уровень молекулярных и межмолеку-лярных взаимодействий в живых системах, вторжением в биологию методов и подходов физики, химии и математики. Как следствие этого процесса началась постепенная дифференциация наук, изучающих материальные основы жизни стали одна за другой появляться новые дисциплины, отражающие различные уровни исследования живой материи, различные углы зрения, различные экспериментальные приемы и методологические концепции. Классическая биохимия, которой бесспорно принадлежит пальма первенства в симбиозе биологии и точных наук, постепенно уступала дорогу новым направлениям. Вначале, на волне революционных событий в физике, возникла биофизика, значительно окрепшая уже в предвоенный период. Конец этого этапа был ознаменован и резкой активизацией исследований в генетике. Однако наиболее серьезное наступление началось в начале 50-х годов, когда возникли молекулярная биология, рождение которой часто отождествляется с открытием двойной спирали ДНК, а также биоорганическая химия, первые победы которой по праву связывают с установлением структуры инсулина и синтезом первого пептидного гормона — окситоцина, [c.5]

    Полагают, что иребиотическая, или примитивная, атмосфера Земли в период происхождения жизни обладала сильно восстановительными свойствами кислород в атмосфере отсутствовал. Свободный кислород появился много позднее, в основном как продукт фотосинтеза, проводимого зелеными растениями [42], Эта восстанавливаюи1ая атмосфера содержала такие газы, как СН , МНз, N2, СО, СО2, Н2 и водяные пары. Сейчас существует много доказательств того, что реакции между этими молекулами и неорганическими компонентами протекали под воздействием энергии ультрафиолетовых лучей, электрических разрядов, тепловой, радиации, а также других форм энергии, таких, как ударные волны. [c.181]

    Цвет в жизни людей всегда играл и играет значительную роль. Мы постоянно озабочены подбором цвета одежды, обуви, интepьqзa, эти проблемы издревле волновали людей. С древнейших времен люди стремились гармонично окрасить одежду, строения, окружаюш ие их вепщ. Для многих племен до сих пор очень важна раскраска собственного тела. Не чуждо это и современным женщинам. Кстати, думается, что химия для людей началась вовсе не с изготовления вина, как о том пишется в книгах, а с приготовления красок. Стены пещер раз-рисовьшали красками первобытные люди, не знавшие алкоголя. [c.157]

    BepoJЮMиoe нападение фашистской Германии на Советский Союз вызвало мощную волну патриотизма среди всех слоев населения нашей страны. Обращение Коммунистической партии и Советского правительства к советскому народу с призывом дать сокрушительный отпор врагу, перестроить всю жизнь страны на военный лад, организовать работу в тылу под лозунгом Все для фронта, все для победы , нашло горячий отклик в сердцах трудящихся. [c.35]

    В соответствии с этой схемой на капельном ртутном или на вращающемся дисковом электроде в щелочных растворах наблюдаются две одноэлектронные волны, причем первая из них отвечает обратимому восстановлению кетонов с образованием анион-радикалов, а вторая — необратимому присоединению электрона к анион-радикалу. Такие волны видны, например, на поляризационной кривой электровосстановления бензофенона (рис. 203). При фиксированном потенциале диска на кольцевом электроде наблюдается ток окисления анион-радикалов, причем максимальный выход анион-радикалов соответствует области потенциалов предельного тока диффузии первой волны. Было показано, что ток на кольце не протекает при отсутствии катодного тока на диске и что он не может быть вызван окислением каких-либо других компонентов раствора, кроме анион-ра-дикалов. Образование анион-радика-лов было зафиксировано при помощи дискового электрода с кольцом также, когда на дисковом электроде наблюдается только одна многоэлектронная волна восстановления органического вещества. Анион-радикалы бензальдегида, ацетофенона, бензоилферроцена и ферроценилаль-дегида были зафиксированы в водных средах, что не удавалось сделать при пЪмощи метода ЭПР из-за короткого времени жизни анион-радикалов. Наряду с этим методом вращающегося дискового электрода с кольцом удалось обнаружить образование комплексов с переносом заряда между анион-радикалом и исходной молекулой карбонильного соединения. [c.401]

    На долю инфракрасных лучей приходится около 50% всей доходящей до З мли солнечной энергии, и они имеют основное значение для жизни растений. Лучи этц почти не задерживаются туманом, что позволяет, в частности, фотографироват земную поверхность сквозь облачный покров (рис. 11-11). Инфракрасные лучи испускаются всяким нагретым предметом, в том числе каждым теплокровным животным (характерные длины волн порядка 0,01 мм). Исследованием, проведенным на гремучих змеях, было выяснено, что они имеют в передней части головы специальные тепло-чузстнительные органы и при охоте руководствуются главным образом тепловым излучением своих жертв. Высокочувствительные приемники в инфракрасном диапазоне улавливают разности температур до тысячных. долей градуса. Такое тепловидение позволяет решать ряд важных задач — от медицинской диагностики некоторых заболеваний др точного определения местонахождения самолетов в полной темноте. [c.43]

    Среднее содержание озона в воздухе у земной поверхности составляет обычно от С,01 до 0,06 мг/м" Общее его содержание в атмосфере соответствует слою газа ТО.ПЩИНОЙ приблизительно в 3 мм (при нормальном давлении). Основная масса озона сосредоточена в высоких слоях воздуха (10—30 кл ), где он образуется из кис-Л0430да под действием ультрафиолетовых лучей Солнца с длиной волны до 1850 А. Более длинные волны (2000—3200 А с максимумом действия при 2550 А) вызывают, наоборот, распад озона. Таким образом, в атмосфере существует подвижное равновесие между процессами образования и распада озона, на поддержание которого затрачивается около 5% всей идущей к Земле солнечной энергии. Поглощение озоном коротковолнового излучения Солнца имеет очень большое биологическое значение если бы эти жесткие лучи свободно достигали земной поверхности, они быстро убили бы нею жизнь на ней. [c.52]

    Определение времени жизни триплетных состояний. Влияние природы электронного перехода на время жизни триплетных состояний можно наблюдать, изучая кинетику затухания фосфоресценции, например, следующих соединений нафталина, октадейте-ронафталина, хинолина, бензофенона. Для этого готовят 10- М растворы указанных соединений (особое внимание необходимо уделять чистоте препаратов) в толуоле. Кинетику затухания фосфоресценции измеряют в кварцевых ампулах диаметром 4—5 мм, замораживая их жидким азотом в кварцевом сосуде Дьюара. Длина волны возбуждающего света для нафталина и хинолина 313 нм, для бензофенона 365 нм. Строят графики затухания фосфоресценции в координатах lg / — I. Определяют константы скорости зату- [c.113]

    Вся жизнь А. Лавуазье прошла в борьбе за утверждение новых идей, и только незадолго до своей трагической смерти (1794) он увидел начало их признания. Когда первая волна недоверия и удивления уступила место более спокойной и серьезной оценке его работ, настал период победного шествия учения Лавуазье Во Франции идеи Лавуазье прежде всего восприняли математики и физики П. Лаплас, Г. Мопж, А. Кузен и др. Первым [c.97]

    Рассмотрение эксимеров и эксиплексов в разд. 5.4 указывает и другой путь получения инверсии заселенности. Поскольку время жизни основного состояния образующей комплекс пары не превышает одного периода колебания, его заселенность пренебрежимо. мала. Образование возбужденного комплекса неизбежно обеспечит большую заселенность, чем гипотетического основного состояния, и действие лазера становится возможным. Эксимерные лазеры работают по тому же принципу, хотя для некоторых напболее важных примеров, основанных на системах благородный газ — галоген, точнее подходило бы название экснплексные . Аргон, криптон и ксенон образуют эксиплексы с атомами Р и С1 (так же как Хе с Вг). Можно получить лазерное излучение в вакуумной УФ-области, с наиболее короткой длиной волны А=175 нм для АгС1. Первоначальное возбуждение происходит в форме электрического разряда, и последовательность реакций можно записать как [c.146]

    Можно сделать некоторые замечания о сравнительных характеристиках абсорбционной и люминесцентной спектроскопии, а также спектроскопии КР. Хотя люминесцентные исследования обычно более чувствительны, чем абсорбционные, они ограничены кругом веществ, которые имеют возбужденное состояние, достаточно долгоживущее для спонтанного испускания с Л-фак-тором не более 10 с и способное эффективно конкурировать с предиссоциацией или другими безызлучательными процессами релаксации, которые экспериментатор не волен контролировать (но см. разд. 7.6). Более того, время жизни люминесценции накладывает ограничение на самую длинную временную шкалу в экспериментах с временным разрешением (около 10 с). Взаимодействие электромагнитного излучения с веществом при поглощении или комбинационном рассеянии происходит примерно в течение одного периода волны, или около с в УФ-области. Поэтому промежуточные соединения реакции могут исследоваться с фемтосекундным временным [c.197]

    НОЙ ВОЛНЫ меньше 290 нм. В нашей атмосфере сам кислород способен отфильтровывать солнечное излучение с длинами волн меньше 230 нм. Для диапазона длин волн между 230 и 290 нм необходимо представить другой заш,итный механизм. К счастью, в нашей атмосфере существует подходящий поглотитель, что позволяет организмам жить на суше в условиях большей или меньшей открытости отфильтрованным лучам Солнца. Этим поглотителем является озон, Оз, образующийся фотохимическим путем из Ог (см. разд. 8.2.2). Количество озона Б атмосфере и его распределение по высоте зависят от концентрации предшественника — кислорода и поэтому существенно изменяются в ходе эволюции атмосферы. Концентрации озона контролируются также скоростями процессов убыли этих молекул. Убыль регулируется каталитическими циклами с участием других следовых газов атмосферы, таких, как оксиды азота, которые сами, по крайней мере частично, имеют биологическое происхождение (см. с. 219). Мы уже отмечали, что появление кислорода в атмосфере Земли обусловлено в основном биологическими источниками. Теперь мы видим, что озон, необходимый в качестве фильтра для защиты жизни, присутствует в концентрации, определяемой не только генерируемым в ходе биологических процессов кислородом, но и возникающими в ходе биологических процессов следовыми газами, играющими роль в его деструкции. Такие наблюдения привели Ловлока к идее Геи (в древнегреческой мифологии — богиня земли), согласно которой климат, состав поверхности и атмосферы Земли поддерживаются на оптимальном уровне самой биосферой. [c.213]

    При энергетическом возбуждении атома в электрической дуге, в искре, в пламени его электронная энергия возрастает и он переходит из основного (невозбужденного) состояния в другие (возбужденные) состояния. Время жизни возбужденного состояния невелико ( 10 с). Атом, теряя энергию возбуждения в виде излучения (эмиссии), возвращается либо в исходное основное состояние (резонансное излучение), либо в какое-то другое состояние, лежащее по энергии выше основного состояния. Каждой такой потере энергии возбуждения атома соответствует линия (резонансная или нерезонансная) в спектре его излучения при определенной длине волны. Так как возбужденных состояний у атома может быть очень много, то в спектрах исхтускания атомов может наблюдаться много линий (до нескольких сотен и даже тысяч). Каждый атом имеет [c.518]

    Собственное характеристическое светопоглощение анализируемою вещества возникает вследствие его электронного возбуждения — перехода из основного (невозбужденного) электронного состояния в одно из возбужденных электронных состояний. При комнатной температуре вещество находится обычно в основном электронном состоянии. Поглощ.ш энергию падающего света (т. е. светового луча, проходящего через кювету с анализируемым раствором) при огфеделенной длине волны, вещество энергетически возбуждается и переходит в более высоко лежащее (i ю энергии) электронное состояние, время жизни которого очень мало. Энергия таких электронных переходов соответствует энергии электромагнитного излучения УВИ-области, поэтому электронные спектры поглощения большинства веществ наблюдают в этом спектральном участке. [c.525]


Смотреть страницы где упоминается термин Жизни волны: [c.160]    [c.57]    [c.38]    [c.58]    [c.113]    [c.184]    [c.139]    [c.212]    [c.178]    [c.169]    [c.133]    [c.234]    [c.60]    [c.184]    [c.16]    [c.67]    [c.119]   
Химическое строение биосферы земли и ее окружения (1987) -- [ c.282 , c.287 ]

Химическое строение биосферы Земли и ее окружения Издание 2 (1987) -- [ c.282 , c.287 ]




ПОИСК







© 2025 chem21.info Реклама на сайте