Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы катионов IV группы

    Использование электронных спектров для получения структурной информации прекрасно иллюстрируют результаты исследования электронной структуры иона ванадила [38]. При интерпретации спектра ва-надил-иона VO полагают, что в связи V — О имеет место значительное я-связывание. Соединения, в которых, согласно данным рентгеноструктурного анализа, содержится группа VO , дают сходные электронные спектры переноса заряда и в твердом состоянии и в растворе. Поэтому можно предположить, что водные растворы этих комплексов содержат группы УОЩ О) , а не ViH O) . Протонирование VO в принципе должно заметно влиять на спектр переноса заряда. Предполагается, что кислород не протонируется, поскольку его основность ослаблена из-за образования я-связи с ванадием. Полный расчет по методу МО для VOiHjO) представлен в статье [38], там же дано отнесение полос в спектре водного раствора V0S04-5H20. Аналогичные исследования других окси-катионов также свидетельствуют о значительном п-связывании металл — кислород [39] и помогают установлению электронной структуры этих частиц. [c.108]


    Рассмотрим теперь, какова же причина поведения катионов металлов в растворе как катионов группы а или группы б . На основании тщательного анализа имеющихся термодинамических данных высказано предположение, что основной вклад в свободную энергию комплексообразования а -катионов вносит энтропийный член, тогда как в случае образования комплексов катионами группы б большее значение имеет энтальпия комплексообразования [34]. Рассмотрим сначала взаимодействие а -катиона, железа (III), с фторид- и хлорид-ионами [35,36].  [c.258]

    Влияние кислотности. Как видно из формулы, ЭДТА — четырехосновная кислота. Ступенчатые константы ее диссоциации отвечают значениям рК 2,0, 2,7, 6,2, 10,3. Произведение констант характеризуется значением р/С, (. 21,2. В комплексе катион металла замещает водородные ионы двух или более карбоксильных групп реактива. Поэтому, очевидно, концентрация водородных ионов имеет очень большое значение для титрования ЭДТА. [c.431]

    Образование ионной пары анионный комплекс — катионная группа анионита [c.397]

    Возможно также смещение катионов в пределах отдельных полостей. В этом случае комплекс катион — окружение можно рассматривать как диполь. Это должно вызывать поляризацию, пропорциональную напряженности электрического поля, что и наблюдалось для максимума С (кривая 1, рис. 16.5), когда размораживается первая группа катионов. В области В эта пропорциональность не соблюдается, что может быть связано с экранирующим действием ранее размороженных катионов. [c.260]

    В состав многих макроциклических комплексов катионов 1а и 11а групп входят связанные с центральным ионом молекулы воды Наиболее часто это наблюдается для соединений лития, натрия и щелочноземельных металлов [c.183]

    Известно, что в отсутствие субстратов (нуклеозидтрифосфатов) РНК-полимераза слабо связывается с ДНК. Напротив, во время синтеза РНК образуется недиссоциирующий комплекс ДНК — фермент [43]. Согласно описываемой модели этот комплекс стабилизован связями между пирофосфатными группами двух взаимодействующих рибонуклеозидтрифосфатов и катионными группами субъединиц полимеразы. Основания этих три- [c.568]

    Для третьей группы катионов (во внешней электронной оболочке находится 18 или 18 + 2 электронов) характерны иные зависимости. Большое число электронов во внешней оболочке способствует их сравнительно легкой деформируемости и поляризуемости. Жесткость электронной оболочки не так велика, как у катионов первой группы. В комплексах катионов третьей группы преобладает ковалентная связь, осуществляемая парой электронов, находящихся в совместном владении катиона металла и лиганда. Поэтому во многих случаях изменение устойчивости комплексов катионов элементов одной и той же группы периодической системы хорошо коррелирует со способностью этих катионов к образованию ковалентной связи. С количественной стороны способ1Юсть к образованию ковалентных связей можно описать ковалентной характеристикой, предложенной К. Б. Яци-мирским для объяснения растворимости некоторых малорастворимых соединений. Ковалентная характеристика представляет собой разность между энергией ионизации атома и теплотой гидратации образующегося иона. Чем больше энергия ионизации, тем больше энергии выделяется при обратном процессе — присоединении к нону электронов, которые отдает лиганд при образовании комплексного иона. С другой стороны, чем меньше теплота гидратации, тем меньше [c.254]


    Молекулы кристаллизационной воды в таких солях во многих случаях можно считать лигандами, что особенно справедливо для переходных и высокозарядных ионов непереходных элементов. Кристаллизационную воду солей щелочных металлов не всегда можно считать координационной водой. Спектры поглощения этих комплексов подобны спектрам водных растворов солей соответствующих металлов, и это показывает, что в водных растворах ионы металлов находятся в виде аква-комплексов. С другой стороны, свойства кристаллов и водных растворов комплексов металлов группы платины, а также Со(П1) и Сг(1П), содержащих неводные лиганды, совпадают, что обусловлено в данном случае медленно идущей реакцией обмена лигандов и сохранением в водном растворе вокруг катиона тех же лигандов, как в кристалле. Быстрый обмен лигандами в водном растворе, характерный для других катионов металлов, объясняет, почему в этом случае эти катионы в водных [c.225]

    Мембранные электроды были использованы для изучения взаимодействия ионов щелочных и щелочноземельных металлов с полиэлектролитами, такими, как протеины [54, 56] и мыла [55], а также для определения констант равновесия фосфатных комплексов щелочных металлов [189]. Если мембраны, специфичные для определенного катиона, будут работать с высокой степенью точности, то мембранные электроды найдут широкое применение для изучения равновесия комплексов катионов главной подгруппы 1-й и 2-й групп. [c.167]

    При образовании комплексов катионами металлов группы б изменение энтальпии больше, чем изменение энтропии, что приводит к небольшому энтропийному вкладу в энергию комплексообразования (положительному или отрицательному). Это объясняется тем, что при взаимодействии б -катионов металлов с более крупными лигандами, например иодидом, которые разрушают упорядоченную структуру воды, происходит вновь упорядочение структуры, приводящее к неблагоприятному изменению энтропии. Рассмотрим реакцию между катионами ртути (П) и галогенид-ионами [37—39]. [c.259]

    Кузнецов и Саввин 328, 329, 331] применяли добавки крупных органических катионов для экстракции комплексов элементов с реагентами типа арсеназо I, торона, арсеназо П1. В качестве вещества — поставщика катионов был использован дифенилгуанидин. Комплексы указанной группы могут содержать гидратную воду и свободные гидрофильные группировки, поэтому они лучше экстрагируются спиртами, например бутиловым спиртом. Кроме того, на атоме металла может сохраняться избыточный положительный [c.108]

    Из (X. 93 г) следует, что координация А - катионом окисленной формы увеличивает наклон последующего линейного участка на х/пд, а координация этого аниона катионом в низщей степени окисления уменьшает его на Ьи/пр. Руководствуясь знаком и абсолютным значением изменения углового коэффициента и зная составы комплексов на одном из участков, не трудно найти число координированных групп А - в комплексах катионов обеих форм на любом линейном участке кривой. [c.626]

    Электронные и -катионы обладают рядом особенностей в комплексообразовании. Прежде всего это высокое сродство к до-норным атомам азота и серы, причем сродство к донорному атому азота обычно выше, чем к донорному атому кислорода. Особенно это видно при взаимодействии этих катионов с аммиаком. В растворе аммиака содержатся кислородные лиганды ОН и азотные лиганды МНз- Если катионы класса А образуют при действии аммиака гидроокиси или комплексные гидроксо-ионы (бериллий), то катионы рассматриваемой группы, как правило, дают аммиачные комплексы. Эта группа катионов велика и по свойствам очень разнообразна, являясь как бы переходной между классами А и Б. Некоторые факторы (увеличение заряда у Ее , появление й -обо-лочки у и т. д.) способствуют повышенной электростатич- [c.64]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]


    Для катионов с недостроенной -о(5олочкой характерно образование комплексов двух типов. Одни из них, а именно двухзарядные катионы элементов четвертого периода, образуют обычные так называе.мые лабильные комплексы, у которых равновесие между частицами в растворе устанавливается очень быстро, как и у рассмотренных выше комплексов катионов с оболочкой типа инертного газа. Трехзарядные катионы платиновых металлов, хрома и кобальта часто образуют стабильные комплексы. Стабильность в данном случае — это не термодинамическая устойчивость, а кинетическая инертность, вследствие чего находящиеся в растворе комплексы сущестиуют в неравновесном состоянии. Истинное равновесие устанавливается нередко очень медленно, в течение нескольких суток или месяцев. Поэтому констангы устойчивости комплексов этой группы металлов определены только для небольшого числа соединений, что затрудняет выяснение закономерностей устойчивости. В дальнейшем будут рассмотрены только комплексы элементов четвертого периода, а именно комплексы катионов марганца, железа, кобальта, никеля, меди и цинка. [c.249]

    Несмотря на преобладание ковалзнтной связи в комплексах катионов металлов третье группы имеют значение также факторы, определяющие устойчивость комплексов с преимущественно электровалентным характером связи, в частности заряды и радиусу частиц. Поэтому ярко выраженной зависимости от какой-либо одной из названных характеристик обычно не наблюдается. [c.255]

    Для комплексов катионов металлов первой группы (во внешней электронной оболочке находится 2 или 8 электронов) и для некоторых переходных металлов (с недостроенным -подуровнем) основным фактором является размер лигандов. Фторидные комплексы прочнее, чем хлоридные, а хлоридные прочнее бро-мидных и иодидных. Так, бериллий, магний, алюминий, лантан, цирконий образуют прочные фторидные комплексы (IgPi равны соответственно 4,3 1,3 6,1 2,8 8.8) устойчивость же комплексов названных элементов с хлорид-, бромид- и иодид-ионами невелика или они вообще не образуются. Из пере.ходных металлов такая же закономерность наблюдается, например, для железа и марганца устойчивость фторидных, хлоридных и бромидных комплексов этих металлов характеризуется соответственно числами 5,3 1,5 и —0,3 (железо) а также 5,5 и 0,96 (марганец). [c.256]

    Одной из характерных свойств синергизма МАП и фосфолипазы А является необходимость их одновременного присутствия в среде для достижения максимального эффекта. Это дает возможность предположить, что ПЛФ является не только модификатором мембраны, но и служит посредником в связывании энзима с мембранным субстратом. Подобные функции могли бы выполнить катионные группы МАП, участвуя в активации энзима ионами кальция через образование комплекса энзим — Са+ — субстрат ( ondrea, 1974). [c.77]

    Молекула арсеназо III сочетает в себе три группировки АзОзНг, способствующая образованию прочного комплекса в кислой среде N = N-a30-rpynna, обеспечивающая окраску комплекса ОН-группы, образующие второй шестичленный цикл при взаимодействии с катионом циркония, что способствует упрочнению комплекса и углублению окраски. [c.138]

    Для катионов группы Пб структуры комплексов 18-краун-б с 2пВг2 и dBг2 были определены с помощью ИК-, КР- и ЯМР-спектроскопии [90]. Для комплекса типа 1 1 18-краун-б с Hg l2 методом С1- ЯКР и путем измерения удлинения связи Hg- I с помощью ИК-спектроскопии были рассчитаны число атомов кислорода, координирующих с Hg , и коэффициент межмолеку-лярного взаимодействия Hg- l [91]. [c.115]

    Конформационная гибкость полиэфирной молекулы позволяет атомам кислорода эфирных групп ориентироваться внутрь цикла, создавая тем самым полость определенного размера с высокой электронодонорной активностью. В водных растворах, вследствие близости соль-ватационных свойств атомов кислорода, краун-эфира и молекул воды, константы устойчивости комплексов катионов металлов, как правило, невелики (< 10 ), а их различия [c.167]

    Гетероциклические азосоединения чрезвычайно реакционно-способны. Они взаимодействуют со всеми элементами, существующими в растворе в катионной форме, образуя интенсивно окрашенные соединения. Исключение составляют щелочные металлы, не взаимодействующие с реагентами данной группы. По последним данным, ПАНч2 взаимодействует с щелочноземельными элементами, образуя экстрагируемые комплексы. Особую группу составляют элементы платиновой группы, за исключением палладия, образующие комплексы только при нагревании. Перманганат и бихромат окисляют реагенты до бесцветных соединений, сильные восстановители— ванадий(П), хром(И), титан(П1) — восстанавливают реагенты до двух аминов. [c.32]

    Для руд с отрицательно заряженной поверхностью необходимо соблюдать ряд определенных правил. Здесь используются длинноцепные амины, четвертичные аммониевые соли, пиридиниевые соли и имидозолины. Адсорбция обусловливается электростатическим взаимодействием катионных групп ПАВ с отрицательно заряженной поверхностью руды. В тех случаях, когда металлы (медь или цинк) могут легко образовывать комплексы с азотом, возможна хемосорбция. [c.121]

    В гидратированных цеолитах сильно поляризующие катионы образуют гидратные комплексы, и при дегидратации они прочно удерживают последние молекулы воды. При заданной температуре дегидра- тации количество остаточной воды в каркасе определенного типа зависит от потенциала ионизации катиона. Полосы поглощения в ИК-спектрах указывают на образование комплексов катион-гидроксил и гидроксильных групп каркаса. Ионы щелочных металлов и Ва не могут расщепить молекулы воды, и слабые полосы гидроксильных групп могут появиться только в результате частичного обмена с Н в кислой среде. Такие небольшие двузарядные катионы, как иМв " ", образуют гидроксильные группы в количествах, пропорциональных их поляризующей силе [139,140]. В результате получаются спектры весьма сложного вида с несколькими плохо разрешенными полосами в области 3200—3700 см . Полосы с частотами около 3640 и 3540 см были отнесены к гидроксилам каркаса, таким же, как в Н-фожазите. Полоса при 3600—3560 см была отнесена к гидроксильным группам, связанным с двузарядными катионами, а полоса при 3690 см приписана воде. Регидратация при температурах до 200°С увеличивала интенсивность полосы при 3690 см , но при более высоких температурах эта полоса замещалась полосами при 3640 и 3600—3560 см , вероятно, в результате поляризации подвижных молекул воды катионами при высокой температуре. С повышением поляризующей силы катиона увеличивалась частбта полосы в области 3600—3560 см . Подробно эти данные обсуждаются в гл. 3. [c.74]

    Градиент электростатического поля имеется во всех цеолитах, но особенно больших- значений он должен достигать вблизи много-зарядных катионов. Демпси [128] рассчитал, что на расстоянии 2,5—3 А, от катиона напряженность электростатического поля может достигать от 1 до 3 В/А. Эти значения, по-видимому, несколько завышены, так как эффективный заряд всегда меньше формального по тем или иным причинам. Тем не менее такое поле должно вызывать значительную поляризацию находящихся в нем молекул, смещая заряд связи С—Н углеводорода на величину до 0,1 заряда электрона. Поляризация многозарядными катионами остаточных молекул воды с образованием ОН-групп понижает эффективность катионов, особенно если комплекс катиона с гидроксильной группой занимает недоступное для адсорбированных молекул место. Все катионы вносят вклад в общее электростатическое поле кристалла, хотя наибольшее действие оказывают катионы, с которыми молекулы находятся в контакте. [c.98]

    Катионы группы В с более низкими ионными потенциалами и оболочками из 18 электронов, легко поляризующиеся и образующие комплексы, устойчивость которых часто превышает устойчивость комплексов металлов группы А. Чем меньше разность значений электроотрицательности центрального и донорного атомов, тем больше устойчивость образующегося комплекса. Эта тенденция характерна для следующего ряда донорных атомов ОсЫсЗ. Комплексы ионов металлов, отличающихся более вьь [c.26]

    Кузнецов и Саввин [329] распространили этот прием на сильно окрашенные комплексы реагентов группы арсеназо и торона. В этом случае, помимо использования крупных органических катионов, необходимо применять кислородсодержащие растворители. В качестве поставщика катионов был предложен дифенилгуа- [c.183]


Смотреть страницы где упоминается термин Комплексы катионов IV группы: [c.141]    [c.628]    [c.270]    [c.175]    [c.205]    [c.319]    [c.160]    [c.469]    [c.80]    [c.72]    [c.230]    [c.469]    [c.109]    [c.178]    [c.147]    [c.291]    [c.257]    [c.258]    [c.164]    [c.63]   
Курс аналитической химии. Кн.1 (1968) -- [ c.294 ]

Курс аналитической химии Книга 1 1964 (1964) -- [ c.252 ]

Курс аналитической химии Издание 3 (1969) -- [ c.294 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксильные группы в каркасе и в катионных комплексах

Комплексы катионные



© 2025 chem21.info Реклама на сайте