Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепные обрыв цепи

    Цикл, закончившийся воссозданием радикала галогена, при соответствуюш,их условиях может многократно повторяться, так что в идеальном случае необходим лишь один радикал галогена для осуш ествления всего процесса. Подобные реакции называют цепными. Обрыв цепи происходит при комбинации радикалов  [c.602]

    Обрыв цепи вызывается также окисью азота. То обстоятельство, что фотохимическое окисление подавляется или полностью предотвращается добавками кислорода или окиси азота, убедительно доказывает цепной механизм этих реакций. [c.140]


    Каталитическое хлорирование в присутствии твердых катализаторов в противоположность рассмотренным выше фотохимическим реакциям и термическому хлорированию (которое будет рассмотрено дальше) не зависит от присутствия веществ, вызывающих обрыв цепей. Отсюда следует, что механизм этой реакции принципиально отличается от рассмотренного выше цепного механизма. [c.153]

    Как показали работы многочисленных исследователей [52, 54], реакция протекает по цепному механизму, так как она в сильной степени замедляется присутствием кислорода, азота и других веществ, вызывающих обрыв цепей. [c.155]

    Небольшие количества кислорода почти полностью подавляют эту реакцию. В присутствии стеклянной ваты при 320°, несмотря на наличие веществ, вызывающих обрыв цепей, реакция протекает с интенсив-[юстью, равной примерно 20% первоначальной. Эта остаточная реакция, протекающая в присутствии кислорода, может быть объяснена те )мическим цепным механизмом. [c.158]

    Эти цепные реакции состоят из двух частей отщепления водорода и стабилизации радикалов, образовавшихся после отщепления водорода. В частности, реакции отщепления водорода влияют на окончательный состав продукта пиролиза. В результате рекомбинации радикалов происходит обрыв цепи и цепные реакции прекращаются. Все это можно проиллюстрировать следующей схемой инициирование [c.234]

    Процесс цепного окисления углеводородов можно представить состоящим из следующих стадий возбуждение молекул, зарождение активных центров, продолжение цепей, разветвление цепей и обрыв цепей. При газофазном окислении углеводородов в зоне высоких температур две первые стадии могут протекать слитно, в одном элементарном акте. По этой причине стадию возбуждения молекул часто не рассматривают в качестве самостоятельной стадии. При окислении жидких углеводородов, как показано далее, возбуждение молекул является одной из стадий, определяющих скорость процесса в целом. [c.24]

    Если для реакций (1) — (6) воспользоваться условием стационарности концентраций и допустить, что концентрация кислорода в системе достаточно велика, г, >гй,, [К00-]> [ К-], а обрыв цепей происходит только по реакции (6) в схеме цепного окисления углеводородов, то скорость образования первичного стабильного продукта окисления — гидропероксида — можно вычислить по формуле [c.26]


    Н — углеводород, подвергаемый окислению, точка означает недостаток одного электрона на осколке, образующем свободный радикал, В этой последовательности реакций можно выделить три стадии, характерные для цепной реакции инициирование, развитие и обрыв цепи. Окисление инициируется процессом, который приблизительно определяется как отщепление водородного атома водорода от молекулы углеводорода i H с образованием / . Полученный таким образом свободный радикал реаги  [c.287]

    В результате изучения кинетики окисления углеводородов установлено, что оно носит характер цепной реакции [83—86]. Такого рода реакция продолжается до тех пор, пока не произойдет, обычно в результате столкновения носителя цепи со стенкой сосуда, обрыв цепи. Если распространение цепи заканчивается одновременно с окончанием горения, то горение происходит нормально. Если же деактивация носителя цепи (активного центра) происходит медленнее, чем распространение цени, то наступит такой момент, когда концентрация цепей и носителей цепи станет настолько большой, что скорость реакции будет подниматься очень быстро несгоревшие газы при этом окислятся, и реакция закончится с неожиданной силой. [c.405]

    Радикальная полимеризация протекает по цепному механизму. Процесс образования молекулы полимера состоит из следующих стадий инициирование — образование первичного свободного радикала из валентнонасыщенной молекулы мономера рост цепи — последовательное присоединение к радикалу молек л мономера с сохранением свободной валентности на конце растущей молекулы обрыв цепи — прекращение роста молекулы. [c.49]

    Таким образом, из-за передачи водорода антиоксидантом радикалу, ответственному за развитие цепного процесса окисления, происходит обрыв цепи и одновременно образуется менее активный радикал А. Однако следует учитывать, что в определенны  [c.632]

    В цепных реакциях очень распространено явление отрицательного катализа веществами, соединяющимися с активными переносчиками реакции и вызывающими обрыв цепей. Например, при распаде углеводородов активными частицами являются радикалы вроде метила СН3-, которые могут реагировать с окисью азота по уравнению [c.204]

    Рассмотренная выше схема окисления, в которой цепи обрывались только по реакции двух пероксидных радикалов, справедлива для условий, когда концентрация растворенного кислорода достаточно велика и реакция К с Ог не лимитирует процесс. С уменьшением ро и соответственно [Ог] режим цепного окисления меняется чем ниже [Ог], тем в большей степени продолжение цепи лимитирует реакция алкильного радикала с кислородом, а обрыв цепей все интенсивней идет по реакциям [c.35]

    Сопряженное окисление многокомпонентной системы представляет собой цепную реакцию, в которой несколько активных центров, участвуют в целой совокупности реакций продолжения и обрыва цепей. Если [Оа] достаточно велико для того чтобы только пероксидные радикалы принимали участие в реакциях обрыва цепей, то продолжение и обрыв цепей протекает соответственно по реакциям [c.47]

    Известны также случаи, когда окисление протекает чисто гетерогенно, без выхода радикалов в объем [298]. Например, гетерогенно можно окислять олефины кислородом до соответствующих оксидов. В некоторых, сравнительно редких случаях, на поверхности идет интенсивный обрыв цепей, и введение такого соединения тормозит цепное окисление [330]. [c.206]

    Как указывалось в гл. 2, обрыв цепей в жидкой фазе происходит обычно по квадратичному механизму. Однако имеются экспериментальные данные, свидетельствующие о том, что и в жидкой фазе в ряде случаев существенную роль в обрыве цепей, или точнее в определении направления цепных реакций, играет поверхность [7, 8]. В работе [91 приводятся прямые экспериментальные доказательства влияния гидродинамического режима на состав продуктов реакции при цепном окислении пропилена в растворе бензола. Вследствие этого при расчете и конструировании реакторов для цепных процессов могут возникать специфические ситуации, поскольку величины поверхности в единице объема реактора и коэффициента переноса к ней определяют направление реакции и интенсивность теплоотвода [c.103]

    Кинетика цепной химической реакции, ее скорость и средняя длина цепи, естественно, находятся в прямой связи с условиями протекания реакции. Здесь мы ограничимся случаем, когда цепи зарождаются в объеме, но обрыв цепей происходит как в объеме, так и на поверхности. При этом будем считать, что объемный об]1ыв цепей следует линейному закону и что реакция протекает в диффузионной области. В этом случае для плоского реакционного сосуда (одномерная задача) при справедливом для диффузионной области равенстве нулю коицептрации активных центров у поверхности реакционного сосуда средняя длина цепи [c.209]


    Обрыв цепи, как и в неразветвленных цепных реакциях, может происходить при столкновении радикальных частиц со стенками сосуда или в результате тройных столкновений. К описанию скорости реакции можно подойти, используя методы теории вероятности. Пусть вероятность разветвления цепи на п-м звене будет а, вероятность гибели радикала (активного центра цепи)— р, время, в течение которого протекают реакции в звене (время жизни звена), — т. Тогда число разветвлений / в единицу времени за счет одного активного центра будет равно / = а/т. Если т — число активных центров в единице объема, то число разветвлений будет в пг раз больше, т. е. т/. Число гибнущих цепей в единице объема будет равно тр/т. Пусть скорость зарождения первичных активных центров цепи в единице объема т 1(1 будет постоянной, тогда изменение числа активных центров в единице объема будет [c.608]

    Скорость радикально-цепного процесса окисления зависит от парциального давления кислорода. С повышением температуры концентрация растворенного кислорода в жидкой -фазе уменьшается, вследствие чего может наступить момент, когда при очень малой концентрации кислорода [R ] [РОг ] и обрыв цепей будет происходить в основном за счет углеводородных радикалов [206]. [c.170]

    Как и в других радикально-цепных процессах, обрыв цепи может происходить на ингибиторах (сернистые соединения, фенолы). При наличии подобных примесей в сырье появляется более или менее длительный индукционный период окисления, который со-краш,ается при добавлении инициаторов или катализаторов, однако во избежание торможения процесса предъявляются повышенные требования к чистоте сырья, идущего на окисление. [c.362]

    Реакции полимеризации, применяемые в промышленности, бывают двух типов — ступенчатые и цепные 1) ступенчатая полимеризация, когда соединение молекул сопровождается перемещением атомов водорода и образующиеся промежуточные продукты характеризуются значительной продолжительностью жизни 2) цепная полимеризация, когда сначала происходит активирование какой-либо одной молекулы, вызывающей полимеризацию большого числа других молекул, с которыми она сталкивается. В этом случае промежуточные продукты нестабильны. При ступенчатой полимеризации главными продуктами являются полимеры с низкой молекулярной массой. В отличие от ступенчатой полимеризации цепная полимеризация не задерживается на какой-либо промежуточной стадии и конечный продукт представляет собой высокомолекулярное соединение. Цепная полимеризация — один из важнейших методов производства синтетических смол — состоит из стадий возбуждение процесса, рост цепи и обрыв цепи (см. ч. I, гл, V). Общую реакцию можно представить следующим образом  [c.191]

    Согласно радикально-цепной теории крекинг представляет собой сложный цепной процесс, который идет с участием свободных алифатических радикалов. Первичной реакцией крекинга всегда является распад молекулы алкана по связи С—С на два свободных алкильных радикала (может случиться распад по связи С—Н, но при температурах крекинга он в 10 —10 раз менее вероятен). Свободные радикалы вступают в реакции с молекулами алкана, продуктами распада, реагируют между собой и со стенками. Эти вторичные реакции идут легко по сравнению с реакцией зарождения цепей, которая требует энергии активации не меньшей энергии диссоциации связи и определяют развитие и обрыв цепей. Длина цепи определяется конкуренцией реакций развития и обрыва цепей и в различных случаях принимает различное значение. В стационарном состоянии длина цепи определяется отношением скоростей реакций развития и зарождения цепей. [c.25]

    Кинетика заторможенного добавками N0 или пропилена распада пропана, согласно выше изложенной теории, представляет один из вариантов адсорбционной кинетики, определяемой конкурентными адсорбционными отношениями ингибитора и алкана. На основании схемы, в которой учитываются гетерогенное зарождение цепей и развитие их в объеме, а также обрыв цепей на стенках (при этом принимаются в расчет два типа активных центров на поверхности, и один из них способен необратимым химическим путем порождать радикалы) получается для скорости цепного распада алкана уравнение [1051  [c.55]

    При низких давлениях большое значение приобретает обрыв цепей на стенках, состоящий в том, что активные радикалы вследствие диффузии к стенкам адсорбируются последними и затем рекомбинируются с радикалами, налетающими из объема. Обрыв цепей на стенках происходит, конечно, при любых давлениях и в сущности превращает любую цепную реакцию в гетерогенную, связывая органически стенки сосуда с превращением, которое в нем идет. [c.132]

    Под обрывом цепи надо понимать процесс, в результате которого активные частицы или исчезают, или дезактивируются. Обрыв цепей может привести к прекращению реакции. Поэтому для течения цепных реакций, в особенности с длинными цепями, очень важное значение имеет форма реакционного сосуда. Например, в узких длинных трубках реакция может идти очень медленно, а в шарообразном сосуде интенсивнее, так как в узких трубках цепи могут чаще обрываться при столкновениях активных частиц со стенками трубки. Обрыву цепей способствует также наличие в сосуде частиц примесей. Для цепных реакций характерна зависимость их скорости от присутствия инертных веществ и от удельной поверхности реакционного сосуда, под которой понимается отношение площади поверхности сосуда к его объему. [c.354]

    При реакциях хлорирования обрыв цепи происходит в результате рекомбинации атомов хлора в молекулы, которая, как показали Боден-штейн и Винтер (1936), происходит на стенках сосуда или под действием обрывающих цепную реакцию примесей, обладающих способностью соединяться с атомами хлора или водорода, и таким образом, исключающих возможность участия этих атомов в образовании дальнейших молекул хлористого водорода. [c.139]

    Как отмечалось выше, перекнсные соединения могут инициировать реакцию и поддерживать ее протекание. Поскольку при самой реакции возникает перекисное соединение, которое вследствие своей нестойкости может распадаться на радикалы, сульфоокисление в данных условиях протекает автокаталитически. Как и при других цепных реакциях, эти радикалы могут исчезать в результате рекомбинации или реакции со стенкой, что влечет за собой обрыв цепи. Однако благодаря распаду гьро,межуточнЫ(Х СО еди нен ий, сульфоновых перкислот вов-никают -новые радикалы  [c.484]

    Таким образом, свободные радикалы, возникающие при распаде инициаторов, входят в состав молекулы полимера в виде конечных групп. Как видно из приведенной схемы, такие цепи имеют вещественный характер, так как каждое звено цепной реакции увеличивает длину цепи полимера. Длина цепи (число циклов) в этом случае равна числу молекул мономера в молекуле полимера. Обрыв вещественных цепей приводит к завершению процесса образования макромолекул. Обрыв цепей может происходить в результате столкновения реагирующей цепи с радикалом, вследствие чего насыщаются свободные валентности. Столкновение радикалов может привести к обрыву цепи вследствие перехода атома водорода от одной реагирующей цепи к другой, в результате чего прекращается рост обеих молекул, так как у одной молекулы возникает двойная связь, а другая становится насыщенной. Обрыв цепи может произойти н после столкновения растущего"радикаЛа с молекулами растворителя, мономера или полимера, в результате чего насыщается свободная валентность данного радикала и образуется новый свободный радикал, начинающий новую цепь реакций. Этот процесс называется переносом цепи. Процесс переноса ц ти может приводить к разветвлению неЩёсЧЪённых цепей и [c.202]

    Современные воззрения на механизм действия антиокислителей в бензинах основываются на перекисной теории окисления с цепным механизмом. Процессы окисления углеводородов относят к цепным вырожденно-разветвленным реакциям. Общепринятая и наиболее обоснованная в настоящее время схема предполагает, что образовавшийся в начальной стадии окисления свободный углеводородный радикал R- вступает в реакцию с кислородом, образуя перекисный радикал ROO-, который, реагируя с новой молекулой углеводорода, дает гидроперекись и новый радикал. Разложение гидроперекиси приводит к разветвлению цепи, поэтому реакция носит автокатали-тический характер. Обрыв цепей в среде без антиокислителей происходит, главным образом, вследствие рекомбинации радикалов. [c.232]

    Существование резкого перехода от быстрого протекания окисления к очень медленному и соответственно критической концентрации ингибитора связано с рядом условий. Во-первых, практически все цепи должны обрываться на молекулах ингибитора прн изменении его концентрации в достаточно широком интервале. Во-вторых, обрыв цепей на ингибиторе должен быть линейным, а скорость цепного окисления — обратно пропорциональна концентрации ингибитора. Как отмечалось выше, это наблюдается, если радикалы ингибитора не принимают участия в продолжении цепи по реакциям с гидропероксидом и углеводородом, т. е. при этом должно выполняться неравенство (1пн+коон1-ЬИ(1п-нкн)<У . В-третьих, в периоде индукции ингибитор должен израсходоваться главным образом за счет радикалов, генерируемых гидропероксидом, т. е. должно выполняться [c.114]

    Общая картина процесса определяется соотношением скоростей поверхностных и объемных реакций и длиной цепи объемных реакций. Если Ра и vз — длина цепи в реакции 3 — мала, то реакция имеет чисто гетерогенно-каталитический характер. Наоборот, при р1 Рв и большом значении vз реакция практически протекает как цепная. По первому варианту, например, происходит окисление среднемолекулярных олефинов в окпсп, а по второму — окисление пропилена в растворе бензола при наличии окисных катализаторов. Когда > Р5, а значение Vз достаточно велико, реакция носит промежуточный гетерогенно-цепной характер. Наконец, когда рз Рг и р5, реакция инициируется на поверхности катализатора и продолжается в объеме, т. е. имеет гетерогенно-гомогенный характер. При чисто гетерогенно-каталитическом механизме скорость реакции в кинетической области пропорциональна концентрации катализатора при гетерогенно-гомогенном механизме в соответ-ствип с уравнением (2.52) скорость реакции будет пропорциональна корню квадратному пз концентрации катализатора. В ряде случаев твердый катализатор-инпциатор имеет и функцию ингибитора, ускоряя обрыв цепей. В этом случае скорость реакции вначале растет с повышением концентрации катализатора, а затем перестает [c.53]

    Для выяснения общих закономерностей течения цмшых химических реакций рассмотрим упрощенную модель реакции, схема которой показана на рис. 52. Здесь процесс O, как и раньше, обозначает гежфацию активных центров А, канал 1 — совокупность элементарных процессов, приводящих к образованию продукта реакции Сие активных центров А, и канал 2 — совокупность процессов, с которыми связана гибель активного центра, т. е. обрыв цепей. Для общности допускаем, что число е мозкет иметь любые значения е =1 отвечает простой цепной реакции. [c.202]

    Углеводородные топлива представляют собой смесь углеводородов. Детальное рассмотрение научных основ совместного окисления таких смесей показало, что процесс представляет собой цепную сопряженную автоинициированную (в отсутствие инициатора) реакцию окисления нескольких углеводородов, в которой несколько активных центров участвуют в целой совокупности реакций продолжения и обрыва цепей [66]. Если концентрация Оз достаточно велика для того, чтобы только пероксидные радикалы принимали участие в реакции обрыва цепей, то продолжение и обрыв цепей протекает соответственно по реакциям [66]  [c.68]

    ИоЕгнал полимеризация, как и радикальная, является цепным процессом. От радикальной ионная полимеризации отличается тем, что полимерная цепь, образующаяся в присутствии ионных катализаторов, не содержит свободных радикалов, а активные центры в ней образуются в результате присоединения катализатора к молекуле мономера, вследствие чего образуется малоустойчивый ион, к которому последовательно присоединяются молекулы мономера с одновременным перемещением заряда на крайнее звено растущей цепи. Таким образом, в этом случае рост цепи осуществляется под действием макроиона, а не макрорадикала, как это имеет место в радикальной полимеризации. Обрыв цепи макромолекулы при ионной полимеризации происходит в результате отщепления от макромолекулы катализатора, который, таким образом, не расходуется на образование макромолекулы. [c.373]

    Радикально-цепной процесс термического разложения, как любой цепной процесс, складывается из трех стадий инициирование цепи продолжение пепи обрыв цепи. [c.224]

    Бутильные радикалы далее распадаются по (З-иравилу, а образующиеся при этом мелкие радикглы снова реагируют с исходными молекулами. Развивается цепной процесс. Обрыв цепи происходит в результате реакций рекомбинации и диспропорциони-ровання. [c.228]

    Так как в радикально-цепном крекинге происходит обрыв цепей на стенках вообще, то вопрос о гетерогенном зарождении цепей в термическом крекинге приобретает принципиальное значение. Опираясь на положение о том, что некаталитические стенки не могут изменять состояние равновесия системы (так как в противном сл д1ае можно было бы осуществить вечный двигатель второго рода), было показано (98] что с процессом обрыва цепей на стенках непременно сопряжен процесс гетерогенного зарождения цепей на поверхности одновременно с рекомбинацией радикалов проис ходит и обратная реакция гетерогенной диссоциации продукта рекомбинации на радикалы. Таким образом, гетерогенное зарождение цепей и гетерогенный обрыв цепей тесно связаны, вопреки прежним представлениям о независимости этих процессов. Гетерогенное зарождение цепей было экспериментально доказано в ряде работ [99—102]. [c.47]

    Порядок процесса зависит от природы инициируюш,ей стадии 1 и стадии обрыва 4. Рассмотрим ряд случаев и покажем, что порядок процесса может изменяться от О до 2. Пусть а — радикал, ведущий цепь (а аналогичен R(2)), ар — радикал, который распадается при термическом превращении (Р аналогичен Ro)). Следует учесть (см. гл. И и III), что стадия зарождения цепи может быть мономолекулярной (или бимолекулярной) реакцией, а обрыв цепи — бимолекулярной (или тримолекулярной) реакцией. Влияние характера зарождения и обрыва цепи на порядок радикально-цепного процесса можно проследить на основе приведенных ниже данных  [c.72]


Смотреть страницы где упоминается термин Цепные обрыв цепи: [c.107]    [c.121]    [c.48]    [c.142]    [c.389]    [c.391]    [c.604]    [c.227]    [c.54]    [c.58]    [c.359]   
Кинетика и катализ (1963) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Обрыв цепи

Система кинетических уравнений радикально-цепного глубокого термического крекинга алканов с учетом обрыва цепей и реакций торможения их на молекулах продуктов

Цепные реакции обрыв цепи



© 2025 chem21.info Реклама на сайте