Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеризация бутадиена со стиролом и изопреном

    В настоящее время в промышленности вырабатывается много различных видов синтетического каучука (сокращенно СК). Сырьем для получения большинства из них служат в качестве мономеров диеновые углеводороды с двумя сопряженными двойными связями, в первую очередь бутадиен-, 3 (дивинил), а также изопрен и хлоропрен. Цепной полимеризацией мономеры превращаются в синтетические каучуки — карбоцепные полимеры, содержащие в каждом элементарном звене по одной двойной связи. Различие свойств их и синтетических смол объясняется этой особенностью. Некоторые виды СК получаются сополимеризацией бутадиена с мономерами, содержащими в молекуле винильную группу, например со стиролом и с акрилонитрилом. [c.293]


    Производство синтетического каучука состоит из двух основных процессов получения мономеров — каучукогенов и из их полимеризации. Каучукогенами служат бутадиен (дивинил), хлоро-прен, изопрен, изобутилен, и др., а для сополимеризации и стирол, нитрил акриловой кислоты и др. В качестве сырья для получення каучукогенов используют газы крекинга нефти, природные и попутные нефтяные газы, ацетилен, этиловый спирт и др. Среди мономеров наибольшее промышленное значение имеет в настоящее время бутадиен, из которого получают более 70% всего производимого количества синтетического каучука. [c.292]

    Радикальная сополимер гг зация диенов с виниловыми мономерами. Все сопряженные диены весьма активные мономеры в радикальной полимеризации. Бутадиен и изопрен близки по реакционной способности к стиролу, хлоропрен и нек-рые др. производные бутадиена значительно превосходят его. Поэтому при сополимеризации бутадиена и хлоропрена образующийся сополимер сильно обогащен хлоропреном по сравнению с его содержанием в исходной смеси мономеров. Возникающие при росте цепи радикалы аллильного типа стабилизируются за счет эффекта сопряжения, к-рый для аллильного радикала равен около 96 кдж/моль (23 ккал/моль). [c.347]

    Сополимеризация изобутилена с изопреном, бутадиеном лли стиролом и стирола с изопреном под действием трихлорокиси ванадия инициируется одноэлектронным переносом от донора к акцептору через КПЗ, что приводит [c.195]

    Стереоспецифические катализаторы. Используя катализаторы на основе алкилов алюминия и четыреххлористого титана (такие стереоспецифические катализаторы рассматриваются в гл. 9) можно получить блок-сополимеры в две стадии. Один из мономеров полимери-зуют в среде инертного растворителя с образованием растворимого полимера с активным концом цепи. При последующем добавлении второго мономера происходит блок-сополимеризация. В качестве первого мономера можно использовать пентен-1, октен-1, циклогексен, бутадиен и изопрен бромистый и хлористый аллилы, хлористый металлил, изопрен, бутадиен, стирол, бутен-1, октен-1 и хлоропрен могут быть вторыми компонентами таких реакций [37]. [c.92]

    В тех системах, где имеется возможность образования радикалов, сильно отличающихся друг от друга по реакционной способности (например, с одной стороны, винилацетат и винил-хлорид, а с другой — стирол, бутадиен и изопрен), процесс нельзя рассматривать как истинную сополимеризацию. В этих случаях скорость процесса пропорциональна не корню квадратному из концентрации инициатора, а первой степени. Эти системы нельзя рассматривать на основе уравнения (129), [c.133]


    КАУЧУК СИНТЕТИЧЕСКИЙ (СК)-высокополимерный каучукоподобный материал, получаемый полимеризацией и сополимеризацией различных непредельных соединений (бутадиен, стирол, изопрен, хлоропрен, изобутилен, нитрил акриловой кислоты) или поликонденсацией соответствующих бифункциональных производных углеводородов. Подобно И К К. с. имеет длинные макромолекулярные цепи, иногда разветвленные, со средней молекулярной массой, равной сотням тысяч, иногда миллионам. Полимерные цепи К. с. в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, обусловливающая характерные для резины физико-механические свойства. Некоторые виды К. с. (напр., полиизо-бутиленовый, силиконовый и др.) — полностью предельные соединения, вулканизуются в присутствии органических пероксидов, аминов и др. По техническим свойствам некоторые К. с. значительно превосходят НК, но в отличие от НК в К с. при переработке требуется вводить специальные активные наполнители (сажу, активную кремнекис-лоту, оксид алюминия, каолин, мел и др.), усиливающие механическую прочность вулканизаторов. К. с. применяют для изготовления резин, резиновых изделий, автошин, транспортных лент, обуви, изделий для работы с органическими растворителями и др. [c.123]

    Как указывалось в гл. 42 раздела Литийорганические соединения , при сополимеризации изопрена или бутадиена со стиролом под действием в углеводородной среде сополимер обогащен диеновой компонентой и реакционность этих мономеров возрастает в последовательности стирол < изопрен < бутадиен. При переходе к КК реакционность этих же мономеров изменяется (табл. 19, № 1 и 4, а также 5 и 7). Наиболее активным мономером, как и в анионной сополимеризации, оказывается стирол, и реакционность характеризуется рядом, аналогичным анионным процессам изопрен < бутадиен < стирол. Однако относительное содержание стирола в сополимере при инициировании полимеризации КК в углеводородной среде ниже, чем в условиях типично анионной полимеризации (табл. 19, № 8 и 9). [c.523]

    Гантмахер и Медведев [11] исследовали сополимеризацию бутадиена с изопреном и стиролом. Бутадиен значительно менее активен, чем изопрен установлено, что большие количества бутадиена снижают скорость полимеризации стирола, в то время как большие количества изопрена повышают ее. Ясно, что начальная скорость сополимеризации не равна сумме начальных скоростей раздельной полимеризации. Влияние одного мономера на другой объяснено Медведевым с точки зрения изменения устойчивости различных комплексов мономер — катализатор. [c.489]

    Катализаторы обладают очень высокой селективностью по отношению к различным мономерам. Бутадиен полимеризуется в 4 раза быстрее, чем стирол, и в 40—70 раз быстрее, чем изопрен 2,3-диметилбутадиен на алфиновых катализаторах почти не полимеризуется. При совместной полимеризации соотношение активностей может существенно изменяться, например, при сополимеризации бутадиена со стиролом скорости присоединения молекул обоих типов мономеров к растущей цепи оказываются почти равными. Полимеризация этилена на алфиновом катализаторе приводит к образованию сравнительно низкомолекулярных полимеров (молекулярный вес около 20 000). [c.197]

    Бутадиен используют главным образом для получения различных синтетических каучуков путем прямой полимеризации, например с использованием катализаторов Циглера, или сополимеризацией со стиролом с образованием бутадиен-стирольного каучука или с акрилонптрилом с образованием бутадиен-нитрильного каучука. Другим важным сопряженным диеном является изопрен (2-метнл-бутадиен-1,3), производство которого, однако, относительно дорого. Натуральный каучук (21) представляет собой полимер изопрена. Некоторые синтетические каучуки получают полимеризацией изопрена с использованием катализаторов Циглера. [c.172]

    Каучукогенами служат бутадиен (дивинил), хлоропрен, изопрен, изобутнлеп и др. При сополимеризации применяют стирол, нитрил акриловой кислоты и т. д. В качестве сьгрья для получения каучукогенов используются газы крекинга нефти, природные и попутные нефтяные газы, ацетилен, этиловый спирт и др. [c.272]

    Различные катализаторы Циглера приб.чизительно в равной мере способны полимеризовать этилен и другие а-олефины, например пропилен, бутон-1, изобутилен, пентен-1, гексен-1, стирол, З-метилбутен-1 и 4-метилгексен-1, и сопряженные диолефины, такие, как бутадиен и изопрен. Они могут быгь также использованы для сополимеризации любого из перечисленных мономеров с этиленом и с другими а-олефи-нами. [c.104]

    Подобный порядок изменения реакционной способности для указанных мономеров обнаружили также Рембаум и др. при сополимеризации стирола с бутадиеном и изопреном под действием литий-нафталина и цезий-нафталина. Эти авторы нашли, что в обоих случаях полимеризуется почти исключительно стирол. [c.278]

    Вероятно, и в других случаях сополимеризация стирола с а-олефинами и диенами протекает по двухстадийному механизму координация стирола на активном центре— внедрение его по Ме—С-связи. Это проявляется в весьма заметном влиянии положения и природы заместителей в ядре стирола при сополимеризации замещенных стиролов с радиоактивным стиролом, не содержащим заместителей [615, 616], а также при сополимеризациц стирола с изопреном и бутадиеном [395, 630]. В последнем случае обращает на себя внимание то обстоятельство, что изменение реакционной способности мономеров в ряду стирол— бутадиен-изопрен при сополимеризации на комплексных [c.129]


    Простые полиэфиры были также получены сополимеризацией пергалогенкетонов с различными мономерами, такими, как стирол, акрилонитрил, изопрен, бутадиен и метилметакрилат в качестве катализатора использовали натрийдифенил или иатрийнафталин в тетрагидрофуране (ТГФ) [13]. Было показано, что продукт взаимодействия гексафторацетона (ГФА) и стирола является истинным сополимером, так как он совершенно не растворяется в ТГФ, тогда как полистирол растворяется в ТГФ полностью. ИК-спектр сополимера сходен со спектром полистирола, однако между 7 и И мкм наблюдается сильное поглощение, характерное для связей С—F. Из метилметакрилата и ГФА был получен сополимер (1 1), который, как утверждали, обладал очень высокой прочностью и огнестойкостью. Сополимеры бутадиена (85%) с ГФА (15%) хорошо противостояли действию углеводородных растворителей. [c.198]

    Кроме приведенных выше наших результатов, в работе [40], установлена взаимосвязь между и реакционной способностью к полимеризации. В этой работе с помощью квантово-механических расчетов показано, что для многих винильных мономеров (акрилонитрил, акролеин, метилвинилкетон, метилакрилат, бутадиен, стирол, а- и р-метилстиролы, изопрен, этилен и др.) изменение 1/2 происходит параллельно их анионной полимеризуемости . Хотя в настоящее время имеется очень мало данных для установления такой корреляции в случае других групп мономеров (полимеризующихся по радикальному механизму), такая взаимосвязь между константами скорости полимеризации и уг вполне реально. В пользу этого говорит то обстоятельство, что эмпирическое уравнение Хаммета — Тафта в настоящее время находит широкое применение для характеристики влияния заместителей как на константы скорости многих радикальных реакций (в том числе реакций полимеризации и сополимеризации [707, 708]), так и на полярографические потенциалы полуволн. Значение такой взаимосвязи трудно переоценить. Так как определение значений потенциалов полуволн неизмеримо проще, чем определение кинетических характеристик мономеров, то о реакционной способности мономера удобней судить по полярографическим показателям. [c.179]

    Изопрен < бутадиен < а-метилстирол < стирол, их относительная реакционность при сополимеризации определяется рядом а-Метидстирол < изопрен < бутадиен < стирол [28, 136]. [c.372]

    Диенвинилароматические Т.- блоксополимеры, полученные гл. обр. анионной сополимеризацией винил-ароматич. (стирол, а-метилстирол) и диеновых (1,3-бутадиен, изопрен, реже пиперилен, метилметакрилат и др.) [c.548]

    Анионная сополимеризация характерна для мономеров с электроноакцепторными заместителями. По степени снижения активности в анионной сополимеризации ]аиболее широко применяемые мономеры можно расположить в ряд акрилонит-рил >-алкилакрилат>-стирол>-бутадиен>-этилен. Однако активность в зиачитель ной степени зависит от полярности среды. Так, в толуоле тто снижению активности мономеры располагаются в ряд бутадиен>изопрен>стирол. При переходе к полярному растворителю ряд активности изменяется стирол>бута-диен>изопрен. Таким обра. юм, на параметры процесса оказывают влияние характер реакционной среды, тип катализатора, свойства противоиона, температура. [c.137]

    Обсуждение реакций карбениевых ионов с я-электронными парами будет ограничено здесь рассмотрением реакций с олефинами и бензоидными ароматическими соединениями. В обоих случаях первоначальным продуктом является другой карбениевый ион, который далее реагирует с образованием устойчивых продуктов. Среди реакций циклогексадиенил-катионов, генерируемых электрофильной атакой на бензоидиые соединения, преобладает реакция, ведущая к восстановлению ароматического секстета обычно за счет потери протона. Карбениевые ионы, образующиеся при взаимодействии карбениевых ионов с олефинами, могут претерпевать дальнейшие превращения по нескольким конкурирующим направлениям, одним из которых является атака на другую молекулу олефина, что приводит к образованию полимерных продуктов. Из простых а-олефинов при катионной полимеризации образуются продукты с низкой молекулярной массой, поскольку в таких системах процессы переноса преобладают над процессами роста цепи. Полимеры с высокой молекулярной массой образуются обычно из таких олефинов как виниловые эфиры и стиролы. Типичные величины относительной реакционной способности виниловых мономеров, определенные при изучении сополимеризации в нитробензоле, следующие [46] бутадиен 0,02, изопрен 0,12, винилацетат 0,4, стирол (1,0), изобутен 4 виниловые эфиры реагируют очень быстро. Иногда катионная полимеризация протекает стереорегу-лярно. [c.541]

    В последние годы много внимания уделяется сополимеризации изобутилена и других изоолефинов со стиролом при низких температурах (до —100°) [70, 314, 322—327], а также стирола с бутадиеном, изопреном, диметилбутадиеном и хлоронреном [328—333] в присутствии BFg или BFg-0(02Н5)2, в результате KOTopoii образуются каучукоподобные сополимеры. [c.178]

    Полиалломеры получаются при последовательной сополимеризации двух мономеров. В этом случае в реактор, содержащий растворитель и катализатор, состоящий из триэтилалюминия с треххлористым титаном в Соотношении А1(С2Н5)з ТЮ1з = 1,5 1, при 70—80° С и давлении 30— 32 ат подается пропилен, в результате чего начинается его полимеризация. Полимеризация проводится до желаемой степени конверсии пропилена, а затем добавляется второй более реакционноспособный мономер, аапример, этилен , в требуемом количестве и тогда завершают полимеризацию. Если второй мономер менее реакционноспособен, чем первый (например, бутен-1), то проводится дегазация реакционной массы для удаления первого мономера, для чего спускается давление. Потом следует продувка азотом, после чего вводится второй мономер. По этому методу был получен полиалломер пропилена с этиленом, пропилена с буте-иом-1, пропилена с бутадиеном, пропилена со стиролом, пропилена с ви-нилхлоридом и пропилена с изопреном. Полиалломеры представляют собой блоксополимеры с кристаллическими участками, состоящими из соответствующих мономеров. Если проводить полимеризацию заранее приготовленной смеси пропилена с этиленом, то блоксоиолимера не ползгчает-ся и остатки мономеров распределены равномерно по всей длине макромолекулы. В этом случае иолучается не кристаллический, а каучукообразный полимер. Инфракрасные спектры сополимера и полиалломера этилена с пропиленом значительно различаются, что говорит о различной их структуре. Интересно отметить, что из методики получения полиалломеров следует, что макроионы, образующиеся при полимеризации, сохраняют свою активность даже при перерыве в полимеризации, что имеет место при дегазации реакционной массы реакция начинается вновь при добавлении нового мономера в реакционную массу, из которой удален первый мономер. [c.100]

    Наиболее многотоннажным является производство олефинов. Так, на основе этилена производят окись этилена, полиэтилен, стирол, этиловый спирт, хлорпроизводные и др. на основе пропилена— изопропиловый спирт, нитрил акриловой кислоты, полипропилен, глицерин, нзопропилбензол, бутиловый спирт и др. на основе изобутилена — бутилкаучук, изопрен, полиизобутилен, ал-килфенольные присадки и др. на основе н-бутилена — бутадиен, метилэтилкетон, продукты полимеризации и сополимеризации на основе амиленов — изопрен, амиловые спирты. Область применения олефинов непрерывно расширяется. Еще недавно нитрил акриловой кислоты производили только на основе ацетилена и синильной кислоты. В настоящее время наиболее совершенным является процесс производства нитрила акриловой кислоты, основанный на окислении смеси пропилена и аммиака. [c.14]

    Олефины являются наиболее многотоннажными первичными продуктами. Так, на основе этилена производят этиловый спирт, окись этилена, полиэтилен, стирол, хлорнроизводные и др. на основе пропилена — изопропиловый спирт, нитрилакриловую кислоту, глицерин, изопропилбензол, полипропилен, бутиловый спирт и др. на основе изобутйлена — бутилкаучук, изопрен, полиизобутйлен, алкилфенольные присадки и др. на основе к-бутилена — бутадиен, метилэтилкетон, продукты полимеризации и сополимеризации на основе амиленов — изопрен, амиловые спирты. [c.15]

    Алфиновые катализаторы обладают очень высокой специфичностью в отношении полимеризуемых мономеров. Так, бутадиен полимеризуется в 40—70 раз быстрее, чем изопрен [8], и в четыре раза быстрее, чем стирол 111]. При сополимеризации же скорость присоединения стирола равна или даже больше, чем скорость присоединения бутадиена [7]. При сополимеризации бутадиена и стирола алфиновым катализатором, чтобы получить одинаковую степень превращения [12, 13], необходимо брать большее количество катализатора, чем при полимеризации чистого бутадиена. Характеристическая вязкость алфинового полибутадиена намного выше, чем у алфинового полистирола например, ее значения достигают для полибу-т адиена 11—13, тогда как для полистирола они составляют 1,1—3,6 [7]. [c.244]

    С помощью УФ-спектрофотометрии может быть определено содержание связанного стирола в его сополимерах с бутадиеном, изопреном и изобутил ей ом, т. е. как в каучуках типа СКС, полученных эмульвионной полимеризацией, так и в каучуках, термоэластопластах и модифицированном бутилкау-чуке, получаемых каталитической полимеризацией в растворах [10]. Хотя спектры поглощения связанного стирола в указанных сополимерах несколько отличаются друг от друга в зависимости от способа сополимеризации и природы сомономера [23, стр. 19—30], выбранные условия определения обеспечивают получение результатов с точностью до 5 отн.%, хорошо согласующихся с результатами рефрактометрии. [c.12]

    На основе этилена производят этиловый спирт, полиэтилен, стирол, хлорпроизводные, этиленоксид и др. на основе пропилена — изопропиловый спирт, акрилонитрил, полипропилен, глицерин, нзопропилбензол, н-бутиловый спирт и др. на основе пзо-бутена — бутилка чук, изопрен, полинзобутен, алкилфенольные присадки и др. на основе н-бутена—бутадиен, метилэтилкетон, продукты полимеризации и сополимеризации на основе пенте-нов — изопрен, пентиловые спирты и др. Области применения олефинов непрерывно расширяются. [c.20]

    Алфиновые катализаторы обладают очень высокой специфичностью в отношении полимеризуемых мономеров. Так, бутадиен полимеризуется в 40—70 раз быстрее, чем изопрен [8], и в четыре раза быстрее, чем стирол [И]. При сополимеризации н е скорость присоединения стирола равна или даже больше, чем скорость присоединения бутадиена [7]. При сополимери-, зации бутадиена и стирола алфиноным катализатором, чтобы получить одинаковую степень превращения [12, 13], необходимо брать большее количество катализатора, чем при полимеризации чистого бутадиена. Характеристическая вязкость алфинового полибутадиена намного выше, чем у алфинового полистирола например, ее значения достигают для полибутадиена 11—13, тогда как для полистирола они составляют 1,1—3,6 [7]. 2,3-Диметилбутадиен на алфиновых катализаторах совсем или почти не полимеризуется [10]. Акриловые эфиры и другие виниловые мономеры с реакционноспособными функциональными группами вступают во взаимодействие с алфиновым катализатором за счет этих групп и не полимеризуются по двойной винильной связи [10]. [c.244]

    Высокая относительная активность а-метилстирола в актах роста цепи при гомополимеризации с в ТГФ была объяснена понижением энергии взаимодействия компонент в ионной паре из-за стерических причин (разветвленный карбанион) [136]. Это предположение было подтверждено кондук-тометрическими измерениями. Было найдено, что эквивалентная электропроводность ряда живущих полимеров с одинаковым противоионом в ТГФ возрастает симбатно увеличению стабильности соответствующих им карбанионов в последовательности изопрен [166 ]< бутадиен [68] < < стирол [681 < антрацен [68]. Однако электропроводность живущего литийполи-а-метилстирола [166] отклоняется от такой симбатности и даже выше электропроводности литийполистирола [36, 72], хотя стабильность а-метилстирольного карбаниона, по данным сополимеризации, должна быть ниже даже изопренового [122, 136]. Увеличение энергии взаимодействия компонент в ионной паре в случае более активных в сополимеризации (по сравнению с а-метилстиролом) диеновых мономеров может способствовать избирательному вхождению этих мономеров в сополимер. [c.373]

    Сополимеризация стирола с изопреном имеет те же особенности что и реакция стирола с бутадиеном. По данным Медведева и сотр. [211, проводивших сополимеризацию в толуоле под действием этиллития, полимеризация внезапно ускоряется после того, как диен практически полностью израсходован. Эти наблюдения были подтверждены Боуном [22], который отметил также резкое изменение цвета раствора на этой стадии реакции. Очевидно, до тех пор пока в системе присутствует изопрен, раствор содержит только литийполиизопренильные концевые группы, а полистирольные группы практически отсутствуют. Реакционная смесь поэтому имеет бледно-желтую окраску, обусловленную группами (—Изопренил После того как диен израсходован, появляется красный цвет групп (- -Стирил Аналогичные явления обнаружил Уорсфолд [27] спектрофотометрическим методом. [c.518]


Смотреть страницы где упоминается термин Сополимеризация бутадиена со стиролом и изопреном: [c.107]    [c.213]    [c.110]    [c.133]    [c.488]    [c.150]    [c.387]    [c.332]    [c.128]    [c.190]    [c.222]    [c.195]    [c.308]   
Химия и технология синтетического каучука Изд 2 (1975) -- [ c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Изопрен

Сополимеризация бутадиен—изопрен

Сополимеризация изопрен стирол

Сополимеризация стирола. Стирол, сополимеризация

Стирол бутадиеном. Бутадиен, сополимеризация

Стирол сополимеризация

бутадиен сополимеризация



© 2025 chem21.info Реклама на сайте