Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рост цепи радикальный

    Рост цепи радикальных реакций может протекать, в принципе, благодаря присутствию свободных радикалов  [c.264]

    Эффективность процесса определяется квантовым выходом <Р1, равным отношению числа прореагировавших молекул к числу поглощенных квантов. Квантовый выход может значительно превосходить единицу и достигать многих сотен. Образовавшиеся при фотодиссоциации радикалы могут положить начало ценным радикальным реакциям, включающим инициирование молекул, рост цепи и обрыв ее при столкновении с аэрозольными частицами или с другими радикалами. [c.29]


    Радикальная полимеризация протекает по цепному механизму. Процесс образования молекулы полимера состоит из следующих стадий инициирование — образование первичного свободного радикала из валентнонасыщенной молекулы мономера рост цепи — последовательное присоединение к радикалу молек л мономера с сохранением свободной валентности на конце растущей молекулы обрыв цепи — прекращение роста молекулы. [c.49]

    Чтобы составить математическую модель реактора радикальной полимеризации, напишем уравнения материальных балансов по мономеру, радикалу, инициатору (приняв, что на вход реактора подается смесь мономера и инициатора), а также уравнение теплового баланса, учитывая тепловыделение лишь в реакции роста цепи. [c.50]

    В промышленности для проведения цепной полимеризации используют совместное воздействие теплоты и химических агентов инициаторов или катализаторов. Инициаторы (в основном соединения перекисного характера органические перекиси, гидроперекиси и азосоединения) в течение реакции распадаются на реакционноспособные радикалы, которые входят в состав молекул полимера в виде конечных групп. Радикалы инициаторов возбуждают молекулы мономера в результате возникают радикалы мономеров, присоединяющиеся к радикальной цепи. Следовательно, радикальная полимеризация обязательно включает стадию образования свободных радикалов и последующий рост цепи полимера. [c.193]

    Подобная закономерность в изменении s-факторов наблюдается-и для реакций радикальной полимеризации, но только при гораздо более низких температурах. Присоединение полимерного радикала ко второй молекуле мономера (этилена или пропилена) связано с резким уменьшением s-фактора, но при последующем присоединении третьей и четвертой молекул мономера к полимерному радикалу s-фактор практически не изменяется [273]. Постоянное значение стерических факторов реакций роста цепи можно рассматривать как обоснование эмпирического положения об относительно одинаковой реакционной способности полимерных радикалов различной длины, принимаемого в кинетике полимеризационных процессов [73]. В случае реакций присоединения непредельных молекул друг к другу, например при молекулярной полимеризации этилена, образование димера имеет сравнительно высокий s-фактор ( 0,1), но присоединение третьей молекулы к димеру, или образование тримера, сопряжено с резким уменьшением s-фактора на 3—4 порядка [273]. Это может объяснить задержку полимеризации на стадии димеризации [274]. В связи с этим роль катализаторов наряду с обычным понижением энергии активации состоит в устранении пространственных затруднений (на стадии образования тримера и далее) путем сильного увеличения стерического фактора. [c.181]


    Прекращение роста цепи может произойти под воздействием любого фактора, обусловливающего обрыв цепной радикальной реакиии. [c.158]

    При радикальной сополимеризации 2 мономеров возможны следующие элементарные реакции роста цепи  [c.225]

    На глубоких стадиях возможна передача цепи через полимер. Сополимеризация. При радикальной сополимеризации 2 мономеров возможны следующие элементарные реакции роста цепи  [c.275]

    Какова ожидаемая среднемассовая степень полимеризации полимера, полученного по радикальной реакции в присутствии регулятора роста цепи, если среднечисловая степень полимеризации равна 14,5  [c.53]

    Выведите зависимость степени превращения регулятора роста цепи от относительной константы передачи цепи на него и от расхода мономера при радикальной полимеризации. Сколько четырехбромистого углерода (в %) останется непрореагировавшим при степени конверсии винилхлорида 0,4, если s = 4,70 (50 °С, в дихлорэтане)  [c.91]

    Константы скорости и энергия активации роста цепи в первую очередь зависят от природы мономера. Растворители, не склонные к специфическому взаимодействию с молекулами мономера и растущими радикалами, не влияют на реакцию роста радикальной полимеризации. [c.9]

    Константа скорости и энергия активации роста цепи зависят от химической природы мономера. Химическая природа растворителя не влияет на константы скоростей при радикальной полимеризации. Скорость обрыва цепи описывается уравнением [c.388]

    При радикальной полимеризации процесс инициируется свободными радикалами. Реакция проходит через несколько стадий а) инициирование б) рост цепи в) передача или обрыв цепи. [c.352]

    Эта фаза радикального замещения называется обрывом цепи. Первый этап реакции (диссоциация молекул галогенов на атомы) называется инициированием. Средняя фаза замещения, т. е. реакция радикала галогена с молекулой углеводорода и реакция образовавшегося R- с Ха, называется развитием (ростом) цепи. [c.120]

    Цепная полимеризация идет с большой скоростью, иногда подобно взрыву. Часто ее можно осуществить при низких температурах. Промежуточные продукты полимеризации — неустойчивые частицы (в нашем примере радикалы), поэтому рост цепи после первоначального толчка со стороны инициатора будет продолжаться до тех пор, пока не исчерпается весь мономер либо не произойдет обрыва цепи, столкновения двух радикальных концов макромолекулы с взаимным насыщением свободных валентностей, либо уничтожения радикала при столкновении с посторонней молекулой (примесью), со стенкой сосуда. [c.318]

    Такое инициирование полимеризации отличается от описанных ранее методов тем, что в этом случае происходит одноэлектронный перенос с молекулы мономера на вещество А или с вещества В на мономер. Вторая стадия полимеризации, инициируемой переносом электрона,— рост цепи — может протекать по ионному или радикальному механизму в зависимости от структуры мономера и свойств среды, в которой протекает полимеризация. [c.95]

    Скорость реакции роста цепи при радикальной полимеризации зависит как от реакционной способности мономера, так и от активности свободного радикала. Поляризованная молекула мономера будет легче реагировать со свободным радикалом. [c.106]

    Сравнение строения образующихся радикалов и ионов (I и И) показывает, что энергетически выгоднее присоединение к метиленовой группе, так как при этом образуются менее активные радикалы и ионы вследствие сопряжения с бензольным кольцом. В радикалах и ионах, полученных присоединением к метиновой группе, нет сопряжения, и пара электронов, так же как и непарный электрон, локализована на р-углеродном атоме. Поэтому рост цепи при радикальной, катионной и анионной полимеризации будет протекать преимущественно с образованием а,р-полимеров. [c.108]

    Молекулярный вес полимера как при радикальной, так и при ионной полимеризации зависит От соотношения скоростей реакций роста цепи и ее обрыва. Чем больше скорость роста цепи и меньше скорость ее обрыва, тем длиннее цепь образующейся макромолекулы и тем больше молекулярный вес получаемого полимера. [c.370]

    Напишите схему реакции полимеризации стирола по радикальному механизму, расчленив ее на отдельные стадии инициирование, рост цепи, обрыв цепи. [c.241]

    Радикальные реакции представляют собой цепь последовательных стадий инициирование, рост цепи и обрыв цепи. На стадии инициирования возникают свободные радикалы в процессе роста цепи образуются конечные продукты реакции и свободные радикалы. Однако такой цикл превращений не может продолжаться бесконечно, и радикалы могуг превращаться в неактивные молекулы, соединяясь друг с другом,— происходит обрыв цепи и реакция прекращается. [c.245]

    Радикальная полимеризация вызывается (инициируется) веще- ствами, способными в условиях реакции распадаться на свободные радикалы (пероксиды, персульфаты, азо- и диазосоединения и др.)т I а также действием теплоты и света. Радикалы инициаторов входят 5 в состав молекулы полимера, образуя его конечную группу. Обрыв цепи происходит при столкновении концевой группы полимера с I- молекулой специально добавляемого регулятора роста цепи или [ за счет реакций рекомбинации и диспропорционирования. [c.261]


    Установлено, что спиновые ловушки, С-фснил-Н-трет.бутилнитрон, 2-метил-2-нитрозопропан, I -трет.бутил-З-фенил-1 -окситриазен являются эффективными регуляторами роста цепи радикальной полимеризации метилметакрилата бутил метакрилата, бутилакрилага, стирола, при этом наблюдаются основные признаки полимеризации в режиме живых цепей подавляется гель-эффект значения молекулярной массы полимеров равномерно нарастают с увеличением конверсии мономера и величины коэффициента полидисперсности значительно меньше таковых для полимеров, синтезированных без добавок, В присутствии С-фенил-N-трет.бутилнитрона впервые осуществлен контролируемый рост молекулярной массы в процессе полимеризации винилхлорида. На основании полученных экспериментальных данных, результатов исследований методом ЭПР и квантово-химических расчетов предложены оригинальные схемы контроля роста полимерной цепи, связанные с образованием лабильной связи растущего и нитроксильного радикалов. [c.128]

    Почти полвека известна идеальная живая анионная полимеризация, включающая две элементарные реакции - инициирования и роста цепи. Радикальная псевдоживая полимеризация была открыта лишь в конце 1980-х гг. XX в,, но уже к настоящему времени ясно, что сосуществование растущих (живых) и нерастущих (неживых) цепей в равновесии друг с другом - явление, общее для цепной полимеризации. Отметим наиболее яркие примеры, [c.285]

    Такие экспериментально найденные закономерности теоретически оказываются вполне понятными, если исходить из предположения, что реакции разложения проходят через цепные радикальные реакции [ИЗ]. Реакция пиролиза состоит из трех частей иницниро вания, роста цепи (цепная реакция) и обрыва цепи. При реакции инициирования образуются радикалы, которые, отщепляя водород, вызывают множество следующих друг за другом цепных реакций. [c.234]

    ИоЕгнал полимеризация, как и радикальная, является цепным процессом. От радикальной ионная полимеризации отличается тем, что полимерная цепь, образующаяся в присутствии ионных катализаторов, не содержит свободных радикалов, а активные центры в ней образуются в результате присоединения катализатора к молекуле мономера, вследствие чего образуется малоустойчивый ион, к которому последовательно присоединяются молекулы мономера с одновременным перемещением заряда на крайнее звено растущей цепи. Таким образом, в этом случае рост цепи осуществляется под действием макроиона, а не макрорадикала, как это имеет место в радикальной полимеризации. Обрыв цепи макромолекулы при ионной полимеризации происходит в результате отщепления от макромолекулы катализатора, который, таким образом, не расходуется на образование макромолекулы. [c.373]

    Рост макрорадмкалов. Реакция роста цепи состоит в присоединении молекул мономера к макрорадикалу. Независимо от характера инициирования рост макромолекулярной цепи начинается с момента присоединения молекулы мономера к первичному радикалу и продолжается до тех пор, пока растущая цепь сохраняет радикальную структуру. Процесс роста каждой макромолекулы длится несколько секунд, константа скорости реакции роста остается постоянной в продолжение всей реакции. Исключение составляют некоторые мономеры, для которых скорость роста цепи снижа( тся с нарастанием вязкости среды. Средняя степень полимеризации фракций полимера, образующихся в начале и в конце процесса, практически неизменна, если реакционная смесь не содержит примесей, легко вступающих в реакцию с макрорадикалами. В присутствии небольших количеств таких примесей средняя степень полимеризации фракций полимера, образовавшихся в начале реакции, остается более низкой до тех пор, пока не будут из расходованы примеси, присутствующие в реакционной смеси. [c.105]

    Методькинтеза ВМС. Строение мономера функциональность мономера. Полимеризация цепная и радикальная.,. Элементарные акты радикальной полимеризации инициирование, рост цепи и ее обрыв. Ионная полимеризация (катионная и анионная). Анионно-координационная полимериз ация. Поликонденсация. Отличительные особенности реакции поликонденсации. [c.172]

    Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся этилен, винилхлорид, винилацетат, винил-иденхлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол, бутадиен, хлоропрен й другие мономеры. Радикальная полимеризация обычно включает несколько элементарных химических стадий инициирование, рост цепи, обрыв цепи и передачу цепи. Обязательными стадиями являются инициирование и рост цепи. [c.7]

    Ионная полимеризация может характеризоваться значительно большей стереоспецифичностью, чем радикальная. Это обусловливается не только взаимодействием заместителей концевых звеньев растущих полимерных цепей, но и участием в элементарных актах роста других компонентов каталитического комплекса, в частности, противоиона. Если активным центром на конце растущей цепи является ионная пара, то противоион оказывается одним из компонентов переходного комплекса, образующегося в реакции роста цепи. Поэтому он может влиять на фиксацию той или иной пространственной конфигурации, концевого звена растущей цепи. В некоторых случаях влияние противоиона, по-видимому, сводится к чисто стерическим эффектам, т. е. можно рассматривать противоион как своеобразный дополнительный заместитель в концевом звене растущей цепи. Например, при катионной полимеризации винилизобутилового эфира на катализаторе ВРз-НаО (противоион ВРзОН-) при —70°С образуется атактический полимер, при полимеризации в тех же условиях на катализаторе ВРз-(С2Н5)20 противоион ВР3ОС2Н5) образуется изотактический полимер. Увеличение объема противоиона значительно усиливает стереоспеци-фический эффект при росте цепи. [c.26]

    Реакция полимеризации состоит из трех элементарных стадий образования активного центра, роста цепи и обрыва цепи. В зависимости от природы активного центра различают радикальную полимеризацию, при которой активным цеятром является свободный радикал, а рост цепи протекает гомолитически, и ионную полимеризацию, при которой активными центрами являются ионы или поляризованные молекулы, а рост цепи протекает гетеролитически. Методы возбуждения и механизмы этих двух видов полимеризации различны. [c.9]

    В соответствии с принятым принципом оценки активности мономеров в реакциях радикальной полимеризации активность радикалов, образующихся из этих мономеров, расположится в антибат-ной (строго обратной) последовательности. Иными словами, время жизни радикала тем меньше, чем он активнее, т. е. чем меньше эффект сопряжения неспаренного электрона радикала с электронной структурой заместителя в молекуле мономера. Эта активность может быть определена по значению отношения констант скоростей обрыва и роста цепи чем больше значение /(оВр/ Ср, тем меньше стационарная концентрация радикалов растущих цепей и выше ак-дивность радикалов, т. е. ниже активность соответствующих мономеров. Количественно, например, активности радикалов винилацетата, метилметакрилата и стирола в реакции роста цепи соотносятся как 20 2 1. [c.30]

    Во всех цепных реакциях синтеза сополимеров из смеси двух мономеров, независимо от механизма реакции (свободнорадикальный, ионный, ионно-кординационный), растущая цепь сополимера реагирует с одним из мономеров, поэтому в системе всегда присутствуют два типа растущих цепей (как это показано в приведенных выше схемах реакций для случая радикальной сополимеризации). Следовательно, система характеризуется четырьмя константами роста цепи /г,, ki и 22- [c.59]

    Теломеризация. Так называют радикальнуй полимеризацию непредельных мономеров в присутствии галогенпроизводных предельных углеводородов или других насыщенных соединений, способных присоединяться к молекулам полимеров и обрывать рост цепи (телос—по-гречески конец, мер — часть). Теломеризацию называют также оборванной полимеризацией. Рассмотрим теломеризацию на примере полимеризации этилена в присутствии четыреххлористого углерода [c.449]

    В то же время полимеризация, индуцируемая радикалами, обладает рядом специфических особенностей. Так, например, как разветвленные, так и линейные полимерные молекулы могут быть образованы только в результате развития радикальной цепи за счет отрыва атома водорода от растущих или уже сформированных полимерных молекул, поскольку только такие отрывы могут служить точками роста цепи. Кроме того, твердые полимеры, образующиеся при радикальной полимеризации СН2 = СНХ, характеризуются стереохимически неупорядоченной ориентацией групп X относительно атомов углерода полимерной цепи. Как показывает опыт, такие полимеры, носящие название атактических, не получаются, как правило, в кристаллической форме, имеют низкую температуру плавления и обладают слабой механической прочностью. [c.295]

    Полимеризация свободными щелочными металлами относится к этой категории, так как в данном случае свободно-радикальный рост цепи, по-видимому, не имеет места, о чем свидетельствует полимеризация а-метил-стирола металлическим калием. Инициатором, по-види-мому, является [c.240]

    На высоком теоретическом уровне проведено Э. А. Пономаревой изучение кинетики и механизма автоокисления в щелочной среде бензгидрола и его замещенных. Сделан вывод, что автоокисление бенз-гидрола представляет собой радикально-ионоидный цепной процесс, на стадии инициирования которого происходит образование перокси-радикала бензгидролята, а в лимитирующей стадии роста цепи происходит перенос электрона с комплекса бензгидролят — тргш-бутилат на образовавшийся перокси-радикал. [c.162]


Смотреть страницы где упоминается термин Рост цепи радикальный: [c.211]    [c.627]    [c.107]    [c.10]    [c.26]    [c.88]    [c.251]    [c.256]    [c.697]    [c.466]   
Полимеры (1990) -- [ c.31 , c.32 , c.88 , c.154 , c.162 , c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Кабанов. Успехи в области радикальной полимеризации Реакция роста цепи

Рост цепи

Рост цепи в радикальной полимеризации

Рост цепи при полимеризации радикальной, влияние заместителей



© 2025 chem21.info Реклама на сайте