Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловой эффект в реакторах

    Здесь вход и выход из реактора представляются источником усилия и потока, соответственно Зе/х и Зв/г процесс перемешивания изображается узлом смешения 02 емкостный элемент Сд отражает изменение общего объема V реакционной смеси в реакторе 3/7 изображает тепловой эффект химической реакции элемент Сб отражает эффект накопления тепла в реакторе. Связям с 1 [c.244]


    Подвод тепла в реакторы или его отвод из них имеет большое значение для создания необходимых температурных условий проведения реакций и, в частности, определенного профиля температур в аппаратах. Когда температура реакционной массы может существенно изменяться при выделении или поглощении тепла в процессе взаимодействия веществ, тепловой эффект нужно учитывать при расчете реакторов. Рассмотрим связь между теплотой реакции и теплообменом с окружающей средой для реакторов различных типов в случае эндотермических и экзотермических реакций. [c.221]

    Полученные результаты позволяют считать, что проведение процесса конверсии на выбранном катализаторе, обеспечивающем превращение гомологов метана в водород и двуокись углерода при низкой температуре, может быть осуществлено в условиях, приемлемых для промышленной реализации. Принимая во внимание низкую температуру и высокий эндотермический эффект, этот способ представляется наиболее перспективным из рассмотренных с точки зрения возможности использования тепла ядерных реакторов. [c.60]

    Химические реакции часто сопровождаются экзотермическим или эндотермическим тепловым эффектом. Для осуществления изотермических условий необходимо отводить определенное количество тепла от реактора либо подводить его к реактору. С этой целью в конструкции изотермического реактора предусмотрена специальная поверхность теплообмена — змеевик внутри реакционного объема, или рубашка. [c.239]

    Конструкции и число ступеней реакторов со ступенчатым регулированием температуры различаются в зависимости от особенностей химических процессов, которые в них проводятся. Для реакций, идущих с малой скоростью, требуется катализатор в большом объеме. При этом, если тепловой эффект реакций невелик, то все реакционное тепло расходуется на подогрев реакционной смеси, которая и уносит это тепло из реактора (одна ступень). Реактор представляет собой цилиндрический сосуд, заполненный катализатором (рис. 27). Объем катализатора определяется временем контакта, необходимым для полного превращения сырья. [c.75]

    В неподвижном слое катализатора происходит адиабатическое изменение температуры по высоте слоя катализатора. Поэтому, если протекает эндотермическая реакция, то по мере прохождения исходных реагентов через слой катализатора и увеличения степени превращения температура реакционной смеси снижается. При экзотермической реакции, наоборот, наблюдается нагревание смеси по толщине слоя, т. е. температура возрастает от входа газа к его выходу. Подобные тепловые режимы, в большинстве случаев, далеки от оптимальных условий, так как при эндотермических реакциях необходимо дополнительное нагревание реакционной смеси, а для обратимых экзотермических реакций, наоборот, следует понижать температуру в ходе процесса (отводить тепло). Поэтому реакторы с одним неподвижным слоем катализатора редко используются для проведения процессов в адиабатическом режиме они применяются лишь тогда, когда реакция протекает с небольшим тепловым эффектом либо когда скорость реакции мала. [c.175]


    Неизотермический реактор. В ряде случаев метод газового анализа, громоздкий сам по себе, представляет дополнительное неудобство из-за того, что в реакции участвует большое число промежуточных продуктов, количественное определение которых затруднено или невозможно в настоящее время. Здесь может оказаться более удобным оценка скорости реагирования по суммарному тепловому эффекту, как это сделано в адиабатическом реакторе. При измерениях температуры по длине можно определять скорость реакции в любой точке на длине рабочего участка по темпу нарастания температуры, поэтому вопрос об определении средней температуры не имеет существенного значения. Учитывая неудобства, связанные с большими расходами вещества, мы пошли на уменьшение диаметра трубы и расходов реагирующего вещества, вводя соответствующие поправки на потери тепла. Такой реактор назван неизотермическим. Для облегчения анализа опытных данных здесь были приняты меры к тому, чтобы стенки трубы имели постоянную по длине температуру. [c.175]

    Установки с неподвижным слоем катализатора для обеспечения непрерывности процесса имеют два реактора, работающих в режиме реакции, и два реактора, в которых в это же время происходит регенерация катализатора. Необходимость двух рабочих реакторов объясняется отрицательным тепловым эффектом реакции и необходимостью промежуточного подвода тепла между реакторами. Следовательно, каждая пара реакторов попеременно работает в режиме реакции и в режиме регенерации. [c.267]

    Тепловые эффекты этих реакций имеют большой практический интерес, так как отвод выделившегося тепла из реактора является наиболее трудной [c.9]

    Реакция изомеризации протекает с очень небольшим положительным тепловым эффектом и не требует промежуточного подвода тепла в реакторы. Поэтому технологический процесс изомеризации осуществляется в одну ступень. [c.256]

    Реакция изомеризации, как уже отмечалось, протекает в среде водорода, роль которого сводится к подавлению реакций полимеризации и крекинга, ведущих к дезактивации катализатора. Реакция протекает с очень небольшим положительным тепловым эффектом и не требует промежуточного подвода тепла в реакторы. Поэтому технологический процесс изомеризации осуществляется в одну ступень. [c.231]

    Как уже отмечалось, тепловой эффект реакции полимеризации составляет 96,37 кДж/моль (23 ккал/моль). При недостаточном теплоотводе температура процесса очень быстро может повыситься до опасных пределов. Однако отвод тепла реакции через теплообменную поверхность реактора невозможен, так как на его стенках образуются полимерные отложения. Поэтому прибегают к циркуляции этилена (парогазовой смеси этилена с растворителем). Тепло при этом отводится за счет испарения растворителя и нагрева рециркулирующей парогазовой смеси (ПГС). [c.114]

    Все основные реакции протекают с отрицательным тепловым эффектом (с поглощением тепла), причем суммарный тепловой эффект процесса определяется глубиной превращения углеводородов. В ходе процесса температура (480—520 °С) снижается, и дальнейшего превращения сырья не происходит. Поэтому для полного превращения сырья необходим промежуточный подогрев смеси непревращенного сырья и продуктов реакции и использование нескольких последовательных реакторов (обычно трех). [c.41]

    Тепловой эффект каталитического риформинга бензиновых фракций, возникающий в результате химических превращений в реакторе, пропорционален количеств и глубине реагирующих веществ, содержащихся в исходном сырье. Как показывает практика, величина суммарной затраты тепла на реакции процесса риформирования в основном определяется содержанием в сырье нафтеновых углеводородов. [c.6]

    Проектирование изотермических или адиабатических реакторов связано в каждом конкретном случае с тепловым эффектом реакции, температурой и количеством тепла, которое должно передаваться в единицу времени. [c.31]

    Процессы часто проводят при недостатке воздуха (40—50% от теоретически необходимого количества), причем тепловой эффект неполного сгорания обеспечивает необходимое тепло для поддержания эндотермического разложения остальной части сырья. Это существенно упрощает также теплообмен в реакторе. [c.208]

    При проведении реакций со значительным тепловым эффектом обычно приходится применять аппараты с отводом тепла непосредственно из зоны реакции. В этом случае реактор охлаждается или нагревается с помощью специального теплоносителя. В качестве последнего можно применять также и реагирующую смесь. [c.262]

    Более сложной является конструкция полочных контактных аппаратов (рис. VH.2 и VH.3), пригодных для проведения реакций, обладающих заметным тепловым эффектом. В полочных реакторах катализатор находится на нескольких расположенных друг над другом перфорированных полках. Тепло реакции отводится или подводится в теплообменниках, через которые проходят реакционные газы, переходя с полки на полку. Такие теплообменники устанавливают либо внутри аппарата (рис. VH.2), либо вне его (рис. VH.S). В полочных реакторах по высоте каждого слоя неизбежно возникае г перепад температуры. Последний можно свести к минимуму, уменьшая высоту слоев, однако это неизбежно приводит к увеличение, числа полок и соответственно к усложнению и удорожанию аппарата. Кроме того, слишком низкие слои зернистого катализатора обычно непригодны, так как, если высоту слоя можно сравнить с размеров частиц катализатора, могут возникать нежелательные явления из-за поперечной неоднородности слоя (местные перегревы и проскока газа в местах с наименьшим гидравлическим сопротивлением), ведущие к ухудшению показателей или к срыву процесса. При проведении процессов в полочных реакторах вместо устройства промежуточных теплообменников иногда применяют промежуточный ввод холодного (горячего) сырья или инертного компонента. [c.265]


    При значительных тепловых эффектах зону реакции в адиабатических реакторах приходится чередовать с зоной теплообмена, в которой тепло снимается или через стенку или добавкой в реакционную смесь холодного реагента или инертного вещества. [c.286]

    Все рассматриваемые печи являются печами непрерывного действия. По тепловому эффекту — экзотермические реакторы. Выделяющееся тепло перекрывает собственную потребность и поэтому его необходимо отводить. По конструктивным особенностям печи подразделяются на следующие типы. [c.37]

    В уравнениях математического описания реакционных процессов в реакторах с мешалками использованы следующие условные обозначения информационных переменных а, Ь, с — стехиометрические коэффициенты А, В. С — реагирующие вещества С — концентрация компонента Ср —удельная теплоемкость потока реакционной массы Е — энергия активации fi — площадь теплообмена между реакционной массой и стенкой реактора — площадь теплообмена между стенкой реактора и хладагентом в рубашке Рз — площадь теплообмена между реакционной массой и стенкой змеевика 4 —площадь теплообмена между стенкой змеевика и теплоносителем в змеевике G — массовый поток вещества ДС — изменение массового потока реагента за счет диффузии и конвекции А — удельная энтальпия ДЯг — тепловой эффект реакции при постоянном давлении при превращении или образовании 1 кмоль компонента — длина змеевика т —число компонентов реакции Ai — молекулярная масса реагента п —порядок реакции /V —число молей Qnp —скорость подвода энергии (тепла) Qot — скорость потока энергии (тепла) в окружающую среду R — газовая постоянная Т — абсолютная температура — температура / — общая внутренняя энергия системы, [c.67]

    При наличии теплового эффекта реакции, очевидно, необходимо обеспечить подвод (съем) тепла за счет внешнего теплоносителя (хладоагента). Соответственно математическое описание должно включать и выражение (4.48) в уравнении теплового баланса. И, наконец, для реакций, протекающих в системе из двух (и более) фаз, необходимо учитывать массоперенос через границу раздела фаз в форме выражения (4.52). Таким образом, в зависимости от физико-химической природы реагентов, их характерного состояния, типа реакции (эндо- или экзотермическая) одной и той же модели структуры потоков будут соответствовать различные математические описания конкретных реакторов. [c.136]

    Итак, процесс суспензионной сополимеризации в периодическом реакторе сопровождается потоками тепла и массы на единичных, взаимодействующих друг с другом включениях дисперсной фазы и должен рассматриваться как процесс нестационарного тепло- и массообмена с химическими реакциями с учетом стохастических эффектов дробления — коалесценции включений, а также изменения физико-химических свойств системы. [c.274]

    В общем случае при разработке математического описания химического реактора необходимо учитывать термокинетические, диффузионные и химические эффекты. Соответственно в уравнение гидродинамической модели структуры потоков включаются выражения, характеризующие источники вещества и тепла. Собственно источником вещества является химическое превращение, и его интенсивность будет пропорциональна скорости образования продуктов реакции [c.96]

    В сложных реакциях выход целевого продукта определяется не только температурой (или интервалом температур), но и другими переменными, такими, как время реакции (или время пребывания) и тип реактора. Если побочные реакции сопровождаются значительными тепловыми эффектами, важно учесть характер подачи или отвода тепла. [c.143]

    Цель настоящего обсуждения — выявить влияние недостаточного внутреннего тепло- п массообмена, которое в газовых реакциях с твердым катализатором связано с нежелательным изменением температуры п концентрации. Рассматриваемый эффект существенно различен для реакторов с неподвижным и псевдоожиженным слоем катализатора. [c.188]

    В отличие от реакторов гидрокрекинга и гидрирования в реакторах риформинга процесс проходит при значительных отрицательных тепловых эффектах, а это требует непрерывного подвода тепла в зону реакции. Эндотермичность процесса в реакционном объеме определила необходимость создания каскада аппаратов со ступенчатым регулированием температурного режима вместо одного аппарата с раздельными зонами. Разделение одного общего реакционного объема на несколько последовательно соединенных отдельных адиабатических реакторов с промежуточным подводом тепла в реакционные зоны от трубчатой нагревательной печи позволяет значительно уменьшить перепад температур по высоте реакционного объема в каждом аппарате до невысоких значений (15—50 °С). [c.397]

    Можно так подобрать соотношение этих реакций, чтобы суммарный тепловой эффект был только немного положительным, но достаточным для возмещения потерь тепла в окружающую среду и для нагревания исходной смесп до нужной температуры. Практически при получении формальдегида такое положение достигается, когда процесс на 55% идет через окисление и на 45% через дегидрирование, и тогда процесс можно осуществить в адиабатических реакторах, не имеющих поверхностей теплообмена. В этом состоит одно из преимуществ совмещенного процесса окисления и дегидрирования спиртов. При указанном соотношении реакций дегидрирования и окисления исходная паро-воздушная смесь должна содержать — 45% (об.) метанола, что находится за верхним пределом взрываемости метанола в воздухе [34,7% (об.)]. [c.474]

    Реакциц гидрокрекинга сернистых соединений экзотермичны однако ввиду малых количеств этих соединений в сырье тепловым эффектом можно пренебречь. При значительном содержании непредельных соединений в сырье в результате их гидрирования повышается температура процесса- Так, при содержании в нефтезаводском газе 2,5% этилена температура газа на выходе из. реактора гидрирования повьппается на 25 °С. В том случае, если гидрированию подвергают газ, содержащий более 4% непредельных углеводородов, во избежание значительного перегрева катализатора необходимо обеспечить отвод выделяющегося тепла из реактора. [c.65]

    Реакция изомеризации протекает с очень небольшим положительным тепловым эффектом и не требует промежуточного снятия тепла в реакторах. Поэтому технологически процесс изомеризации осуществляют в одну.-ртупень. [c.327]

    Для дальнего транспортирования тепла можно использовать водородсодержащие хемотермические системы (замкнутые или разомкнутые). В таких системах аккумулирование тепла достигается путем проведения эндотермической химической реакции с большим тепловым эффектом, например паровой конверсией метана с использованием высокотемпературного тепла атомного реактора. Далее следует трубопроводное транспортирование полученной смеси СО ЗНг к потребителю, где проводят обратную реакцию [c.561]

    Высокая стоимость и большие трудности эксплуатации оборудования для теп,пообмена и регулирующей аппаратуры, необходимых для поддержания правильного оптимального температурного градиента, могут оказаться очень важным фактором при решении вопроса об экономической целесообразности применения соответствующих теплообменников в реакторах. Сюда же добавляется серьезная проблема необходимости отвода достаточного количества тепла от реактора для поддержания желательного температурного градиента. Требования к теплопередаче могут оказаться столь значительными, что будут сводить на нет преимущества, получаемые при использовании ре/кима с падающим температурным градиентом. Однако при условии что реакция не слишком экзотермична при работе реактора в изотермическом режиме, будут достигаться вполне сопоставимые результаты, но без сопутствующих градиентному режиму трудностей, связанных с необходимостью удаления избыточных количеств тепла на выходе из реактора. Но всегда с,ледует помнить, что при управлении реактором в изотермхгческом режиме также требуется применять дорогостоящее оборудование для улучягения теплопередачи. Следовательно, необходимо тщательно учесть все практические трудности и затраты, связанные с методом управления, прежде чем решить, будет ли оптимальный температурный профиль или оптимальная температура при изотермическом режиме давать определенный экономический эффект. Чаще выгоднее использовать последовательность адиабатических реакторов. [c.444]

    Соблюдение этого условия технически трудно, вследствие большой величины экзотермического эффекта реакции полимеризации (достигающего 872 ккал/кг) и значительного сопротивления передаче тепла стенок реактора, bbii-ду их большой толихины (обусловленной давлением 1500 ати, при котором опи работают). [c.63]

    Важным условием осуш,ествления полимеризации в реакторе с идеальным перемешиванием является поддержание температуры на уровне 185°. Соблюдение этого условия технически трудно, вследствие большой величины экзотермического эффекта реакции полимерпзации (достигающего 872 ккал кг) и значительного сопротивления передаче тепла стенок реактора, ввиду их большой толщины (обусловленной давлением 1500 ати, при котором они работают). [c.75]

    Тепловой эффект реакции с/р = 1000 ккал кг образовавшегося полиэтилена теплоемкость полиэтилепа сп = 0,6 ккал/кг. Температура бензипа, подаваемого в реактор, 40 С, раствора катализаторного комплекса 30 С, этилена 40 С. Отвод избыточного тепла реакции осуществляется путем отдува из реактора части этилена, насыщенного парами бензина, охлаждения отдуваемого потока, конденсации паров бензина и возврата конденсата и песконденсировавшегося этилена в реактор. [c.303]

    Прежде всего трубчатые реакторы можно разделить на аппараты с пустыми трубами и аппараты с неподвижным слоем твердых частиц. Если реакция сопровождается тепловым эффектом, то ее ход будет зависеть от скорости теплопередачи через стенку трубы. Если внешняя стенка трубы теплоизолирована, то мы имеем дело с адиабатическим трубчатым реактором, рассмотренным в предыдущей главе. Если тепло реакции отводится или подводится через стенку, то сразу возникает проблема теплопередачи от реагп- [c.254]

    Условия процесса могут быть постоянными по всему сечению реактора только при хорошем поперечном перемешивании реагирующей смеси. Последнее обычно описывается эффективным коэффициентом поперечной диффузии Е . В неподвижном слое поперечное перемешивание вызывается разделением и слиянием потоков при обтекании твердых частиц. Анализ этого процесса с помощью метода случайных блужданий приводит к значению радиального числа Пекле Ре = vdJE , равному — 8. В многочисленных экспериментальных исследованиях в неподвижных слоях без химических реакций были найдены числа Пекле от 8 до 15 причем при Ке > 10 число Пекле не зависит от числа Рейнольдса. Это подтверждает предположение о том, что поперечное перемешивание является чисто гидродинамическим эффектом. Числа Пекле для переноса тепла те же, что и для переноса вещества, а это говорит о пренебрежимо малой роли твердых частиц в процессе поперечной теплопроводности. С уменьшением числа Рейнольдса ниже 10 число Пекле сначала возрастает, но затем начинает уменьшаться, так как при [c.263]

    В, С, О, I. Видно, что слабое увеличение Т за линию L приводит к резкому скачку температуры от О V. Н. Аналогично, при постепенном уменьшении Т, процесс проходит последовательность стационарных режимов, соответствующих точкам I, Н, С, Р, с дальнейшим резким падением до точкп В и далее к точке А. Это приводит к гисте-резпсным кривым, изображенным на рис. IX.20. Неопубликованные вычисления для противоточного реактора с независимым теплоносителем показывают еще более резкие эффекты. Можно сказать, что в реакторах с противоточным теплообменником тепло реакции, выделившееся в некоторой точке, вместо того, чтобы вымываться потоком, как это было бы в отсутствие обмена теплом с теплоносителем, может возвращаться вверх но течению реагирующей смеси, способствуя образованию высоких температурных пик. К аналогичным эффектам может приводить продольное перемешивание потока, как это было показано в работе Ван Хирдена и в более поздней статье Амундсона (см. библиографию на стр. 303). [c.285]

    Хорошо известно, что режим идеального вытеснения недостаточное условие для пол> чения достоверных данных. Весьма важно, чтобы реактор был изотермичен, так как отклонения от изотермичности могут привести к большему искажению данных по кинетике основных реакций, чем эффекты неоднородностей потока. Для обеспечения изотермичности слоя катализатора используют различные приемы. В частности, одним из эффективных приемов является помещение реактора с катализатором в псевдоожижений слой нагретого песка [30]. В бане с псевдоожиженным слоем теплоносителя устанавливается равномерный тепловой режим, соответственно и в реакторе или системе последовательно соединенных реакторов по всей высоте слоя обеспечивается изотермичность. Температура реактора зау меряется термопарой, прикрепленной к наружной стенке. Указанный способ подвода тепла имеет определенные трудности ввиду необходимости поддержания теплоносителя в псевдоожиженном состоянии длительное время. Однако он является наиболее рациональным, так как отпадает необходимость загрузки в реакторы инертной насадки для фиксации слоя катализатора в зоне равномерного температурного поля, как это делается обычно в реакторах с подводом тепла через стенку от электронагревательной спирали (см. рис. 3.15). В показанном на этом рисунке типе реактора изотермичность обеспечивается в ограниченной зоне ввиду больших теплопотерь через верхний и нижний фланцы. Реактор такого типа обычно используется при проведении экспериментов с большой глубиной превращения в длительных опытах. Недостатком такого типа реактора является ухудшение показателей по селективности катализатора из-за протекающих реакций термодеструк-цни в зоне инертной насадки над входной зоной катализатора. Этот реактор также может быть приспособлен для проведения опытов с малой степенью преврашения, т. е. при высоких значениях объемной скорости подачи сырья [35]. Суть такого приспособления заключается в том, что внутрь пустого реактора помещается [c.91]

    Величина энергии связи —F равна около 104 ккал/моль (по сравнению с 66 ккал/моль для —С1), в то время как величина энергии связи >С—С< составляет примерно 81 ккал/моль. Таким образом, тепловой эффект реакции фторирования достаточно велик для того, чтобы быть определяющим при разрыве связей С—С в реагирующих молекулах. Поэтому для прямого фторирования совершенно необходимо обеспечить температурный контроль реакции, например, разбавляя реакционную смесь инертным газом (Nj) или применяя реакторы с металлической насадкой (ситами), способной быстро поглощать тепло. Фторирование в жидкой фазе позволяет легче контролировать температуру в реакторе. Осуществление процесса этого типа приводит в случае метана и этана к получению смеси MOHO- и полифтор производных. [c.273]

    Качественное исследование систем уравнений, оиисывающих стационарные режимы работы гетерогенных каталитических реакторов, свидетельствует о множестве стационарных состояний. Причинами множественности стационарных состояний являются нелинейности кинетики химических реакций, а также транспортные эффекты, среди которых наиболее существенны тепло- и массоперенос между поверхностью зерен катализатора и реакционным потоком, перемешивание потока в радиальном и осевом направлениях отвод (подвод) тепла, выделяющегося (поглощающегося) в ходе химических реакций [1, 2]. [c.281]


Смотреть страницы где упоминается термин Тепловой эффект в реакторах: [c.259]    [c.294]    [c.263]    [c.89]    [c.166]    [c.175]    [c.276]    [c.294]    [c.145]   
Смотреть главы в:

Реакторы в химической промышленности -> Тепловой эффект в реакторах




ПОИСК





Смотрите так же термины и статьи:

Эффект тепловой

Эффект тепловой, Тепловой эффект



© 2025 chem21.info Реклама на сайте