Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия в гелях, метод

    При помощи очень чувствительного метода определения гелия была обнаружена диффузия гелия из атмосферы сквозь стекло в вакуум при комнатной температуре. [c.261]

    О возможности использования молекулярных сит в газо-адсорбцион-ной хроматографии говорилось в разделе ПВ, роль диффузии в других хроматографических методах обсуждается в главе 15. Ионный обмен — тема раздела V этой главы. Следовательно, единственный основанный на диффузии аналитический метод, который следует обсудить в этом разделе,— это гель-фильтрация. [c.476]


    Скорость диффузии зависит также от природы газа. Наиболее легкие газы — водород и гелий — имеют максимальную скорость диффузии в воздухе. Высокий коэффициент диффузии гелия используется в совре-д енных методах отыскания течей вакуумных систем. Коэффициенты диффузии газов Оо при 0°С и 760 мм рт. ст. приведены в табл. 7. Ко-2  [c.22]

    Томасом [198] описан оригинальный и остроумный метод исследования реакций в твердом состоянии, когда два реагирующих вещества конденсируются чередующимися слоями на вращающемся криостате, а за ходом реакции можно следить при помощи спектроскопа. Регулируя скорость вращения, можно изменять толщину слоя реагирующего вещества от доли мономолекулярного слоя до нескольких мономолекулярных слоев, так что полученные результаты можно связать с зависимостью скорости процесса от диффузии. Этот метод был недавно использован [130] при изучении реакции алкилгалогенидов с натрием, причем было найдено, что при их взаимодействии з большом количестве возникают свободные радикалы при температуре жидкого гелия. [c.283]

    Первый способ (диффузия гелия через стенки кварцевого капилляра) требует сложных приспособлений, однако позволяет проводить очистку гелия, содержащего любые количества примесей второй метод [93] применим только для гелия высокой чистоты (99,999%), однако этим методом можно также очищать технический неон. [c.461]

    Правильный выбор сорбента и соответствующей элюирующей системы — это первый и наиболее важный этап решения поставленной задачи. Поэтому необходимо обстоятельно знать свойства всех типов используемых в ТСХ сорбентов. Выбрать оптимальную хроматографическую систему достаточно сложно, поскольку разделение методом ТСХ обычно совершается в результате сочетания различных механизмов, чаще всего адсорбции и распределения между фазами, а также ионного обмена или затрудненной диффузии (гель-хроматография). Однако, еслп условия выбраны правильно, один из механизмов разделения становится преобладающим. Если разделяемые соединения неполярны, следует создать условия, благоприятные для адсорбционной хроматографии (применение сорбента с большой адсорбционной способностью), а для разделения полярных (растворимых в воде) соединений следует использовать принципы, применяемые в жидко-жидкостной хроматографии. Наконец, при работе с ионогенными соединениями следует избрать методику ионообменной хроматографии. Очевидно, что налицо определенная аналогия с колоночной хроматографией. [c.97]


    Обычные методы позволяют достигнуть 10- "—10 мм рт. ст. Препятствием к дальнейшему снижению давления является диффузия гелия из воздуха сквозь стенку прибора. Само собой разумеется, что является оценочной величиной, не поддающейся прямому измерению. — Прим. ред. [c.131]

    В тех случаях, когда это возможно, вместо указанных методов применяют вымораживание жидким гелием. Отпаянная колба проектора погружается в криостат, и при заливании гелия в ней создается требуемый вакуум. Чтобы избежать диффузии гелия сквозь стеклянные стенки колбы, последняя перед наливанием жидкого гелия предварительно охлаждается в криостате до температуры жидкого азота либо для изготовления проекторов применяется специальное кальциевое стекло. Описание конструкций криостатов и методов работы с жидким гелием не входит в задачу настоящей статьи. Если колбы не содержат водорода, то [c.149]

    Скорость диффузии зависит также от природы газа. Наиболее легкие газы — водород и гелий — имеют максимальную скорость диффузий в воздух. Высокий коэффициент диффузии гелия используется в современных методах отыскания течей вакуумных систем. [c.30]

    Шмидт [177], пользуясь методом Максвелла-Лошмидта, производил измерения взаимной диффузии гелия и аргона. Его прибор состоял из вертикальной трубки, разделенной на две части рас-I положенным посредине краном. Вначале нижняя часть при закрытом кране заполняется более тяжелым газом, верхняя— [c.127]

    Перечисленные методы, разумеется, не исчерпывают всех возможностей, основанных на наблюдении свободно диффундирующей границы. Однако такие методы, как ячейка с мембраной Стокса [139] или система капиллярной трубки с открытым концом [140, 141], применяются преимущественно для изучения низкомолекулярных веществ. Несмотря на то что такие методы были использованы при изучении диффузии белков, нет оснований отдавать им предпочтение, по крайней мере до тех пор, пока на этой основе не будет разработан надежный метод, применимый к белкам, обладающий как высокой точностью, так и высокой чувствительностью. Коэффициент диффузии можно также определить но методу иммунодиффузии [142, 143]. Коэффициент диффузии в среде геля не совпадает с коэффициентом диффузии в свободном растворе, но при наличии стандартов с известными коэффициентами диффузии влияние геля может быть учтено [40]. Тем не менее иммунодиффузия не является достаточно точным методом определения коэффициента диффузии. Этот метод применяется главным образом для приблизительной оценки, которая может быть получена с его помощью нри чрезвычайно малом расходе вещества. Кроме того, метод позволяет оценить [c.62]

    Методы селективной диффузии через мембраны и капилляры используют высокую проникающую способность гелия. Методы выделения гелия с применением мембранной технологии менее энергоемки, особенно при небольшом содержании гелия. Для применения на практике мембраны должны обладать высокой абсолютной проницаемостью для гелия и высокой селективностью, быть химически и физически стабильными, обладать высокой прочностью и не иметь дефектов в виде микропор. Именно в этих направлениях проводятся широкие исследования для разработки и совершенствования мембранной технологии. В настоящее время за рубежом мембранные технологии нашли широкое применение. У нас эти процессы находятся в стадии опытных и опытно-промышленных испытаний. [c.159]

    Трансформация структуры ири прокаливании и обработке паром происходит из-за изменения размеров, формы и взаимного расположения первичных частиц в результате диффузии. Этот перенос может происходить как за счет поверхностной диффузии вещества геля в местах срастания первичных частиц, так и при испарении этого вещества в одном месте и конденсации в другом [136, 143, 144]. И, наконец, для создания заданной пористой структуры пригоден метод физико-химического модифицирования исходной жесткой структуры носителя под действием соединений ванадия [89— 94, 145—152]. [c.86]

    Проблема извлечения гелия сводится к отделению от гелия всех присутствующих компонентов. Традиционно в производстве гелия используются низкотемпературные (криогенные) методы низкотемпературные конденсация, ректификация и адсорбция. Часто в современные поточные схемы производства гелия включают блоки селективной диффузии через мембраны [4]. [c.159]

    Методом гель-хроматографии проводят два типа разделения групповое разделение и фракционирование. В первом случае компоненты смеси делят на две группы по их молекулярной массе. При фракционировании разделяют сложные смеси сходных соединений, различающихся по интенсивности их диффузии внутрь геля. Они элюируются последовательно в соответствии с их коэффициентами [c.361]


    Гель-электрофорез. Электрофорез на геле и крахмале применяют для аналитических целей. Наиболее важным применением гель-электрофореза является иммуноэлектрофорез. Для этого вида анализа используют макропористые гели, в частности гели агара и агарозы. Метод иммуноэлектрофореза основан на том, что после разделения электрофорезом происходит диффузия разделенных веществ — антигенов — в направлении, перпендикулярном направлению электрофореза. Навстречу этим соединениям диффундируют антитела. При соединении антигенов и антител образуются характерные дуги осаждения. Метод иммуноэлектрофореза очень чувствителен при обнаружении антигенов, специфических для данных антител. В настоящее время применяют метод введения радиоактивной метки в антигены, благодаря чему радиоиммуноэлектрофорез является одним из самых чувствительных методов анализа биополимеров. [c.364]

    Водород может быть отделен методом диффузии через накаленный палладий (гелий при этом не диффундирует). Полученный гелий обычно содержит-ничтожные примеси неона. [c.640]

    Гелиевый метод основан на тех же ядерных превращениях, что и свинцовый метод. Собирают гелий, накопившийся в минералах за геологический период. Данные возраста минералов, полученные гелиевым методом, обычно занижены из-за потерь гелия вследствие диффузии. Хорошая сохранность гелия наблюдается только у минералов с очень плотными кристаллическими упаковками. [c.416]

    Действие цинка на разбавленную серную кислоту — обычный метод получения Н в лаборатории. Водород — самый легкий из всех газов (0,09 г/л при н.у.). Поэтому он обладает большой скоростью диффузии и высокой теплопроводностью, что приводит к быстрому охлаждению горячих тел в атмосфере водорода. Водородом или смесью его с гелием наполняют аэростаты. Жидким водородом пользуются для получения низких температур. [c.313]

    Диффузия в студнях лежит в основе гель-фильтрации — эффективного метода разделения молекул по их размеру. Этот метод позволяет отделять от макромолекул не только ионы солей, но и молекулы с низкой молекулярной массой. С помощью гель-фильтрации можно отделить полисахариды от моносахаридов, белки от аминокислот и других низкомолекулярных соединений. [c.268]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]

    Методы селективной диффузии через мембраг ы и капилляры используют высокую пропикающую способность гелия. Методы выделения гелия с использованием мембранной технологии менее энергоемки, особенно при небольших содержаниях гелия. [c.206]

    С точностью, соответствующей современным методам, параметры диффузии гелия в бериллии определены в работе В. Н. Быкова с сотр. [83]. Для нахождения коэффициента диффузии здесь использовался масс-спектрометрический метод измерения скорости выхода гелия из пластины бериллия с равномерным расйределеннем гелия по объему в начальный момент. [c.35]

    Дьюары для сквид-систем должны быть достаточно прочными и в то же время легкими кроме того, к ним предъявляются строгие требования с точки зрения минимального и правильного использования магнитных и металлических деталей. Эти требования становятся еще более критичными, когда дело касается конструкций, находящихся вблизи приемных катущек магнитометра. В криогенных системах сквидов чаще всего используют неметаллические композиционные материалы из стеклянной, кварцевой или кевларовой ткани, пропитанной эпоксидной смолой. Но поскольку стеклопластик (композиционный материал из стеклоткани и эпоксидной смолы) парамагнитен, его не следует применять для изготовления каркасов измерительных катушек и сосудов для гелия. Иногда наружную оболочку дьюара и внутренний сосуд изготавливают, наматывая на болванку нить из стекла или синтетического волокна с одновременной пропиткой эпоксидной смолой. Более удобен и общепринят метод склейки дьюаров из стеклопластиковых пластин и труб с помощью эпоксидной смолы. Металлические детали делают из алюминиевых сплавов (6061), нержавеющей стали (321) и сплавов меди с никелем, бериллием или кремнием. Из этих материалов нержавеющая сталь обладает наименьшей теплопроводностью, но наибольшей остаточной намагниченностью. Поскольку эта сталь обладает также способностью сильно намагничиваться при сварке и пайке серебром, не рекомендуется помещать детали из нее в чувствительной зоне магнитометра вблизи сквида. Нержавеющую сталь часто используют для изготовления горловины дьюара, поскольку при этом существенно уменьшается поступление тепла и снимается проблема диффузии гелия в вакуумное пространство дьюара. Сплавы кремний - медь применяют при конструировании высокочастотных экранов и изготовлении сосудов для гелия там, где можно использовать зависимость электропроводности этих сплавов от состава. [c.174]

    Вайс и Хоутон подробно проанализировали и сопоставили между собой различные методы и корреляции, предложенные в литературе для расчета коэффициентов диффузии ряда газов и паров в воде. По их данным, расчет по формуле Уилки и Чанга дает заниженные на 30—60% значения коэффициентов диффузии. Однако Шриер указал на арифметическую ошибку в их расчетах и показал, что экспериментально найденные и вычисленные по формуле (1,32) значения О согласуются значительно лучше. В то же время действительные коэффициенты диффузии для водорода и гелия намного выше, чем показывают результаты расчета по формуле (1,32). [c.30]

    На рис. 2.6 представлены результаты экспериментальных исследований проницаемости чистых газов через пористое стекло Викор [17], а в табл. 2.2 приведены некоторые параметры, входящие в уравнение (2.66). Видно, что температурная зависимость комплекса АгУМгТ для газов, исключая водород и гелий, имеет четко выраженный минимум, который определяется противоположным воздействием температуры на газовую диффузию и поверхностное течение. Ниспадающая ветвь кривой соответствует области, где доминирует перенос в поверхностном слое. При высоких температурах преобладает влияние газовой диффузии и наблюдается рост величины ЛгУМгГ. Для гелия и водорода исследованная область температур находится выше минимального значения температуры, эффект поверхностного течения здесь невелик. Применение методов подобия позволило преобразовать уравнение (2.66) к безразмерному виду [18]  [c.62]

    Неокисленные битумы имеют более высокое содержание ароматических углеводородов, меньшее содержание парафино-нафтеновых углеводородов и асфальтенов. Неокисленные битумы и полимеры СБС имеют большое сродство и поэтому в большей степени совместимы. Это первая причина лучшей совместимости. Вторая - повышенное содержание асфальтенов в составе битумов приводит к стерическим затруднениям при совмещении, причем сами асфальтены в процессе растворения не участвуют, а более высокое содержание асфальтенов характерно как раз для окисленных битумов. И третье. Исследование коллоидной структуры битумов методом малоуглового рассеяния рентгеновских лучей показало, что в составе окисленных битумов содержится 30-31% мелких коллоидных частиц размером до 16 А и 69-70% крупных коллоидных образований с размерами до 440 А. Такой битум, представленный в основном грубодисперсными частицами, можно отнести к системам типа золь-гель . Неокисленный битум содержит 85-86% частиц с размерами 9-10 А и лишь 12-13% частиц с размерами до 405 А. Такую коллоидную систему можно отнести к типу золь . В мелкодисперсной системе заметно выше скорости диффузии растворителя в полимер, процессы набухания проходят быстрее, растворение более полное. [c.39]

    Особенно широко метод ЭПР используется для изучения природы и поведения парамагнитных центров в твердой фазе. В этих условиях, когда скорость реакции и диффузии может быть прене-брел<имо малой (эффект матричной изоляции ), удается стабилизировать на продолжительное время (минуты, часы) даже такие чрезвычайно реакционпоспособные частицы, как атом П, радикалы СНз, С2Н5 и др. Во многих случаях для эффективной стабилизации приходится понижать температуру до 77 К (жидкий азот) и даже-до 4,2 К (жидкий гелий). [c.250]

    Значение Ос, примененное для расчета данных табл. 4, было найдс1Ю в результате прямых измерений диффузии водорода в ка1 ализаторе, проведенных методом пористой перегородки ([1], стр. 189 метод б). Это значение использовано для сферических зерен алюмосиликатного катализатора крекинга в описанных ниже опытах. Катализатор был получен совместным осаждением гелей он содержал 10 вес.% АЬОз и имел удельную поверхность 350 ж /з. Эффективный коэффициент диффузии Нг в зернах этого катализатора при 27° С (Д,,) оказался равным 7-10 3 см 1сек. Значение эффективного коэффициента диффузии кумола Ос при температуре реакции было вычислено из коэффициента диффузии водорода по уравнению [c.324]

    За последние годы широкое применение для разделения высокомолекулярных веществ и определения их молекулярной массы нашел предложенный Л. Поратом и П. Флодином метод гель-фильтрации (гель-хроматографии). Гель-хроматография состоит в фильтровании исследуемого раствора через колонки, заполненные зернами набухающего трехмерного полимера (сефадекса). Набухшие зерна сефадекса представляют собой своеобразные клетки , внутрь которых могут проникнуть путем диффузии только молекулы (ионы) подходящего размера. Более крупные молекулы проходят с фильтрационным потоком мимо зерен сефадекса (рис, 10.8). Набор различных марок сефадексов с возрастающим размером клеток позволяет отделять низкомолекулярньк вещества от высокомолекулярных, разделять макромолекулы, изучать образование ассоциатов в макромолекулярныхрастворах. [c.299]

    Гель-хроматография является новым методом разделения. Бурное развитие метода началось в 1959 г. с получения первого декстранового геля> (Порас, Флодин). Поэтому теоретические вопросы разделения в гель-хроматографии находятся в стадии развития. Основные теоретические концепции этого метода — представление геля в виде геометрической модели, затруднение процессов диффузии и концепция распределения [16]. Существенное отличие метода гель-хроматографии от методов адсорбции и распределения заключается в том, что концентрация вещества в стационарной фазе никогда не превышает концентрацию вещества в подвижной фазе. Отклонения от этого правила могут происходить в случае взаимодействия между растворенным веществом и гелем. [c.351]

    Своеобразной разновидностью осадочной хроматографии является вариант этого метода, получивший название диффузионная осадочная хроматография [1501. Она от- личается от обычной осадочной хроматографии тем, что в ней основным механизмом массопереноса является диффузия, а не фильтрация раствора. Специфичность реакционной среды состоит в том, что она не допускает фильтрации раствора и конвективного перемешивания растворенного вещества. К таким средам относятся гели (студни), а также влагонасыщенный пористый материал и растворы в капиллярах. [c.196]

    Взаимодействие всех минералов, содержащихся в зерне цемента, с водой начинается мгновенно и одновременно, однако преобладает гидратация алюминатной и ферритной фаз и их взаимодействие с гипсом. По крайней мере часть образовавшихся продуктов гидратации откладывается на поверхности клинкерных зерен. Оболочки из сульфоалюмината кальция, который образуется на глиноземсодержащих участках поверхности, и гидраты силикатов кальция первоначально состоят из частиц коллоидных размеров и замедляют дальнейшую гидратацию. Позднее гель, окружающий частицы, становится все более гомогенным. Гидратация силикатов в цементе первоначально замедляется защитными оболочками сильнее, чем алюминатов, однако спустя несколько часов образование гидросиликатов резко усиливается и обеспечивает схватывание и твердение цемента. Дальнейшая гидратация регулируется диффузией. Относительно вклада индивидуальных гидратных фаз в структурномеханические характеристики развивающейся в цементном тесте структуры до сих пор известно немного, прежде всего потому, что отсутствуют комплексные исследования гидратации и кинетики формирования структуры в суспензии, состоящей из взвешенных частиц цемента в воде и постепенно переходящей из пластичного в полутвердое состояние. Особенно скудны сведения о раннем периоде структурообразования, в течение которого большинство исследователей не уловило заметных изменений структурно-механических свойств дисперсии вплоть до наступления схватывания цементного теста. Это подробно обсуждалось в предыдущей главе. Применение ультразвуковых методов исследования также не позволило вы- [c.104]


Смотреть страницы где упоминается термин Диффузия в гелях, метод: [c.137]    [c.479]    [c.228]    [c.253]    [c.61]    [c.320]    [c.241]    [c.146]    [c.85]    [c.136]    [c.239]   
Антитела Методы Т.1 (1991) -- [ c.197 , c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Метод диффузии



© 2025 chem21.info Реклама на сайте