Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтальпия конденсации

    При конденсации перегретого пара необходимо учитывать теплоту перегрева Д/пер = /т — = Ср Т — Та), где /т — удельная энтальпия перегретого пара, соответствующая температуре перегрева Г /н —удельная энтальпия пара при температуре насыщения Гн Ср — удельная теплоемкость пара при постоянном давлении. [c.145]

    Энтальпию испарения (конденсации) можно определить, вычитая энтальпию насыщенной жидкости из энтальпии насыщенного пара. [c.45]


    После повторения этих расчетов при каждой температуре получим зависимость энтальпии смеси от температуры и эту информацию представим в обратной форме (зависимость температуры от энтальпии) для кривой конденсации. [c.352]

    Энтальпия растворения включает энтальпию адсорбции АЯг и энтальпию смешения АЯг . Величину АЯг обычно оценивают энтальпией конденсации чистого газа при использовании квазикристаллических моделей жидкости получено [1, 3] соотношение [c.74]

    На таких диаграммах можно легко проследить ход тех изменений, которым подвергается вещество (испарение, конденсация, сжатие, расширение, охлаждение, изменения адиабатические, изотермические, изоэнтальпные и другие). Для любой точки линии изменения можно быстро найти на диаграмме параметры, характеризующие состояние вещества (энтропию, энтальпию, давление, объем, температуру). В работе, связанной с развитием технологического метода, когда обязателен, например, выбор оптимального варианта процесса, проходящего при рассмотренных нами изменениях системы, энтропийные диаграммы незаменимы. Кроме того, следует помнить, что, особенно в областях низких температур и высоких давлений, поведение реальных газов резко отличается от поведения идеального газа, и расчеты по рассмотренным выше уравнениям требуют внесения поправок, трудно поддающихся вычислению, а иногда и не очень точных. Проведение расчетов с использованием энтропийных диаграмм, составленных по экспериментальным данным, обеспечивает получение значительно более точных результатов в короткое время. [c.142]

    При расчетах циклов, совершаемых в паровых холодильных и тепловых машинах, в которых происходит фазовое превращение рабочего вещества (кипение и конденсация), часто необходимо знать энтальпию и энтропию з насыщенной жидкости. Они могут быть определены из очевидных соотношений  [c.53]

    В отличие от АЯ п и AS . , которые мало зависят от температуры, AG° очень сильно зависит от температуры, Т, которая явно входит в соотношение (18-1). Если ради простоты предположить, что изменения энтальпии и энтропии постоянны, то можно графически представить зависимость AG от ДЯ и AS, как это сделано на рис. 18-3 на примере Н2О. При высоких температурах произведение 7AS° больше, чем АЯ°, свободная энергия испарения отрицательна и испарение воды при парциальном давлении водяных паров 1 атм должно происходить самопроизвольно. При низких температурах АЯ° больше, чем TAS°, так что AG° положительно, и самопроизвольно осуществляется конденсация водяных паров. При некоторой промежуточной температуре энтальпийный и энтропийный эффекты в точности компенсируют друг друга, AG° становится равным нулю и жидкая вода находится в равновесии с парами воды при парциальном давлении 1 атм. Такое состояние отвечает нормальной температуре кипения жидкости, (температура кипения на уровне моря). Для воды эта температура равна 100°С, или 373,15 К. При более низком атмосферном давлении (на большой высоте над поверхностью моря) вода кипит при температуре ниже 100°С. [c.124]


    Теперь можно найти тепловые нагрузки дефлегматора и кипятильника, рассчитав энтальпии исходной смеси и кубового остатка (энтальпия дистиллята при полной конденсации паров в дефлегматоре равна энтальпии флегмы). После этих предварительных вычислений проводится последовательный расчет составов, расходов, температур и энтальпий фаз для всех ступеней. [c.59]

    Энергия активации диффузии всегда положительна ( >0), энтальпия растворения в общем случае-может иметь различный знак (АЯг<= 0) в зависимости от соотношения ее слагаемых и ДЯ . Энтальпия адсорбции всегда отрицательна (ДЯ <0) и в первом приближении равна энтальпии конденсации чистого газа. При растворении газов и паров в полимерах энтальпия смешения ДЯг О, а ее абсолютное значение невелико. [c.86]

    Переход к ДЯ (МХг) из атомов, показанный на рис. 235 и 236, приводит опять к экстремальному значению для галидов магния (подобно натрию) и по той же самой причине. Налагая энтальпии конденсации, получаем кривые для ДЯ (МХг) из атомов и, наконец, учитывая энергии атомизации простых тел,— кривые для ДЯ [МХг из простых тел (рис. 237). [c.251]

    Как следует из табл. 1, растворение хлористого водорода в тетра-хлоридах кремния и германия является экзотермическим процессом. Значение парциальной мольной энтальпии растворений близко к значению энтальпии конденсации чистого хлористого водорода, равному— 10,9 кДж/моль [6]. Величина растворимости слабо зависит от природы изучаемого хлорида. [c.53]

    По составу Хь и энтальпии сырья на тепловую диаграмму наносится точка Ь х , кь). Рассмотрим случай работы полной колонны, когда ее верхние пары подвергаются полной конденсации при эвтектической температуре а после расслоения в декантаторе каждая жидкая фаза подается на верх соответствующей колонны. Более общим случаем является охлаждение общего конденсата до несколько более низкой температуры чем tg, однако методика расчета и его последовательность сохраняются неизменными. [c.277]

    Этой энтальпии отвечает температура перегретого парового сырья tj = = 178 -С, тогда как энтальпия насыщенного парового сырья при температуре начала конденсации 133 -С составляет 66 528 кДж/кмоль. [c.379]

    Теплоемкость идеальных газов Ср является функцией только температуры и не зависит от давления. Теплоемкость реальных газов, в частности нефтепродуктов, с повышением давления возрастает. Энтальпия паров нефтепродуктов с повышением давления, наоборот, понижается, так как при этом снижается скрытая теплота испарения (конденсации) г, т. е.  [c.60]

    Энтальпию испарения (конденсации) можно определить, вычитая энтальпию насьпценной жидкости из энтальпии насыщенного пара. Изменение энтальпии индивидуальных углеводородов в процессе фазового перехода можно определить с помощью уравнения Клаузиуса—Клайперона  [c.109]

    Максимальная тепловая нагрузка на конденсатор приходится на период В цикла регенерации. Скрытую теплоту испарения (конденсации) воды и углеводородов можно определить по таблицам энтальпии водяного пара и с помош,ью рис. 60, 61. Зная продолжительность периода В и полагая, что вся вода и углеводороды десорбируются именно па протяжении этого периода, можно определить максимальную удельную тепловую нагрузку конденсатора. К полученной величине необходимо добавить также довольно значительную величину тепловой нагрузки от самого потока газа. Нормальная величина температурного приближения при охлаждении окружающим воздухом составляет 16,7° С, при. водяном охлаждении — около 8° С. [c.255]

    Определяют количество жидкости, перемещающейся вдоль поверхности конденсации в каждом расчетном сечении (по каждому компоненту конденсирующегося пара в отдельности), рассчитывают разность энтальпий жидких компонентов на границах расчетных участков, после чего вычисляют тепловой поток при охлаждении жидкости  [c.203]

    Изменение энтальпии жидкости на расчетном участке поверхности конденсации [c.209]

    Уменьшение энтальпии называется теплотой адсорбции. Теплота физической адсорбции соизмерима с теплотой конденсации и составляет для простых молекул 1—5 и для больших молекул 10—20 ккал/моль [69]. Теплота хемосорбции составляет 10— 100 ккал/моль. [c.38]

    Температура охлаждающей среды может быть постоянной, если теплообмен происходит при конденсации или кипении охлаждающей жидкости в остальных случаях она изменяется по длине реактора. Изменение энтальпии хладоагента равно теплоотводу от реакционной среды. [c.38]

    Конденсация смеси паров также приводит к явлениям, описанным выше. Например, характер кривых равновесий конденсации свидетельствует о том, что при энтальпии смеси возникает падение температуры равновесной конденсации, потому что температура конденсации остающегося пара понижается, когда менее летучие пары конденсируются. Кроме того, более летучие компоненты накапливаются на границе раздела, образуя тем самым слой, через который менее летучие компоненты должны диффундировать. Методы предсказания этих эффектов обсуждаются в п. О для бинарных смесей паров и в п. Е для более сложных систем. [c.350]


    В. Приближенный общий метод. Построение кривых конденсации. Первый шаг метода — получение кривой равновесной конденсации. Существуют различные методы построения кривой один из них — построение кривой температура равновесной конденсации — удельная энтальпия двухфазной смеси Такая кривая для однокомпонентного пара, конденсирующегося при наличии неконденсирующегося газа, показана на рис, 1, другие слу- [c.350]

    Процесс сублимации должен осуществляться таким образом, чтобы при этом поддерживалось термодинамическое равновесие. Подача электрической энергии и отведение пара должны быть сбалансированы так, чтобы калориметр все время находился приблизительно при постоянной температуре. Если сублимация идет очень быстро, то температура поверхности твердого вещества будет ниже температуры калориметра и пар, выходящий из калориметра, будет сравнительно холодным. Происходящее при выходе пара из калориметра джоуль-томсоновское охлаждение, обусловленное перепадом давления между калориметром и приемником конденсированной фазы с коммуникациями, должно быть устранено. Система должна действовать таким образом, чтобы в ней не было никакого мертвого пространства. объем, первоначально занимаемый твердым образцом, в конце процесса не должен заполняться паром, и не должно происходить никаких изменений температуры образца. Проблемы, связанные с определением энтальпий исларения, продолжают оставаться нерешенными й при определении энтальпий сублимации [423, 424, 497, 498]. Результатов непосредственных измерений (если они вообще проводились) энтальпий сублимации органических кристаллов опубликовано сравнительно мало. Эйкен и Донат [179] описали адиабатический анероидный калориметр для определения энтальпий конденсации паров до кристаллического состояния, по которым они рассчитывали А58. Вадзё [764] описал новый калориметр, основанный на транспирационном принципе, потенциально пригодный для непосредственного измерения энтальпий испарения твердых малолетучих веществ. [c.36]

    Линия ЯцДд, зависящая от мольной доли паровой фазы, определяет мольные энтальпии паров, находящихся при температуре начала конденсации, а линия llJla — мольные энтальпии жидких смесей, находящихся при точках начала кипения. Если составы фаз выражаются не в мольных, а в массовых долях, то энтальпия будет выражаться в кДж/кг. Прямые вида Ъс, соединяющие фигуративные точки двух равновесных фаз на энтальпийной диаграмме, называются конодами. [c.59]

    Однократная перегонка бинарных смесей с монотонными кривыми равновесия. Для вывода количественных соотношений, описывающих ход процесса однократной перегонки, достаточно исходить из следующей схемы. Дана исходная система из L кмолей раствора с начальным составом и энтальпией На, кДж/кмоль. Система может быть жидкой или паровой, однофазной или двухфазной, недогретой до точки начала кипения или перегретой выше точки начала конденсации. Если вместо энтальпии Но задана ее температура Iq, то должно быть известно, какая часть системы находится в жидкой и какая в паровой фазе, чтобы можно было рассчитать энтальпию сырья. Во всяком случае считается, что состояние исходной системы полностью определено. Требуется выяснить, как оно изменится, если системе будет передано или у нее отнято определенное количество теила Q, кДж/ч. [c.65]

    Парокомпрессионные холодильные машины (ПХМ) могут работать с влажным ходом или сухим ходом компрессора. В первом случае компрессор всасывает влажный пар хладагента и сжимает его по адиабате (изоэнтропе) /—2 до состояния насыщения, далее следует конденсация пара по изотерме 2—3, латем переохлаждение жидкости 3 —3, дросселирование по изо-энтальпе 3—4 и испарение по изотерме 4—1 (см. рис. 42, б). [c.126]

    Из равновесных данных интерполяцией находим температуру конденсации пара этого составг 59,2 °С. Определив теплоту смешения (268 кДж/кмоль) и теплоемкость (126,5 кДж/(кмоль-К) ] раствора, содержащего 0,8653 мол. доли ацетона, а также теплоты испарения ацетона (30 OSO кДж/кмоль) и воды (42 580 кДж кмоль) при 59,2 °С, вычисляем энтальпию пара, поступающего на первую ступень  [c.60]

    Полученные авторами [142-144] экспериментшьные данные по энтальпии различных нефтепродуктов представляют практическую ценность, так как получены они с достаточно высокой точностью. Экспериментальных данных по энтальпии отечеств( нных неф1епродуктов практически нет. Имеется лишь небольшой объйм экспериментальных исследований теплоёмкости [4.5,19,101] и теплот конденсации узких фрак ций [72], выделенных из мангышлакской, самотлорско нефтей. [c.93]

    Уравнение (111.60) позволяет найти состав пара, уходящего с верха колонны, и состав флегмы. По составу пара можно найти температуру его конденсации ij. При этой температуре будет выходить пар с первой ступени. Температуру флегмы можно принять равной (если пренебречь ее переохлаждением в дефлегматоре). Знание температур и составов пара, поступающего в дефлегматор, и флегмы дает возможность определить их энтальпии Д и д. Расходы пара Gi и флегмы Lq определяются флегмовым числом  [c.59]

    Аналогично находим температ ру (99,3 °С) и энтальпию кубового остатка (1 р = 5610 кДж кмоль). Для определения энтальпий дистиллята и пара, по1 тупающего в дефлегматор с верхней тарелки, путем интерпол щии находим температуру конденсации пара, содержащего 0,9 иол. доли ацетона (58,2 °С), теплоту смешения при этой концентрации (230 кДж/кмоль), теплоемкость раствора [127 кДж (к оль-К)], а также теплоты испарения ацетона (30 100 кДж/кмоль) и воды (42 600 кДж/кмоль) при 58,2 °С. В результате получим  [c.60]

    Находим энтальпию жидкости, зыходящей с первой ступени (ее температура равна температуре конденсации равновесного пара)  [c.60]

    Изменение энтальпии А// может быть найдено не только для химических реакций, но и для других процессов, в частности для фазовых переходов. Фаза — однородная, т. е. имеющая одинако вые свойства во всех своих точках, часть системы, отделенная от других частей поверхностями раздела. Например, в растворе с осадком одного соединения имеются две фазы твердая — осадок н жидкая — раствор. Понятие фазы пе следуст смешивать с поня-тнем о веществе. В приведенном примере раствор может состоять из многнх веществ, ио это одна фаза. Фазовыми переходами называют превращения одной фaз ы в другую. К фазовым переходам относятся такие процессы, как плавление, испарение, возгонка и обратные процессы — затвердевание, конденсация, сублимация, а также переход кристаллического вещества в другую форму. [c.164]

    В зависимости от типа процесса изменениям энтальпии присваивают название теплоты образования, теплоты сгорания, теплового эффекта химической реакции, энергии связи, высшей или низшей теплоты сгорания, теплоты фазового перехода. Высшей теплотой сгорания называют теплоту, выделяемую при полном сжигании вещества и конденсации водяного пара, образующегося при сжигании углеводорода, при достижении исходной температуры. Если при сжигании углеводородов водяной пар не конденсируется по достижении исходной температуры, то выде- [c.65]

    Второй вид энергии отражается членом Qp=T S, который определяет ту часть энтальпии, которая в изотермическом процессе не может быть превращена в работу, а переходит только в теплоту, рассеивающуюся во внешнюю среду. Поэтому величину Qp=T S называют связанной энергией или обесцененной энергией. В тепловых машинах связанной энергией является энергия межмолекулярного взаимодействия частиц рабочего тела (водяной пар). Теплота экзотермических процессов (конденсация или реакции синтеза) также может явиться примером связанной энергии. Это броунова часть энергии Н. [c.121]

    В случае полной конденсации 1 кг перегретого пара отдает охлаждающей поверхности теплоту Гпер = + А/ ер = /т — Кс. н-Здесь /кс. н — удельная энтальпия конденсата при температуре насыщения. [c.145]

    Общий вид энтальпийной диаграммы представлен на рис. Х1П-7. Верхняя кривая дает зависимость энтальпии паров от их состава, а нижняя — энтальпии жидкости от ее состава. Равновесные составы и 1/1 на энтальпийной диаграмме, отвечающие температуре системы представлены точками и А , а прямая А А- , соединяющая эти точки, называется конодой. На графиках изотерм коноды располагаются горизонтально, а на энтальпийной диаграмме — наклонно под разными углами к оси абсцисс. Поэтому для удобства построений энтальпийную диаграмму обычно совмещают с графиком изобарных температурных кривых. Вертикальный отрезок между кривыми энтальпий паровой и жидкой фаз равен У— Г, т. е. скрытой теплоте испарения (конденсации). [c.241]


Смотреть страницы где упоминается термин Энтальпия конденсации: [c.176]    [c.303]    [c.303]    [c.317]    [c.171]    [c.55]    [c.56]    [c.142]    [c.263]    [c.185]    [c.233]    [c.337]    [c.70]    [c.248]    [c.614]   
Введение в мембранную технологию (1999) -- [ c.419 ]




ПОИСК







© 2025 chem21.info Реклама на сайте