Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика и механизм процесса

    Термическое разложение метана не вкл ю-ч бт принципиально новых факторов по сравнению с термическим разложением других углеводородов. Однако оно имеет некоторые особенности Тот факт, что метан не имеет связей С-—С заставляет учитывать частные аспекты термодинамики, механизма и кинетики реакций- с другой стороны, температуры, при которых эта реакция протекает интенсивно, определяют целый ряд технологических особенностей, отличающих этот процесс от процессов разложения Термическое разложение метана тесно связано с химической промышленностью (производством ацетилена, сажи, водорода). [c.97]


    При изучении термодинамики электрохимических процессов достаточно знать, что изменение энергии электрохимического элемента полностью определяется химическими реакциями на электродах. Однако при изучении кинетических закономерностей необходимо также знать механизм электродных процессов. Изменения в строении двойного электрического слоя на электродах, которые не сказываются на равновесных значениях электродных потенциалов, влияют на скорости электрохимических реакций. Поэтому при изучении кинетики электродных процессов очень важно знать потенциалы нулевого заряда, а также молекулярное строение границы электрод — раствор. [c.536]

    Для решения задачи переноса незамерзшей влаги под действием градиентов температуры и давления требуется рассмотрение взаимосвязанных потоков массы и энергии на основе термодинамики необратимых процессов [32, 318]. Для того чтобы продемонстрировать основной физический механизм явления, рассмотрим щелевую модель порового пространства (рис. 6.5). Здесь пластинка льда заключена между параллельными твердыми стенками, вблизи которых сохраняются незамерзающие прослойки воды толщиною h. Модель отвечает деформируемому пористому телу расстояние между стенками поры может изменяться под действием внешнего давле- [c.105]

    Объектами исследования в термодинамике являются только макроскопические системы, т. е. системы, состоящие из очень большого количества частиц. При термодинамических исследованиях любого процесса не рассматривается молекулярная структура вещества, характер сил взаимодействия между молекулами, механизм процесса, ничего не говорится и о скорости процесса. Та часть термодинамики, которая имеет дело с применением указанных трех законов к химическим процессам и фазовым переходам, называется химической термодинамикой. Химическая термодинамика разрабатывает наиболее рациональные методы расчета тепловых балансов при протекании химических и физико-химических процессов раскрывает закономерности, наблюдаемые при равновесии определяет наиболее благоприятные условия для осуществления термодинамически возможного процесса выясняет условия, при которых можно свести к минимуму все побочные процессы определяет термодинамическую устойчивость индивидуальных веществ. [c.181]


    ТЕРМОДИНАМИКА И МЕХАНИЗМ ПРОЦЕССА [c.174]

    Нетрудно убедиться, что для уравнения Больцмана характерным линейным размером является средняя длина свободного пробега X, а характерным отрезком времени — среднее время т между столкновениями молекул. Этим уравнение Больцмана отличается почти от всех других уравнений математической физики, описывающих необратимое поведение среды на расстояниях, которые должны быть большими по сравнению с X, и на отрезках времени, которые должны быть большими по сравнению с г. Это обстоятельство проявляется также в том, что, например, обычная термодинамика необратимых процессов имеет дело с малыми (линейными) отклонениями от равновесия, тогда как уравнение Больцмана допускает большие (нелинейные) отклонения. Поэтому необходимо строго различать нелинейность уравнений гидродинамики и линейность механизма необратимости (например, пропорциональность теплового потока температурному градиенту) [4, 166, 178, 271, 300, 357, 377, 383, 404, 409, 410, 441]. [c.44]

    Химизм, термодинамика, механизм, кинетика и основные факторы процессов перехода от нефти и углеводородных газов к углероду изучены достаточно глубоко и рассмотрены во многих работах [5,7,8,34...37, [c.12]

    Задачей настоящей, третьей части данного учебника является демонстрация возможности активного использования приемов термодинамики неравновесных процессов для анализа функционирующих химически реакционноспособных систем, в частности, для предсказания направления эволюции химически реакционной системы и скорости некоторых брутто-превращений даже при недостаточном знании конкретного механизма происходящих в системе процессов. [c.291]

    Как уже отмечалось, очевидным достоинством прямых кинетических подходов к описанию термодинамически неравновесных процессов являются детально отработанные алгоритмы получения и решения кинетических уравнений, а также удобные процедуры анализа этих уравнений. Существенно, однако, что чисто кинетический подход эквивалентен описанию динамических свойств химической машины с жестко заданными правилами движения. При этом необходимым условием адекватности результатов, получаемых прямыми кинетическими методами, являются справедливость априорных представлений о схеме исследуемых химических превращений и достаточно точное знание констант скорости отдельных элементарных стадий. В то же время использование приемов термодинамики неравновесных процессов, выявляющих влияние движущих сил химических превращений, позволяет в ряде случаев достаточно полно предсказать динамику эволюции термодинамически неравновесной, например химически реакционноспособной, системы даже при недостаточно полном знании конкретного механизма происходящих процессов. [c.348]

    Про термодинамику в целом можно сказать, что это наука, изучающая явления, в которых существенную роль играют изменения температуры, и системы, состояние которых определяется не только механическими и электромагнитными, но и термическими параметрами. Особенностью термодинамики является то, что она не рассматривает внутренний мир термодинамической системы. Ее интересуют только макроскопические свойства. Сопоставляя эти свойства в исходном и конечном состояниях, термодинамика количественно описывает происходящие в системе изменения. При этом механизм процесса и скорость его протекания термодинамика не рассматривает. [c.18]

    Термодинамика позволила создать рациональный метод расчета равновесий. Однако формальность построения термодинамики ограничивает область ее применения. Термодинамика не может описать скорости процессов. Предсказания положений равновесия в термодинамике носят абсолютный характер. Между тем из приведенной в гл. II статистической трактовки энтропии ясно, что состояния с меньшими значениями энтропии возможны, хотя и менее вероятны. Эти отклонения от равновесных состояний (флуктуации) также не описываются термодинамикой. Наконец, в рамках термодинамики не вскрывается механизм процессов, связь между макроскопическими свойствами тел (термические и калорические коэффициенты) и микроскопическими характеристиками молекул. [c.201]

    Каждую задачу, которую трактует термодинамика необратимых процессов, формально, без рассмотрения механизма процесса, можно решить и без применения термодинамики необратимых процессов на основе анализа механизма. [c.416]

    Методы термодинамики необратимых процессов позволяют вывести уравнение (XIХ.4) без анализа механизма процесса. [c.417]

    Твердофазная реакция возможна, если Д(1г<0, однако при изучении реакций в твердых фазах вследствие низкой скорости достижения химического равновесия решающее значение приобретают вопросы кинетики (скорость и механизм процесса), а не термодинамики. [c.274]

    Термодинамический метод состоит в нахождении связей между различными термодинамическими свойствами и формами превращения энергии системы без рассмотрения механизма процесса. Термодинамический метод может быть дополнен выводами молекулярно-кинетической теории и данными о строении молекул, полученными экспериментальными методами. Совместное использование статистического и термодинамического методов привело к созданию статистической термодинамики. [c.6]


    По мере развития науки термодинамика все больше дополнялась данными о строении материи и механизме процессов, что значительно расширило границы применения термодинамического метода (как метода теоретического) в решении различных проблем химии и других естественных наук. [c.78]

    В термодинамике изучают переход одной формы энергии в другую, переход от системы к системе, энергетические изменения в физических и химических процессах. Термодинамика устанавливает возможность и пределы самопроизвольного (без затраты работы) течения процесса в данном направлении. Она рассматривает возможность осуществления того или иного процесса и установление равновесия, но не рассматривает механизма процесса и его скорости. [c.11]

    Отметим, что все задачи термодинамики необратимых процессов могут быть решены на основе рассмотрения механизма конкретных явлений. Однако преимуществом методов необратимой термодинамики является возможность получения результатов общими формальными способами без знания механизма процесса. Рассмотрим сначала первый путь, применительно к поставленной задаче. [c.294]

    Покажем, что уравнение (XIV.3) может быть найдено методами термодинамики необратимых процессов без анализа механизма явления. [c.295]

    Первый из этих методов — термодинамика. Она является опытной и формальной дисциплиной. Все законы и понятия формулируются в термодинамике как результат описания опыта без проникновения в молекулярный механизм процессов. Это обусловливает ограниченность ее применения, несмотря на большую практическую ценность ее методов расчета. [c.9]

    В разд. 11.2 мы считали постоянными такие феноменологические коэффициенты, как вязкость и теплопроводность. Отсюда следует, что к состоянию покоя ниже критического значения числа Релея (рис. 11.1) применима линейная неравновесная термодинамика, в частности теорема о минимуме производства энтропии (разд. 3.4 и 7.9). Когда мы достигаем предельного состояния, производство энтропии резко изменяется с возникновением первой неустойчивой нормальной моды (разд. 11.10). Возникновение этой моды приводит к тому, что наклон кривой производства энтропии (Я[5]) в критической точке претерпевает разрыв (рис. 11.2), и это неудивительно, поскольку в критической точке возникает новый механизм вязкой диссипации, порождаемой конвекцией. Сама величина (Р[8]) не претерпевает разрыва, поскольку амплитуда критической нормальной моды в предельном состоянии остается бесконечно малой. Чтобы получить конечную амплитуду, следует рассмотреть значения й а, несколько превышающие ( а)с. При значениях й а, превышающих (Й2а)с, линейная термодинамика необратимых процессов более не применима к описанию системы. Появляется новая взаимосвязь, благодаря которой температурный градиент порождает конвективный поток. Эта связь, не содержащаяся в феноменологических законах, возникает из стационарных Уравнений для возмущений (разд. 3.3). [c.157]

    Термодинамика имеет дело со свойствами систем, находящихся в равновесии. Она не описывает протекания процессов во времени. Термодинамика дает точные соотношения между измеримыми свойствами системы и отвечает на вопрос, насколько глубоко пройдет данная реакция, прежде чем будет достигнуто равновесие. Она также позволяет уверенно предсказывать влияние температуры, давления и концентрации на химическое равновесие. Термодинамика не зависит от каких-либо допущений относительно структуры молекул или механизма процессов, приводящих к равновесию. Она рассматривает только начальные и конечные состояния. Но и при таком ограничении термодинамический метод является одним из самых мощных методов физической химии, и поэтому, учитывая важную роль термодинамики, первая часть книги посвящена ей. К счастью, термодинамика может быть полностью разработана без сложного математического аппарата, и ее почти целиком можно изложить на том же уровне, на каком написана вся книга. Мы рассмотрим применение термодинамики к химии, начав с нулевого, первого, второго и третьего законов термодинамики, которые в дальнейшем будут применяться к химическим равновесиям, электродвижущим силам, фазовым равновесиям и поверхностным явлениям. [c.11]

    Неравновесная термодинамика и молекулярно-кинетическая теория — два взаимосвязанных подхода к описанию неравновесных процессов в реальных физических средах. С позиций феноменологической неравновесной термодинамики механизм процессов не может быть раскрыт. Как и классическая равновесная термодинамика неравновесная термодинамика описывает системы с 1К)мо1цью макроскопических переменных. Она позволяет установить общую структуру уравнений, описывающих неравновесные яплегшя, выявить взаимосвязь между кинетическими коэффици-(М1 гами этих уравнений, указать на возможность протекания опре-дслрин1>1х процессов, предсказать наличие перекрёстных эффектов. [c.46]

    Существуют три параллельных механизма воздействия химической реакции на скорость массопередачи. Во-первых, наличие в системе химической реакции, как правило, оказывает влияние на установление равновесного распределения переходящего компонента между фазами и тем самым иа движущую силу процесса массопередачи независимо от способа ее выражения. Во-вторых, химическая реакция оказывает влияние на величину коэффициента массопередачи независимо от способа его выражения, т. е. независимо от способа выражения движущей силы процесса. Взаимное влияние химической реакции и процессов переноса рассматривается термодинамикой необратимых процессов. Общий подход к вопросу разработан Де Гроотом и Мазуром [1], которые рассмотрели процесс теплопередачи в системе с химической реакцией. Вопросы взаимного влияния массопередачи и химической реакции с позиций термодинамики необратимых процессов рассматривались Оландером [2], а также Фридлендером и Келлером [3]. Хотя количественные результаты были получены 13] лишь для области очень малых отклонений от химического равновесия, однако качественно было показано, что наличие объемной реакции приводит к увеличению потока массы. [c.226]

    В настоящее время мощным средством повышения эффективности научных исследований при решении задач расчета, анализа, отимизации и прогнозирования химико-технологических процессов стал метод математического моделирования [1]. При наличии полнот информации о механизме процесса (термодинамике, кинетике, гилродинамике) составляют детерминированную математическую модель, представляющую собой систему дифференциальных урав-не Ий обыкновенных или в частных производных. Для определения неизвестных констант, входящих в систему дифференциальных уравнении и проверки адекватности математической модели процесса, проводится эксперимент. [c.5]

    Термодинамика и механизм процесса. Полимеризация алкенов термодинамически возможна (значение свободной энергии Гиббса отрицательно) при температуре не выте 500—550 К- [c.266]

    В книге изложены основы современного каталитического крекинга нефтяных фракций на цеолитсодержащих катализаторах. Рас-смотрена характеристика сырья, приведены состав и свойства современных промышленных цеолитсодержащих катализаторов (отечественных и зарубежных). Освещены вопросы термодинамики, механизма, химизма и кинетики каталитического крекинга, технологических закономерностей превращения нефтяных фракций, за-коксовывания и регенерации цеолитсодержащих катализаторов. Описаны инженерные основы процесса, включая газодинамику аппаратов с псевдоожиженным слоем и с восходящим потоком мик-росферического катализатора, конструкцию и расчет основных узлов реакторного блока. Приведены схемы реакторных блоков и обсуждены результаты внедрения катализаторов. Даны рекомендации по интенсификации действующих установок каталитического крекинга. Особое внимание уделено перспективной отечественной комбинированной ) станов - с каталитичес.кого крекинга с предварительной гит-роочисткой сырья Г-43-107 рассмотрены основные схемы комбинирования каталитического крекинга с другими процессами. [c.2]

    Практически акт = onst и совпадает с что указывает на правильность вышеописанных предположений о механизме разрыхления внутренней структуры микрочастиц. Место энергии активации в термодинамике химического процесса становится понятным из следующих рассуждений. [c.162]

    В классической механике возможность проведения существенных обобщений открывает переход к статистической физике. Анагюгично, при анализе химических превращений роль статистической физики играет термодинамика, которая благодаря выявлению движущих сил этих превращений позволяет делать общие выводы о направлении эволюционных изменений в сложной химической системе без знания конкретного механизма процесса. Поэтому использование приемов термодинамики неравновесных процессов позволяет проводить эффективный совместный кинетико-термодинамический анализ протекания многих сложных химических процессов, трудно осуществляемый иными методами. [c.292]

    Приведенные выше соотношения взаимности Онзагера играют важную роль в термодинамике неравновесньЕХ процессов и, кроме того, находят непосредственное использование в анализе некоторых свойств мембранных, каталитических и биологических систем вблизи термодинамического равновесия. Так, используя эти отношения и экспериментально определяя значения коэффициентов можно установить количественную взаимосвязь между одновременно протекающими в системе процессами даже в отсутствие детальной информации о механизме рассматриваемых процессов. [c.326]

    Терйодинамика — наука о макросистемах. Отдельные частицы (молекулы, атомы, электроны и т. д.) или небольшое их число не являются предметом ее изучения. Состояние рассматриваемых объектов в термодинамике определяется непосредственно измеряемыми величинами, характеризующими вещества структура веще -ства и механизм процесса не рассматриваются. [c.11]

    Необходимо рассчитать кинетику- брутго-реакции А В, происходящей по механизму А Х В с константами скорости к = 10 с , к.2 =10 с". В какой ситуации для решения данной задачи целесообразно использовать приемы термодинамики неравновесных процессов  [c.109]

    Понятие о химической кинетике. Скорость химических реакций. Термодинамический подход к описанию химических процессов позволяет оценить энергию взаимодействия и наиболее вероятные направления протекания реакций. При этом нет необходимости прибегать к конкретному рассмотрению механизма процесса, к экспериментальному его осуществлению. Однако классическая термодинамика рассматривает только равновесные системы и равновесные процессы, т. е. процессы, которые протекают бесконечно медленно. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных уело-ВИЯХ протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значи тельными. Именно поэтому термодинамическая возможность осуществления данной реакции (AG<0) является необходимым, но недостаточным условием реализации процесса в действительности. Хи мическая кинетика кроме выяснения особенностей развития процесса во времени (формально-кинетическое описание) изучает [c.212]

    О. Е. Палеховой посвящены механизму процесса горения метана и вопросам термодинамики реакций в процессе горения природного газа. И, наконец, в статье Г. Д. Саламандра дан метод фотографической регистрации быстропротекающих взрывных процессов с помощью теплеровского метода. [c.6]

    П. п. в покоящейся среде осуществляются только в результате хаотич. движения молекул (мол, перенос). В текущих средах к этому механизму переноса добавляется конвективный перенос, а при высоких числах Рейнольдса-еще и турбулентный перенос, связанный с хаотич. перемещеияем вихрей. Общую феноменологич. теорию П. п., применимую к газообразной, жидкой или твердой системе, дает термодинамика необратимых процессов. [c.477]

    Применение. Методом ЭПР можно определять концентрацию и идентифицировать парамагн. частицы в любом агрегатном состоянии, что незаменимо для исследования кинетики и механизма процессов, происходящих с их участием. Спектроскопия ЭПР применяется в радиационной химии, фотохимии, катализе, в изучении процессов окисления и горения, строения и реакционной способности орг. своб. радикалов и ион-радикалов, полимерных систем с сопряженными связями. Методом ЭПР решается широкий круг струк-турно-динамич. задач. Детальное исследование спектров ЭПР парамагн. ионов d- и /-элементов позволяет определить валентное состояние иона, найти симметрию кристаллич. Поля, количественно изучать кинетику и термодинамику многоступенчатых процессов комплексообразования ионов. Динамич. эффекты в спектрах ЭПР, проявляющиеся в специфич. уши-рении отдельных компонент СТС, обусловленном модуляцией величины констант СТВ за счет внутри- и межмол. хим. р-ций, позволяют количественно исследовать эти р-ции, напр, электронный обмен между ион-р калами и исходными молекулами типа + А. < А + Д , лигандный обмен типа LK + L + L, внутримол. процессы вращения отдельных фрагментов в радикалах, конформац. вырожденные переходы, внутримол. процессы перемещения атомов или Фупп атомов в радикалах и т. д. [c.450]


Смотреть страницы где упоминается термин Термодинамика и механизм процесса: [c.13]    [c.12]    [c.632]   
Смотреть главы в:

Теоретические основы химических процессов переработки нефти -> Термодинамика и механизм процесса




ПОИСК





Смотрите так же термины и статьи:

Механизм процесса



© 2024 chem21.info Реклама на сайте