Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отбор популяционный

    Интересный подход к проблемам применения термодинамических методов в биологии разработал Б. Гудвин [14]. Отметив, что понятие организации не имеет четкого определения, и указав, что физическая энергия, физическая энтропия и т. п. почти ничего не дают для понимания биологической организации , этот автор утверждает, что и в этом случае можно с пользой применить формальный математический аппарат статистической физики, если ввести новые величины, которые только аналогичны термодинамическим. Далее он утверждает, что в молекулярной биологии из свойств внутриклеточных элементарных частиц должны быть выведены характерные свойства живой клетки. При этом элементарными частицами Гудвин считает цистрон, репликон и т. п. В популяционной генетике, по его мнению, рассмотрение генов в качестве элементарных частиц обеспечило Р. Фишеру крупный успех, так как естественный отбор удалось рассмотреть как явление, основанное на вариации частот генов в популяции организмов. По этим причинам гены следует трактовать, как макроскопические единицы, для которых можно вывести и соответствующие количественные законы. [c.116]


    Для того чтобы завершить изложение нашей основной модели (6.51) чисто индуцированных шумом переходов, покажем, как ее можно использовать для описания полностью определенного механизма генетического отбора в популяционной динамике. Рассмотрим одну гаплоидную популяцию. Нас будет интересовать некий вполне конкретный локус в хромосоме, который мо-гут занимать две аллели А и а. Число особей в популяции, обладающих генотипами А и а, обозначим соответственно Ыа и Л а. Предполагается, что общее число особей в популяции М = = Л А + Л а поддерживается постоянным с помощью различных регуляторных механизмов пищевого ресурса, хищников и т. д. Кроме того, предполагается, что численность популяции N достаточно велика и внутренними статистическими флуктуациями можно пренебречь (при малой численности популяции эти флуктуации становятся существенными). [c.182]

    В предьщущей главе было описано, каким образом Дарвин пришел к выводу о существовании у растений и животных наследственной изменчивости как при искусственном разведении, так и в природных популяциях. Он понимал, что наследственные изменения должны играть важную роль в процессе эволюции путем естественного отбора, но не мог предложить механизм, который объяснял бы их возникновение. Лишь после того как были вторично открыты законы Менделя о наследственности и объяснено их значение для понимания эволюции, ученые стали уделять должное внимание этому механизму. Современное объяснение изменчивости живых организмов — это результат синтеза эволюционной теории Дарвина и Уоллеса и генетической теории, основанной на законах Менделя. Сущность изменчивости, наследственности и эволюции теперь можно объяснить с помощью данных, полученных в одной из областей биологии, известной под названием популяционной генетики. [c.313]

    Популяционная генетика Последовательный электрофорез Приспособленность Фундаментальная теорема естественного отбора Частоты генов (аллелей) Частоты генотипов Электрофорез в геле (гель-электрофорез) Эффективное число аллелей (п ) [c.104]

    Открытие онкогенов и. совсем недавно, генов-супрессоров опухолевого роста ознаменовало конец эры блужданий во тьме в поисках биохимической основы рака. Однако предстоит еще пройти путь от упрощенных лабораторных моделей, сделавших эти триумфальные успехи возможными, к пониманию реальной сложности раковых заболеваний человека. Нока мы далеки от успеха, прогресс до обидного невелик и в отношении разработки эффективного рационального лечения. Мы знаем последовательности ДНК многих онкогенов и протоонкогенов, но в то же время точные физиологические функции нам известны лишь для некоторых из них. Необходимо более глубокое понимание того, как эти и другие молекулы взаимодействуют между собой, управляя поведением отдельной клетки нужно хорошо разбираться в популяционных механизмах, которые определяют возникновение раковых клеток через мутации и естественный отбор. [c.480]


    Ранние менделисты, подобно де Фризу, преуменьшали эффективность естественного отбора и подчеркивали первостепенное значение менделевских соотношений и мутаций в формовке эволюции. На некоторых дарвинистов это произвело такое впечатление, что они начали высказывать сомнения в обоснованности менделизма, и между этими двумя группами начались ожесточенные дебаты. Другие эволюционисты, понимая важность менделизма и таящиеся в нем возможности, вознамерились примирить его с дарвиновской теорией. Поскольку возникшая в результате их усилий синтетическая теория эволюции выходила за рамки механизмов, предложенных Дарвином, ее часто называют неодарвинизмом. Немалую роль в решении этой проблемы сыграл переход от рассмотрения последствий скрещивания между двумя особями к последствиям скрещивания между особями в популяциях менделевские соотношения превратились, таким образом, в частоты различных генотипов в дайной популяции, а генетические и эволюционные изменения выражались в изменениях частот соответствующих генов. В результате генетика превратилась в популяционную генетику, которая развивалась параллельно с неодарвинизмом. В дальнейших разделах настоящей главы дан обзор основных моментов этого развития и показано, как популяционная генетика пыталась ответить на ключевые вопросы, поставленные менделистами. [c.41]

    Простейший возможный случай относится к одному локусу с двумя аллелями, например Л и а, с частотами соответственно р и д. Большая часть рассуждений в популяционной генетике основана на системе именно такого типа. Допустим, что в результате отбора равновесие Харди—Вайнберга в некоей воображаемой популяции сдвигается следующим образом  [c.45]

    Исходная популяция (J) дает начало двум изолированным популяционным системам, которые (2) под действием разных давлений отбора эволюционируют независимо друг от друга. Когда (и если) их ареалы сливаются (3) целиком или частично, они могут гибридизировать (4—J), восстанавливая исходную ситуацию, т. е. вновь превращаясь в один вид или они могут взаимно вытеснять друг друга (4—2), превращаясь в две географически изолированные популяционные системы или же Они могут превратиться в два симпатрических вида (4—3). Последнее наблюдается также в том случае, если виды дифференцировались до слияния своих [c.280]

    Однако все это не объясняет высокую степень полиморфизма, возникновение которого остается непонятным и с точки зрения динамики популяционных частот конкурирующих форм. Как уже говорилось, имитаторы утрачивают свое преимущество, если их численность в популяции начинает превышать численность модели (час-тотно-зависимый отбор, см. разд. 6.2.1.5). Следовательно, преимущество поддерживается только в том случае, когда лишь часть особей из популяции имеет защитный фенотип. Это пре- [c.225]

    Детерминистические и стохастические модели использование ЭВМ. Различные ограничения относятся в основном к моделям, где предполагается наличие функциональной связи между параметрами. Например, предполагают, что изменение генных частот в поколениях зависит от определенного вида отбора, такая модель называется детерминистической . Однако в действительности все популяционные параметры-частота генов, давление отбора, скорость мутирования-подвержены случайным флуктуациям из-за того, что размер популяции является конечным. С появлением ЭВМ возникла возможность включения в расчеты случайных флуктуаций таким образом были созданы стохастические модели. Изменение генных частот в популяциях моделируют, исходя из предположения, что популяция имеет какую-то определенную величину. В этом случае, например, кривая, отражающая изменение генных частот во времени, соответствует не идеальному ре- зультату, а только одному из возможных результатов, причем неизвестно даже, является ли данная кривая очень вероятной. Поэтому произвести расчеты для определенного набора параметров один раз недостаточно для того, чтобы получить при данных допущениях неискаженную картину одни и те же расчеты необходимо повторить несколько раз. Этот метод дает лучшие результаты, чем применение детерминистической модели кроме общей тен- [c.295]

    Как использовать модели на практике Для демонстрации общих закономерностей естественного отбора как в случае детерминистических, так и в случае стохастических моделей необходимо вводить упрощающие предположения. Однако при анализе конкретной ситуации нельзя забывать, что эти предположения в действительности являются упрощающими. Выводы, полученные при математическом моделировании, могут быть корректными с формальной точки зрения, однако часто упускается из виду возможность того, что они основываются на аспектах модели, не соответствующих реальности. Некритическая интерпретация формальных результатов, полученных на упрощенных моделях, наносит значительный ущерб развитию популяционной генетики человека. [c.295]

    Исчерпывающее объяснение полиморфизма по Rh-фактору с точки зрения популяционной генетики остается загадкой ввиду высокой частоты аллелей системы Rh в очень многих популяциях. Предполагается, что в отборе по этой системе принимают участие другие пока неизвестные силы . [c.305]


    Частотно-зависимый отбор в сочетании с неравновесием по сцеплению [1739]. Отбор может зависеть не только от относительных частот генотипов в популяции, но и от отношения абсолютного размера популяции к размерам ареала, т.е. от плотности популяции. Показано, что сбалансированный полиморфизм поддерживается отбором, зависящим от плотности, в широком диапазоне условий. В определенных обстоятельствах в полиморфной популяции может присутствовать большее число особей, чем в мономорфной. Еще важнее тот факт, что изменения плотности популяции могут привести к генетическим пертурбациям, которые имитируют эффекты генетического дрейфа (разд. 6.4). Изменения популяционной плотности имели большое значение для эволюции человека, например в неолите, когда он осваивал некоторые сельскохозяйственные приемы. Поэтому можно предположить, что отбор, зависящий от плотности, играл большую роль в эволюции нашего вида. [c.307]

    В литературе по антропологии и генетике человека часто проводится сравнение различных популяционных групп по генетическим маркерам. Однако критический анализ таких различий с учетом отбора, с одной стороны, и истории популяции, с другой, обычно отсутствует. [c.326]

    Результаты популяционных исследований гена Hb E в населении Таиланда (разд. 6.2.1.7) показывают, что такие клины частот в популяциях трудно поддаются интерпретации. Они могут отражать как историю популяции и миграцию генов, так и интенсивность отбора. [c.337]

    Небольшие популяции, находящиеся в относительной изоляции друг от друга, постепенно станут различаться генетически-либо в результате давления отбора различной интенсивности, либо благодаря разным способам адаптации к одному и тому же селективному фактору, либо просто из-за случайной флуктуации генных частот (разд. 6 4). Конечная цель популяционной генетики -анализ причин таких популяционных различий. Однако в большинстве случаев эта цель оказывается недостижимой. [c.363]

    В разд. 6.2.1.7 рассмотрен хорошо известный пример такого рода распространение аллеля HbF среди населения, принадлежащего южно-азиатской языковой группе. Здесь мутация Hb E достигла высокой частоты благодаря селективному преимуществу ее носителей, их устойчивости к малярии. Эта мутация мигрировала вместе с субпопуляциями данной группы в различные области страны, и теперь высокая частота НЬЕ свидетельствует не только о продолжающемся отборе под влиянием малярии, но также и о происхождении от определенной популяционной группы. Таким образом, аллель Hb E является свидетелем истории популяции. [c.364]

    Детерминистические и стохастические модели. До сих пор наше обсуждение полностью основывалось на менделевских соотношениях и на законе Харди—Вайнберга. Такие популяционно-генетические параметры, как скорость мутирования, коэффициенты отбора и инбридинга, считались постоянными и связанными определенными соотношениями. Другими словами, рассматриваемые нами модели были детерминистическими. Однако в действительности все эти параметры являются статистическими переменными, подверженными случайным изменениям, а изучаемые популяционной генетикой процессы не строго детерминистическими, а стохастическими (случайными). [c.367]

    В процессе видообразования, кроме естественного отбора, участвуют такие процессы как изоляция и флуктуация численности популяции (популяционные волны). [c.38]

    Численность популяции влияет на скорость изменения частоты мутаций. При сокращении численности популяции (популяционной волне), например с 10 до 10 особей без утраты новой мутации, концентрация мутации увеличивается с 10 до 10 . В результате увеличения частоты мутации она быстрее оценивается естественным отбором. [c.38]

    Для задачи (6.17) существует класс начальных условий, который приводит к отбору определенной скорости фронта — это показали Аронсон и Вайнбергер [264] в связи с задачами популяционной генетики. А именно, все начальные состояния системы, описываемые функциями 1(Х,0), которые ограничены полосой О il < 1, не равны нулю повсюду и убывают с X по крайней мере так же быстро, как е , порождают фронты, движущиеся (в пределе Т оо) со скоростью с = 2. [c.160]

    Как правило, в инсектарии можно вывести за год гораздо больше поколений, чем их бывает в природе. Обсуждение вопросов популяционной генетики Добжанским [523] дало основание предполагать, что отбор по признаку устойчивости к крайним климатическим колебаниям гораздо более вероятен в лабораторных условиях, чем в природе. Добжанский доказал, что набор генов у дрозофил изменяется при смене сезонов. Популяции дрозофилы приспособляются к зимним условиям в результате естественного отбора, что предполагает значительную смертность, вызванную холодами, однако на следующее лето должно происходить противоположное изменение, снова сопровождаемое заметной смертностью, вызванной на этот раз теплом. Таким образом вид временно приспосабливается к выживанию при крайней жаре или крайнем холоде, но только к одному из этих условий в одно время и в разные сезоны. Следовательно, мало вероятно появление приспособляемости индивидуумов к теплу и холоду одновременно, В лаборатории, однако, те же особи можно подвергнуть крайнему нагреву и охлаждению в расчете на выведение расы более выносливой и [c.346]

    Сегодня уже ясно, что мутационный груз человечества накапливался в популяциях в форме сбалансированного полиморфизма или наследственной патологии. Он характеризует наше прошлое, и мы сейчас живем с этим грузом в катастрофически меняюш ихся с генетической точки зрения условиях. В XX в. появилось много новых факторов и условий, меняюш их наследственность человека, с которыми он как биологический вид не сталкивался на протяжении своей длительной эволюции. Это — миграция населения и расширение границ браков, планирование семьи у здоровых людей и репродуктивная компенсация в отяго-ш енных наследственной патологией семьях, насыщение среды обитания человека мутагенами и т. д. Генетические процессы в популяциях человека (изменение частот генов и генотипов, мутационный процесс, отбор) обладают большой инертностью. Вот почему генетические последствия изменения среды обитания человека проявятся не через 1-2 поколения, а, скорее всего, через десятки поколений. Задача современной популяционной генетики человека — научиться предсказывать нежелательные последствия на уровне популяции и снижать неблагоприятные генетические эффекты окружающей среды, изменения демографической структуры, а также уменьшать груз наследственной патологии предыдущих поколений. И генетика человека даже сегодня многое может сделать в этой области. [c.144]

    Быстрое видообразование, обусловленное хромосомными перестройками, известно и у некоторых животных, например у австралийских кузнечиков МогаЬа s urra и М. viati a, изучавшихся Уайтом. Обнаружены обитающие по соседству виды, находящиеся в стадии становления и различающиеся хромосомными транслокациями. Транслокации сначала закрепляются в малых колониях в результате генетического дрейфа. Если члены такой колонии обладают высокой приспособленностью, то они могут постепенно расширять область своего обитания и вытеснять исходный вид из какой-то части его ареала. В результате исходная и вновь возникшие популяции могут существовать на соседних территориях, гранича друг с другом. Самостоятельность таких популяций поддерживается благодаря тому, что образующиеся в зоне контакта меж-популяционные гибриды гетерозиготны по транслокациям и потому обладают пониженной приспособленностью. Таким образом, первая стадия видообразования быстро завершается и естественный отбор начинает благоприятствовать развитию дополнительных РИМ (вторая стадия видообразования). По-видимому, видообразование такого типа довольно широко распространено в некоторых группах животных, в частности у грызунов, ведущих подземный малоподвижный образ жизни. [c.213]

    Предмет популяционной генетики составляют явления наследственности в группах организмов в целом. Ее интересует не механизм наследственности как таковой, а его роль в эволюции популяций. Популяционная генетика занимается изучением влияния, оказываемого на наследственность мутационным процессом, рекомбинациями и отбором, а также значениями при этом величины популяции, типа скрещивания, продолжительности жизни отдельных особей и т. п. Кроме того, она рассматривает воздействия на генетический состав популяции таких явлений, как сцепление, множественный аллелизм, сцепло.нность с полом, и других подобных процессов. Поскольку все эти- явления могут вызывать изменения в популяции, изучение органической эволюци неизбежно связано с изучением генетики популяций. [c.125]

    Вторичное открытие в 1900 г. законов Менделя сначала вызвало отход от Дарвина. Корпускулярная наследственность на первых порах считалась противоречащей идее естественного отбора. Как можно объяснять эволюцию накоплением мелких признаков, если признаки наследуются как дискретные единицы Реакция против дарвинизма была частично обусловлена тем, что некоторые из обнаруженных в числе первых мутации обладали резко выраженными эффектами. Она была обусловлена также неудачным выбором Гуго де Фриза (один из тех, кто вторично открыл законы Менделя и был ярым противником теории естественного отбора), проводивщим исследования на растениях рода Oenothera. У видов, принадлежащих к этому роду, встречаются морфологические изменения, ошибочно принимавшиеся в то время за наследуемые точковые мутации. Несмотря на все эти осложнения, менделизм и дарвинизм довольно скоро объединились. Этому объединению особенно способствовали расширение и углубление изучения генетических явлений и развитие популяционной генетики, приведшие в конечном итоге к созданию синтетической теории эволюции. [c.468]

    В чем польза изучения полиморфизма ДНК для генетики человека Генетическая изменчивость молекул ДНК, и особенно нетранскрибируемых ее районов, по-видимому, явление намного более обычное, чем предполагалось на основе данных по белкам (разд. 6.1.2). Анализ полиморфизма ДНК проливает свет на историю популяции. Он важен также для понимания генетических механизмов эволюции, например для решения постоянно обсуждаемого вопроса о том, какая доля генетических различий между видами и между популяционными группами в пределах вида определяется естественным отбором, а какая-случай- [c.139]

    Влияние мутаций на частоту врожденных дефектов оценить трудно. Очень немногие из таких дефектов являются явно моногенными. Но вот влияние главных генов на некоторые из них не исключено. Лишь немногие врожденные дефекты полностью обязаны своим возникновением окружающей среде. Поразительные различия в популяционных частотах индивидов с дефектами нервной трубки могут объясняться невыявленными средовыми воздействиями. Для большинства врожденных дефектов предполагается взаимодействие между множественными генетическими и пока неизвестными средовыми факторами. Эффекты мутаций должны зависеть от природы лежащей в основе заболеваний генетической изменчивости. Если значительная часть генетической изменчивости, предрасполагающей к врожденным дефектам, обусловлена системами генетического полиморфизма, поддерживаемыми отбором, мутации должны иметь небольшое влияние или вообще не влиять на их частоты. Продолжая анализировать этот вопрос, можно предположить, что, например, врожденные пороки сердца обусловлены случайными или стохастическими процессами, не испытывающими влияния ни генетических, ни средовых факторов, поскольку конкордантность по таким сложным врожденным дефектам органогенеза у идентичных близнецов низкая [2348]. [c.258]

    Популяционная генетика отвечает на вопросы о том, как реализуются законы Менделя на уровне популяций, как влияют на генетическую структуру популяций такие факторы, как мутационный процесс, отбор, миграции, случайное изменение генных частот. Знание популяционной генетики необходимо для понимания эпидемиологии наследственных болезней, для планирования мероприятий по предупреждению неблагоприятного воздействия на генетиче-кий аппарат факторов окружающей среды. Еще одна сфера приложения популяционно-генетических исследований-теория эволюции, обоснование тенденций биологической эволюции человечества в связи с различными изменениями окружающей среды. Преимуществом популяций человека как объекта генетических исследований является то, что они описаны гораздо лучше и полнее, чем популяции любого другого вида. [c.278]

    Полиморфизм митохондриальной ДНК. Митохондрии передаются только по материнской линии всем потомкам диплоид-ность, мейоз и рекомбинация в этом случае отсутствуют. Полиморфизм митохондриальной ДНК особенно важен для популяционной генетики, с его помощью изучают взаимодействие между популяциями и историю популяций [1792]. Вероятно, варианты митохондриальной ДНК не подвержены давлению отбора. Следовательно, сравнение наследующихся по материнской линии рестриктных вариантов и РНК в группах популяций позволяет получить достоверную картину их мутационной истории. [c.291]

    Область применения математических моделей в теории естественного отбора и их ограничения [124]. Обсуждая отбор, мы будем довольно широко использовать математические модели. В этих моделях делается ряд предположений относительно некоторых параметров, например генных частот и селективного преимущества или неблагоприятности отдельных генотипов. Мы рассмотрим влияние этих предположений на направление и степень изменения генных частот во времени. Математическое моделирование способствует пониманию последствий изменения популяционных параметров, создавая некоторую упорядоченность в очень сложном и на первый взгляд не поддающемся анализу комплексе генетических различий между популяциями человека. [c.294]

Рис. 6.15. Отбор по непрерывно распределенному мультифакториальному Признаку (А). Отбор происходит благодаря тому, что 50% популяции не размножается (значение признака меньше популяционной средней, незаштрихован-ный участок графика). В поколении средняя сдвигается на 5. Можно показать, что этот сдвиг равен 0,8 х стандартное отклонение (80). (Б). Отбор происходит благодаря тому, что 80% популяции не размножается. В следующем поколении средняя сдвигается на 1,4 х 80. (В). Популяция с более низким уровнем генетической изменчивости. Если, как в случае (Б), не размножается 80% популяции, отношение изменения средней к стандартному отклонению то же самое, но его абсолютное значение гораздо ниже (в этом случае 1/2) [63]. Рис. 6.15. Отбор по <a href="/info/325823">непрерывно распределенному</a> <a href="/info/1355348">мультифакториальному Признаку</a> (А). Отбор происходит благодаря тому, что 50% популяции не размножается (значение признака меньше популяционной средней, незаштрихован-ный участок графика). В поколении <a href="/info/724883">средняя сдвигается</a> на 5. Можно показать, что этот сдвиг равен 0,8 х <a href="/info/10105">стандартное отклонение</a> (80). (Б). Отбор происходит благодаря тому, что 80% популяции не размножается. В следующем поколении <a href="/info/724883">средняя сдвигается</a> на 1,4 х 80. (В). Популяция с <a href="/info/1650840">более низким</a> уровнем <a href="/info/32688">генетической изменчивости</a>. Если, как в случае (Б), не размножается 80% популяции, <a href="/info/583310">отношение изменения</a> средней к <a href="/info/10105">стандартному отклонению</a> то же самое, но его <a href="/info/249703">абсолютное значение</a> гораздо ниже (в этом случае 1/2) [63].
    Эффекты кровного родства и уровень генетического анализа. Чем ближе находится объект анализа к действию гена, тем лучшие результаты дает популяционно-генети-ческое исследование. Одна из причин эффективности изучения действия естественного отбора на варианты гемоглобина их исследование непосредственно на уровне действия гена. Это позволило провести точный анализ механизма отбора. [c.361]

    В одном из рассмотренных примеров-динамике аллелей Hb S и Hb в Западной Африке (разд. 6.2.1.7)-мы подробно анализировали флуктуации генных частот под давлением отбора в популяции конечного размера. Однако даже в том случае, когда мы сравниваем наблюдаемые популяционные частоты по генам системы групп крови с ожидаемыми на основе соотношений Харди—Вайнберга, нами рассматриваются и случайные флуктуации. Они будут иметь место, даже если все доступные индивиды подвергаются типирова-нию на группы крови. [c.367]

    Выйти из затруднительного положения можно следующим образом. Можно предположить, что мутации, слабо вредные в больпшх популяциях, в малых популяциях нейтральны, и поэтому вероятность их фиксации на самом деле выще виды с большими размерами тела (например, слоны) как правило имеют значительно большее время инерции (и, вероятно, более низкое число циклов репликации ДНК в единицу времени ), но меньшую популяционную численность, чем виды с небольшими размерами тела (например, мыши). Можно привести и другой аргумент, например, что частота мутаций в единицу времени , не только зависит от числа циклов репликации в единицу времени , но что в результате естественного отбора она приблизилась к некоей оптимальной величине. Непонятно только, как это могло произойти, если больпшнство мутаций так или иначе нейтральны  [c.26]

    Межрасовые браки на Гавайях [1955]. Каковы генетические последствия смешения рас В те времена, когда биологи еще не овладели популяционным мышлением, не оперировали понятием внутрипопуляцион-ной изменчивости, а анализировали изменчивость людей с позиций концепции расовых типов , смешение рас часто рассматривалось как деструктивный процесс, приводящий к появлению дисгармоничных фенотипов. Исследователи сходились во мнении, что длительное действие отбора привело к коадаптации определенных генов. Предполагалось, что разрушение комплексов таких коадаптированных генов в результате смешения рас должно приводить к появлению дисгармоничных фенотипов. Вот почему ученые с удивлением восприняли тот факт, что гибридные популяции, подобные тем, которые образовались при смешении готтентотов и белых в юго-западной Африке, оказались состоящими из вполне жизнеспособных индивидов с нормальным здоровьем [1916]. Однако, если не считать этого вывода, многочисленные старые работы не могли дать ответа на вопрос о возможных генетических эффектах межрасовых браков. [c.44]

    Суть эволюционного процесса заключается в изменении генетической структуры вида. В зависимости от масштаба изменения генетической структуры вьщеляют микроэволюционный и макроэволюционный процессы. Микроэволюционный процесс происходит на популяционном уровне, а макроэволюционный - на уровне межвидовых различий и на более высоких таксономических уровнях. Основные факторы эволюции изменчивость, наследственность и естественный отбор. Процесс эволюции состоит из двух стадий первая - изменчивость, в результате которой популяция пополняется множеством новых генотипов вторая - естественный отбор. [c.34]

    Мугационный процесс и популяционные волны поставляют материал для эволюции изоляция сохраняет и усиливает возникшие различия естественный отбор (единственный направляющий фактор), повышающий ин-тегральн ю приспособленность популяции, обусловливает ее адаптацию. Взаимодействие всех этих факторов влияет на направление и темпы эволюции популяции. [c.38]

    Уже пррстое перечисление этих вопросов показывает, что процесс селекции должен опираться на знание генетических закономерностей наследования признаков, их изменчивости, на знание популяционной генетики, различных способов скрещивания и методов отбора. [c.548]


Смотреть страницы где упоминается термин Отбор популяционный: [c.227]    [c.111]    [c.94]    [c.47]    [c.51]    [c.78]    [c.18]    [c.32]    [c.174]    [c.120]    [c.468]    [c.476]   
Эволюция организмов (1980) -- [ c.117 ]




ПОИСК







© 2025 chem21.info Реклама на сайте