Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Информация аналитическая

    Проба. Информацию аналитического характера химик в общем случае получает из количественно ограниченной пробы. [c.9]

    В книге дан обзор направлений практического использования природных и синтетических производных 9,10-антрахинона как красителей, пигментов, люминофоров, абсорберов для светофильтров, катализаторов и ингибиторов химических и фотохимических реакций, химикатов для регистрации, отображения и хранения информации, аналитических реагентов и индикаторов, лекарственных и биологически активных веществ и др. [c.2]


    Исследование радиационной химии ароматических углеводородов совпадает, с одной стороны, с появлением чувствительных и богатых информацией аналитических методов, например газовой хроматографии, масс-спектрометрии, ЭПР и кинетической спектроскопии, и, с другой — с лучшим пониманием механизмов гемолитических реакций и реакций передачи энергии. Возможности анализировать продукты реакции с достаточной точностью, даже если реакция прошла на незначительную глубину, и сравнивать результаты с данными, относящимися к реакциям с изученной кинетикой, характеризуют прогресс в этой области за последние годы. Действие излучения высокой энергии вызывает, однако, большое разнообразие физических и химических процессов, пока еще трудно объяснимых. Поэтому необходимо периодически повторять обзоры большого числа экспериментальных результатов. [c.68]

    С целью наиболее полной информации аналитической общественности и оценки правильности выбора реактивов, намеченных к включению в рациональный ассортимент, последний частично уже был опубликован от имени ИРЕА в журнале Заводская лаборатория [13]. С той же целью приводим по элементам перечень всех выбранных реактивов. Таким образом, списки реактивов на каждый элемент могут быть критически рассмотрены всеми заинтересованными организациями и специалистами-аналитиками, а их предложения и замечания в дальнейшем учтены. [c.147]

    Основными функциями распределенной информационно-аналитической базы данных являются сбор, регистрация, передача и систематизация, хранение и защита информации, аналитические расчеты, выработка технологических рекомендаций. [c.85]

    В случае отсутствия интересующей нас информации в справочной и научной литературе, её получают экспериментально-аналитическим методом. Экспериментальное определение коэффициентов и других параметров уравнения является трудоемкой и кропотливой работой. Реальная возможность определения численных значений тех или иных параметров всегда должна учитываться при составлении структурной схемы объекта и принятии системы допущений. [c.14]

    Обобщенные зависимости по величинам и и нас при различных условиях р и Т могут оказаться вполне достаточными для получения полной информации по рУТ — соотношениям изучаемой нефти, если правильно использовать численные и графо-аналитические методы и приемы определения констант пластовой жидкости, кратко рассмотренные в этой главе. [c.28]


    С момента, как началась добыча нефти и стали проводиться ее исследования, появились и классификации нефтей (разделение их на группы, классы, типы). Нефти классифицировались в соответствии с уровнем аналитических исследований, со спецификой применяемых тем или иным автором методик исследования нефтей и с имеющейся к определенному отрезку времени информации об их составе. [c.12]

    Развитие аналитической химии позволило получить информацию об углеводородном составе нефтей, что повлекло за собой разработку новых классификационных систем. [c.14]

    Трудности описания свойств жидкостей в рамках микроскопического подхода известны [335]. В первую очередь, они связаны с тем обстоятельством, что, несмотря на сильные межмолекулярные взаимодействия, для жидкостей характерна только локальная пространственная упорядоченность. Кроме того, развитые в статистической теории жидкостей аналитические методы не всегда позволяют из-за математических трудностей рассмотреть свойства жидкостей, потенциал межмолекулярного взаимодействия которых анизотропен. Поэтому наиболее прямым путем получения информации о свойствах водных систем в рамках статистической физики является вычислительный эксперимент. Рассмотрим его основные положения. Среднее значение некоторой величины А, которая характеризует состояние системы из частиц, определяется следующим образом  [c.118]

    Отметим частный вариант анализа, основной конечной целью которого является получение аналитических аппроксимаций (представлен блоками 4—7, 11, 13, 14 и связями 4 —6, 24, 22, 12, 15, 17 ). Этот вариант в сущности есть исторически основное направление исследований в химической кинетике, которое возникло как результат наиболее полного использования физической и кинетической информации при недостаточно разработанных для своего времени математических и вычислительных аспектах проблемы и отсутствия соответствующей машинной техники. Обычное допущение здесь — пренебрежение нелинейными стадиями, что И позволяет сократить размерность матрицы (3.2). Наиболее завершенный вариант этого анализа реализуется тогда, когда в системе (3.2) выявлено такое количество 1 , что условие Ы = = N — I — /доп редуцируется к виду Л = 1 (известное одноцентровое приближение). [c.111]

    Рассмотрим теперь, какую информацию мы бы хотели или могли бы получить в ходе решения ОКЗ [30], зная, что оценить параметры мы не можем. Во-первых, мы бы хотели из множества решений системы (3.141) найти решение, наилучшим образом описывающее экспериментальные данные, что позволит проверить гипотезу об адекватности предложенной модели. Во-вторых, установить вид укороченной системы, т. е. по каким веществам возможно применение принципа квазистационарных концентраций. В-третьих, получить максимально возможную информацию о кинетических параметрах. Очевидно, что если алгебраическая часть системы разрешима аналитически относительно концентраций веществ, по которым применим принцип квазистационарности, то такая информация будет представлена в виде соотношений кинетических параметров. В противном случае вопрос о представлении этой информации остается открытым. В-четвертых, выяснить, какими стадиями на интервале измерения можно пренебречь [c.205]

    Особенности кинетических моделей (нелинейная параметризация, незнание хорошего начального приближения, невозможность получения аналитического выражения для оценки 0 даже в достаточно простых случаях и т. д. и т. п,) приводят к необходимости разработки специальной стратегии получения значений 0 такой, которая, сохраняя все перечисленные свойства оценки, была бы при этом разумно экономной и учитывала специфику конкретной задачи. Как правило, оптимальный метод являет собой итеративную процедуру, требующую больших затрат времени ЭВМ, и за компромисс приходится платить потерей информации либо эффективности. Существуют три подхода к решению этого вопроса. [c.207]

    Интеллектуальные системы аналитических преобразований (САП). В математическом обеспечении ЭВМ в последние годы все чаще присутствуют системы аналитических преобразований (САП). Они предназначены для облегчения программирования п решения задач, связанных с преобразованием математических выражений. Автоматизированное выполнение аналитических преобразований при помощи ЭВМ стало возможным благодаря развитию методов обработки символьной информации и искусственного интеллекта соответствующих языков программирования методов трансляции и организации памяти разработке вычисленных алгоритмов [62] и т. п. Под аналитическим преобразованием понимаем формальное преобразование математического выражения, заданного в символьном виде, по определенным правилам. Наиболее часто встречающимися операциями аналитического преобразования являются дифференцирование и интегрирование функциональных выражений подстановка вместо переменных констант и выражений упрощение выражений (свертка констант, приведение подобных членов в многочленах и т. п.) разрешение уравнений относительно заданных переменных действия над матрицами, элементами которых являются символьные выражения вынолнение алгебраических действий (сложение, вычитание, умножение, деление) над арифметическими выражениями и т. п. [c.248]


    Так-называемый я-тест можно применять к различной частоте и таким образом получать информацию о том, существует ли эффективное управление с заданной частотой. Следовательно, я-критерий позволяет установить эффективный сдвиг фаз между компонентами управления. На основе данного метода был предложен подход [66], использование которого иногда дает возможность получить аналитическое выражение для оценки соответствующей величины улучшения целевой функции для различных типов периодического управления. [c.291]

    Расчет мембранного модуля можно свести к интегрированию системы уравнений (4.18), (4.21) и (4.29) с граничными условиями (4.5) и (4.6), если известны закономерности изменения коэффициента трения и диффузионного числа Стентона от основных параметров, характеризующих течение в канале. Источником такой информации могут быть аналитические решения и опытные данные, представленные в обобщенной форме, например, в виде относительных законов (4.9). [c.127]

    Источниками информации о наде -кности могут быть статистические данные но эксплуатации, аналитические расчеты, результаты ускоренных испытаний. Ускоренные испытания крупногабаритных аппаратов требуют больших затрат и позволяют получить очень приближенные показатели надежности, поэтому для определения надежности крупных аппаратов ускоренные испытания не применяются. Аналитические методы при использовании приближенных и усредненных значений различных коэффициентов также не позволяют получить достоверные данные о надежности. Наиболее точные данные удается получить при статистическом анализе эксплуатационных показателей оборудования. [c.55]

    Таким образом, один из принципов системного изучения функционирующей печей — соединение анализа и синтеза составляющих ее элементов и их взаимодействий. Без предварительного и полного аналитического изучения отдельно каждого элемента и процесса невозможно получить подробную информацию, необходимую для разработки печной системы и конструкции печи. [c.8]

    Спектры, получаемые методом фрагментной (осколочной) МС низкого разрешения, дают больше информации, но требуют выполнения более сложной расчетной процедуры. Для определения этим методом группового состава смеси используют не интенсивности отдельных пиков, а" суммы интенсивностей, относящихся к каждому данному ряду аналитических пиков ионов с массами В + 14р), где В — масса нижнего члена ряда, р = 0,1, 2,3 и т. д. (характеристические суммы). [c.37]

    Приложение к блок-схеме служит для полного словесного и аналитического разъяснения содержания переработки информации в каждом блоке, имеющем свой порядковый номер в блок-схеме. Приложение к блок-схеме включает в себя название и описание каждого блока блок-схемы. [c.328]

    Количественную информацию об эффективности функционирования и о характеристических свойствах ХТС можно получить либо экспериментально в условиях эксплуатации системы, либо расчет ным путем, используя методы анализа ХТС, если имеется математическая модель системы. Для наглядного аналитического представления многомерные массивы этой количественной информации о состоянии ХТС в различные моменты врем бни и при различных условиях должны быть сведены к ограниченному числу некоторых обобщенных оценок эффективности функционирования и характеристических свойств ХТС. Указанные обобщенные оценки представляют собой числовые функциональные характеристики ХТС. [c.29]

    Для разработки проекта АСУ необходимо решать задачи, связанные с анализом процессов функционирования сложного электронного оборудования оценкой структуры информационных потоков и законов управления процессами функционирования ХТС задачи синтеза алгоритмов обработки информации и оптимального планирования задачи синтеза счетно-решающих устройств, реализующих эти алгоритмы. Аналитические методы расчета сложных АСУ в настоящее время еще яе разработаны, а экспериментальное решение этих вопросов практически нецелесообразно. [c.51]

    При построении зависимости свойств от состава для многофазной системы необходимо учитывать априорную информацию о строении изучаемой системы. Поверхность ликвидуса в системе эвтектического типа представляет собой три пересекающиеся поверхности первичной кристаллизации каждой фазы. Предлагается [38] аналитически описать каждую из этих поверхностей, применяя симплекс-решетчатые планы, затем найти линии их пересечения и точку пересечения этих линий. Поверхности первичной кристаллизации молено выделить при помощи вспомогательного треугольника, вершинами которого служат точки двойных эвтектик двойных диаграмм (рис. 51, в). Образовавшиеся новые треугольники I, П и П1 рассматриваются как исходные. Для рассматриваемой системы РЬ—Сс1—В1 внутри каждого треугольника был реализован неполно кубический симплекс-решетчатый план (табл. 68). [c.268]

    Технологический цикл аппарата, агрегата или системы — это последовательность операций от начала выпуска произвольной А -й партии продукта до начала выпуска его следующей партии +1. Цикл может иметь либо линейную структуру (простую последовательность операций), либо разветвленную (например, время окончания реакции зависит от результатов аналитического контроля). Расписание работы оборудования периодического действия принято изображать в виде временных графиков (рис. 9.1). Каждому аппарату схемы соответствует прямая линия, а стадия технологического процесса представляется отрезком прямой, длина которого соответствует продолжительности стадии. Отрезки располагаются по соответствующим прямым, а их взаимное расположение при фиксированном начале отсчета обеспечивает необходимую информацию о развитии процесса во времени. [c.521]

    Специфической особенностью методов решения оптимальных задач (за исключением методов нелинейного програмкшрования) является то, что до некоторого этана оптимальную задачу решают аналитически, т. е. находят определенные аналитические выражения, например, системы конечных или дифференциальных уравнений, откуда уже отыскивают оптимальное решение. В отличие от указанных методов при использовании методов нелинейного программирования, которые, как отмечалось выше, могут быть названы прямыми, применяют информацию, получаемую при вычислении критерия оптимальности, изменение величины которого служит оценкой эффективности того или иного действия. [c.34]

    Внесение заряженной частицы в кластер из молекул воды приводит, естественно, к резкой перестройке их структуры. Взаимное расположение молекул вокруг иона определяется, в основном, их ориентацией в поле иона. Как и в случае кластеров, состоящих только из молекул воды, термодинамика кластеров, содержащих ионы, достаточно подробно изучена экспериментально масс-спектрометрическими методами [407, 408]. Однака эти методы не могут дать информацию о структуре. Мало полезны для выяснения структуры и квантовохимические методы [308, 409], поскольку расчеты проводятся для кластеров, структура которых постулируется а priori. Но, разумеется, значение квантовохимических расчетов огромно. Вез них, в частности, было бы невозможно разработать систему реалистических потенциалов, описывающих взаимодействие ионов с молекулами воды. Необходимо, однако, отметить, что, согласно квантовохимическим расчетам, равновесные расстояния ион — атом кислорода воды приблизительно на 20 пм короче наиболее вероятных расстояний в соответствующих кристаллогидратах. Подробное рассмотрение этого вопроса [386] вынудило нас ввести в аналитические потенциальные функции, аппроксимирующие результаты квантовохимических расчетов, поправки, обеспечивающие согласие расстояний ион — атом кислорода, получаемых в процессе численных экспериментов, с кристаллохимическими данными. Авторами работ по моделированию кластеров, состоящих из ионов и молекул воды, подобные поправки не вносились [410—412]. [c.145]

    Элементный анализ сам по себе еще не позволяет установить правильную молекулярную формулу соединения. Например, с результатами вычислений в примере 4 согласуется формула метана-СН4, но те же аналитические результаты могли бы согласоваться с молекулярными формулами С Ня, СзН,2 или С4Н, , если бы подобные молекулы существовали. Вещество в примере 5 может быть водой, Н2О, но могло бы иметь формулу Н4О2 или еще более сложную, но кратную Н2О. Если вы заключили, что правильными формулами, имеющими химический смысл, являются только СН4 и Н2О, как это и есть на самом деле, то это означает, что вы прибегли к дополнительной химической информации, которая еще не содержится в аналитических данных. Большинство химиков предположили бы, что вещество, рассматриваемое в примере 6, представляет собой бензол, С Н . Но это мог быть и ацетилен, С2Н2 (если не считаться с тем фактом, что ацетилен при комнатной температуре является газом, а о неизвестном углеводороде сказано, что это распространенный лабораторный растворитель, что исключает ацетилен из рассмотрения) или любой из пяти других, менее распространенных углеводородов, молекулы которых изображены на рис. 2-2. [c.68]

    Автоматизация програвширования построения кинетической модели [37—40]. Расширяющиеся возможности современных ЭВМ в сфере интеллектуального обеспечения делают вполне реальной автоматизацию процедур принятия решений при синтезе кинетической модели сложной химической реакции (типовую схему см. на рис. 4.1) [37]. Речь идет фактически о создании программирующей программы (ПП), которая на основании располагаемой информации о механизме строила бы подпрограммы расчета скоростей реакций, отвечающих данному механизму. ПП работают совместно со стандартной программой расчета функции отклонения (ПРФО) и программой минимизации. ПП может быть ориентирована либо на построение аналитических формул для скоростей реакций [41—43], либо на реализацию численных алгоритмов расчета скоростей реакций. В первом случае ПП могут оказаться более эко- [c.200]

    По-видимому, самым моЩным подходом к разработке современных систем аналитических преобразований является четвертый подход, при котором используются развитая библиотека аналитических преобразований и принципы искусственного интеллекта. Подпрограммы из нее разрабатываются па языках высокого уровня и включают как средства символьных вычислений общего назначения, так и специальные функции. При таком подходе исходная информация и управляющая программа, в рамках которой задаются требуемые преобразования, пишутся на специальном входном языке, разрабатываемом вместе с системой аналитических преобразований. Важным преимуществом такого подхода является то, что конечный пользователь может сам расширять возможности системы аналитических преобразований, используя входной язык, а в тех случаях, когда это необходимо, и язык реализации системы аналитических преобразований. Как правило, четвертый подход используется при создании универсальных систем аналитических преобразований. Характерными примерами таких систем являются развитые системы аналитических преобразований REDU E-2 [65] и MA SYMA [66]. [c.250]

    Что касается использования баз математических знаний, здесь, конечно, имеют место общие проблемы работы с базами знаний — способ представления математических знаний, структура базы знаний, операторы обращения к базе знаний (для ввода и чтения информации) и т. д. Интересно проследить, как эти концепции излагаются в японском проекте ЭВМ пятого поколения [79] в части, касающейся базисных прикладных систем. Имеется в виду (цитируем) Разработка системы анализа формул, выдающей ответ на введенную проблему и решающей проблемы общего характера... . Предусматривается Исследование возможностей создания базисной системы анализа формул математического представ- пения и разработка системы анализа формул . Промежуточной целью является Создание системы с базой знаний, сочетающей характеристики существующей Системы аналитических преобразований MA SYMA с возможностями решения неравенств и простых уравнений . Конечная цель Создание системы представления знаний и решения проблем, относящихся к формулам, содержащим сложный алгоритм решения . [c.253]

    Логический блок изображается рамкой с двумя закругленными сторонами, в которую в аналитической форме записывается формулировка логического уровня. Он служит для выбора направления расчета (организации условного перехода) в зависимости от результатов сравнения двух величин. У блока два выхода. Условие нет фиксируется затушеванной точкой. В целях упро щения графического построения блока можно изображать его в виде шести угольника, боковые стороны которого равны и сходятся под прямым углом При публикациях допускается словесная формулировка логического условия Блок передачи информации (информационный блок) изображается прямо угольником с затушеванной левой стороной. Он служит для обозначения ввода информации, присвоения значения, переадресации (пересылки, изменения. места хранения инфррмации), запоминания чисел, массивов, печати. [c.327]

    Внедрение новейших достижений науки и техники в химическую промышленность становится возможным только через создание проекта производства. Проект химического производства или п.р едп рияти я — это комплекс технической документации, необходимой для строительства некоторого объекта химической промышленности, обеспечивающего выпуск в установленные сроки требуемой для народного хозяйства продукции задан ного объема и- определенного качества с наилучши.ми техникоэкономическими показателями при соблюдении требуемых санитарно-гигиенических условий труда на спроектированном объекте. В указанный комплекс технической документации входят пояснительные записки с принципиальными обоснованиями технологические и инженерно-технические расчеты чертежи и (или) макеты предназначенных к строительству оборудования и сооружений инструкции по монтажу, пуску и эксплуатации основного производственного и вспомогательного оборудования технологические регламенты и методика аналитического контроля производства сведения о поставке сырья и данные о себестоимости продукции информация о методах комплексной механизации и автоматизации всех технологических процессов, а также информация об организации труда, плане подготовки. кадр Ов и автоматизирова1вной системе управления производством сметы расходов на вое производственные, инженерно-технические, коммунальные и культурно-бытовые сооружения проектируемого объекта. [c.13]

    Программа экспериментальных. исследований, закодированная на машинном носителе информации, обычно содержит циклограмму режимов работы объекта перечень параметров, подлежащих регистрации на каждом этапе эксперимента продолжительность периодов регистрации, моменты включения и отключения отдельных контрольно-измерительных приборов перечень типов аппаратуры, которая используется для измерения и регистрации различных параметров с указанием условий перехода в процессе проведения эксперимента на иной вид измерительного прибора или другой диапазон измерений программы для математической экспресс-обработки регистрируемых параметров (алгоритмы и аналитические соотношения, по которым выполняются расчеты, и объем исходной информации при отдельных расчетах) логику перехода к следующим видам эксперимента в зависимости от результатов экспресс-обработки данных, полученных в предыдущих экспериментах указания о способах отображения и документального представления результатов регистрации и обработки экспериментальной информации перечень параметров, подлежащих контролю по предельно допустимым значениям в блоке противоаварийной защиты вид аварийной сигнализации и последовательность операций управления испытательными стендами, контрольно-измерительными и регистрирующими приборами при аварийной или предава-рийной ситуации. [c.119]

    Развитие АСНИ в значительной степени обязано совершенствованию инструментальной и вычислительной техники, разработке эффективных средств преобразования информации. Особенно бурное развитие этого направления обусловлено проникновением микропроцессорной техники в аналитическое приборостроение, что привело к появлению приборов, неотъемлемой частью которых стали специализированные ЭВМ на базе микропроцессоров это переложило на них не только задачи обработки данных и анализа, но и управление работой самого прибора. [c.63]

    Недостаточная изученность отдельных явлений или процессов не позволяет иметь полностью математически формализованное описание объекта. Это определяет зачастую и выделение уровней иерархии, и установление отношений между явлениями. Поэтому до сих пор важным аспектом при реализации системного подхода является использование аналитической информации, экспериментальных данных и наблюдений. Наличие эмпирических и полуэм-пирических зависимостей диктует необходимость в таких данных. Методология системного анализа при разработке математической модели процесса приведена на рис. 4.1. [c.74]

    Развитие АСНИ в значительной степени обязано совершенствованию инструментальной и вычислительной техники, разработке эффективных средств преобразования информации, проникновению микропроцессорной техники в аналитическое приборостроение. Так, применение ЭВ М в аналитическом приборостроении позволило разработать новую технику, обладающую рядом принципиальных преимуществ существенно повысилась точность и разрешающая способность приборрв благодаря применению современных методов идентификации увеличился на несколько порядков динамический диапазон регистрации входного сигнала существенно увеличилось отношение сигнала-шума за счет суммирования и усреднения спектров (для ЯМР-снектрометра), полученных с одного образца значительно увеличилась производительность прибора уменьшилась вероятность появления субъективных и непредсказуемых ошибок при обработке и интерпретации данных появилась возможность накопления и хранения экспериментальных данных, их последующей расшифровки и интерпретации. [c.182]


Смотреть страницы где упоминается термин Информация аналитическая: [c.8]    [c.86]    [c.110]    [c.214]    [c.133]    [c.206]    [c.205]    [c.5]    [c.21]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.7 ]

Руководство по аналитической химии (1975) -- [ c.10 , c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическая информация колебательной

Аналитическая информация колебательной автоматизированный поиск и сравнение

Аналитическая информация колебательной спектров

Аналитическая информация колебательной спектроскопии

Аналитическая информация, получаемая из УФвидимого диапазона

Информация

Информация аналитическая редактирование

Контроль достоверности аналитической информации по содержанию ртути в природных водах при выполнении экспертизы проекта Катунской ГЭС

ЛАБОРАТОРНЫЕ РАБОТЫ С ПРИМЕНЕНИЕМ ВОЛЬТАМПЕРОМЕТРИИ И ПОЛЯРОГРАФИИ С ЛИНЕЙНОЙ И ТРЕУГОЛЬНОЙ РАЗВЕРТКОЙ НАПРЯЖЕНИЯ Общие принципы получения полярограмм и аналитической информации

Обеспечение и контроль качества аналитической информации

Представление аналитической информации

Расчет количества необходимой информации для решения аналитических задач

СИСТЕМА АНАЛИТИЧЕСКОЙ ОБРАБОТКИ ИНФОРМАЦИИ

Серии монографий и обзорная информация по аналитической химии



© 2025 chem21.info Реклама на сайте