Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллическое состояние вещества . 5.1.2. Аморфное состояние вещества Жидкости

    Кристаллическое и аморфное состояние вещества. Большинство твердых тел в окружающем нас мире являются кристаллическими, т. е. образующие их частицы расположены регулярно в трехмерном пространстве. В монокристаллах эта регулярность распространяется на весь объем твердого тела, в поликристаллических образцах имеются регулярные области — зерна, размеры которых значительно превышают расстояния между микрочастицами (на границах между этими областями ориентация регулярной структуры резко меняется). Таким образом, в кристаллических телах реализуется в отличие от жидкостей дальний порядок . [c.72]


    Стекло представляет собой типичный пример так называемого аморфного состояния вещества, которое в отличие от кристаллического характеризуется двумя признаками изотропностью свойств и отсутствием температуры плавления. Аморфные тела встречаются обычно в виде двух форм компактной и дисперсной. Представителем компактной формы является стеклообразное состояние, в дисперсной форме находятся сажа, аморфный бор, аморфный кремний и т. п. Для аморфного состояния характерно наличие только ближнего порядка в расположении структурных единиц. Дальний порядок, свойственный кристаллам, отсутствует. Компактное аморфное состояние представляет собой сильно переохлажденную жидкость и отличается от последней только отсутствием лабильного обмена местами между отдельными структурными ассоциатами, что обусловлено высокой вязкостью. В дисперсном аморфном состоянии, представляющем собой тонкий порошок, состоящий из агрегатов, не имеющих упорядоченного строения, химическое взаимодействие между отдельными частицами полностью [c.306]

    Рассматривая аморфное тело как переохлажденную жидкость, оцепеневшую из-за очень больщой вязкости, следует помнить, что в отличие от жидкостей в аморфном веществе обмен между соседними частицами практически не происходит. Большая вязкость расплавов затрудняет движение и переориентировку молекул, что препятствует образованию зародышей твердой фазы. Поэтому прн быстром охлаждении жидкостей (расплавов) оии затвердевают не в кристаллическом, а в аморфном состоянии. [c.159]

    Представление о ближней квазикристаллической упорядоченности как о фундаментальном свойстве аморфного состояния вещества дает основание ожидать существования глубокой генетической связи между структурой жидкости и кристалла. Неудивительно поэтому, что одна из первых моделей структуры аморфного состояния полимеров, а именно пачечная модель В. А. Каргина, А. И. Китайгородского и Г. Л. Слонимского [2], во многих отношениях напоминает бахромчато-мицеллярную модель структуры кристаллических полимеров, предложенную [c.3]

    Кристаллическое и аморфное состояния вещества. Некоторые вещества при одних и тех же условиях могут находиться как угодно долго в кристаллическом и в аморфном состояниях. Типичным представителем таких веществ является кремнезем ЗЮа, который при обычных условиях существует как в виде кристаллического кварца, так и в виде аморфного кварцевого стекла. Свойства кремнезема в этих состояниях совершенно различны. Это обусловлено различным внутренним строением кристаллического и аморфного состояний вещества. С молекулярной точки зрения различие между кристаллическим и аморфным состояниями вещества состоит в том, что в кристаллическом веществе частицы (молекулы, атомы или ионы) фиксируются в пространстве и устойчиво, и симметрично, а в аморфном состоянии частицы вещества располагаются в пространстве и менее устойчиво и в общем несимметрично. Поэтому аморфное состояние вещества является менее устойчивым, чем кристаллическое его состояние, а само вещество всегда стремится перейти из аморфного в кристаллическое состояние. Однако этот переход у разных веществ осуществляется с разной скоростью. Чем сложнее и причудливее строение молекул вещества, тем с меньшей скоростью реализуется возможность перехода его из аморфного состояния в кристаллическое. Поэтому в некоторых случаях чистые вещества со сложным строением молекул и различные смеси, содержащие компоненты со сложным строением молекул, могут быть получены лишь в аморфном состоянии. Характерной особенностью таких веществ в жидком состоянии является то, что вязкость их весьма велика и резко увеличивается при понижении температуры. Это является причиной того, что при отнятии тепла от такой жидкости она легко переохлаждается до такой температуры, при которой вязкость ее достигает огромной величины (порядка 10 н- сек - м "). При такой вязкости молекулы жидкости практически прекращают свое поступательное движение и фиксируются в пространстве в том порядке, какой был к этому времени в жидкости, и жидкость затвердевает, т. е. получается аморфное состояние вещества. Хотя образовавшееся аморфное состояние вещества является менее устойчивым, чем кристаллическое, тем не менее [c.50]


    Твердые тела можно условно разделить на кристаллические и некристаллические — аморфные. В кристаллическом теле, как показал рентгеноструктурный анализ, частицы расположены по определенным законам. Твердые тела, в которых частицы расположены в беспорядке, например как в жидкости, называются твердыми жидкостями или аморфными телами (слово аморфный в переводе на русский язык означает бесформенный). Некоторые вещества могут встречаться как в кристаллическом, так и в аморфном состоянии. [c.83]

    Твердые вещества в буровых растворах встречаются в кристаллическом и реже в аморфном состояниях. Аморфное (неопределенное) строение имеют некоторые оксиды, гидроксиды и алюмосиликаты, попадающие в промывочную жидкость вместе с выбуренной породой или образующиеся в ней в результате конденсирования. Изучению аморфных веществ в буровых растворах уделяют мало внимания. Наиример, ири оиределении глинистых минералов их удаляют, чтобы получить хорошую рентгенограмму, а при обсуждении различных превращений в буровых растворах иногда забывают о том, что аморфные вещества являются не только продуктами разложения кристаллических веществ, по и материалом для синтеза новой твердой фазы. [c.11]

    Белковые вещества разнообразны по своему агрегатному состоянию. Часто это твердые аморфные тела, имеющие вид белых порошков. Белки шерсти (кератин) и шелка (фиброин) — прочные волокна. Некоторые белки получены в кристаллическом состоянии (гемоглобин крови). Многие имеют консистенцию вязких жидкостей или студней. [c.295]

    Вследствие сходства во внутренней структуре жидкостей и аморфных тел последние часто рассматриваются как жидкости с очень высокой вязкостью, а к твердым телам относят только вещества в кристаллическом состоянии. Уподобляя аморфные тела жидкостям, следует, однако, помнить, что в аморфных телах, в отличие от обычных жидкостей, частицы имеют незначительную подвижность — такую же, как в кристаллах. [c.164]

    В случаях перехода жидкости не в кристаллическое, а в стеклообразное состояние падение температуры происходит равномерно и на кривой не наблюдается ступеньки , характерной для перехода вещества в кристаллическое состояние. Вся жидкость постепенно делается все более вязкой, густой и, наконец, застывает в стеклоподобную массу. На всем участке температур мы имеем дело с жидким состоянием, только вязкость жидкости при охлаждении настолько увеличивается, что жидкость почти утрачивает свою текучесть. Так же постепенно происходит переход аморфного вещества в жидкое состояние при нагревании аморфное вещество не имеет резкой температуры плавления. [c.60]

    Переход жидкости в твердое аморфное вещество происходит постепенно, без резкого изменения физического состояния и выделения энергии. Переохлажденный полимер по сравнению со своей кристаллической модификацией имеет больший запас энергии. Это определяет возможность самопроизвольного перехода аморфного вещества в кристаллическое. Известно, например, что отлитые из кристаллических полимеров изделия могут при хранении и эксплуатации повышать свою кристалличность так, в изделиях, полученных методом литья под давлением из полиэтилена, кристалличность за 1300 дней повышалась в среднем на 6%. Однако практически для большинства полимеров аморфное состояние является устойчивым. [c.22]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]

    Строение вещества. Этот раздел включает сведения о строении атомов и молекул и учение об агрегатных состояниях вещества. Данные о строении атомов и молекул и природе химической связи составляют теоретическую основу для изучения химических свойств молекул, их реакционной способности, механизма и кинетики химических реакций. В учении об агрегатном состоянии веществ рассматриваются взаимодействие молекул в газах, жидкостях и твердых телах, а также свойства веществ в различных агрегатных состояниях. В настоящее время в науке широко применяются различные физические и физико-химические методы исследования рентгеноструктурные, электронографические, радиоспектроскопические, оптические и др., которые позволили получить ценную информацию о строении жидкостей и твердых тел как в кристаллическом, так и аморфном состояниях. [c.6]


    Когда твердые органические тела в полностью или частично кристаллическом состоянии, а также полностью аморфные, подвергаются в некотором диапазоне температур действию относительно небольшого напряжения, они проявляют многие особенности поведения, связанные с простейшими (линейными) вязко-упругими процессами. Эти процессы, особенно для более жестких, кристаллических, тел, могут показаться в какой-то мере неожиданными. Однако если принять во внимание, что даже поликристаллические металлы и металлические сплавы проявляют неупругие свойства (обнаруживаемые достаточно чувствительными измерительными приборами), то появление подобных эффектов в органических веществах не должно вызывать удивления. Органические твердые тела в отличие от металлов, как правило, не обладают высокой температурой плавления и при обычных температурах оказываются более склонными к ползучести. Некоторые органические вещества при комнатной температуре фактически являются жидкостями или мягкими резинами. Поведение таких жидкостей и резин здесь не рассматривается, так как настоящий обзор посвящен только таким органическим твердым телам, которые вполне жестки при комнатной температуре .  [c.330]

    В отличие от кристаллических веществ аморфные тела подобно жидкостям обладают лишь ближним порядком расположения частиц у них отсутствует четко выраженная точка плавления. При повышении температуры аморфные тела постепенно переходят в жидкое (текучее) состояние. К аморфным телам относятся, например, большое число полимерных материалов, стекло и др. [c.90]

    Аморфными веществами являются и полимеры-, они отличаются от обычных аморфных тел тем, что образуются из соответствующих жидкостей (мономеров) не в результате понижения температуры, а в результате химического соединения молекул. Второе отличие заключается в том, что при переходе из аморфного состояния в кристаллическое кристаллизация охватывает лишь некоторые участки, так как достижению высокой степени упорядоченности мешают большие размеры молекул — крупным и взаимно переплетенным молекулам трудно симметрично расположиться в пространстве. [c.287]

    Жидкое состояние вещества характеризуется достаточно сильным межмолекулярным взаимодействием, распространяющимся, однако, внутри небольших агрегатов, которые в свою очередь сохраняют заметную подвижность относительно друг друга. Мгновенное охлаждение жидкости приводит к заметному изменению ее свойств высокая подвижность агрегатов молекул друг относительно друга исчезает и вещество приобретает твердость. Вместе с тем такое охлаждение жидкости обеспечивает переход многих веществ в метастабиль-ное, аморфное состояние, которое характеризуется беспорядочной ориентацией в пространстве отдельных агрегатов молекул. Вещества, находящиеся в аморфном состоянии, стремятся к упорядочению, т. е. к образованию пространственных структур, в которых расположение атомов (молекул) соответствует периодическому повторению узора в трех измерениях. Такие твердые тела называются кристаллами, а расположение атомов в них — кристаллической структурой (или кристаллической решеткой, см. с. 9 и схему ). [c.41]

    Аморфные вещества по структуре аналогичны жидкостям и отличаются от них лишь весьма малой подвижностью частиц. Поэтому аморфные вещества рассматривают как переохлажденные жидкости. Из-за большого внутреннего трения переход их в кристаллическое состояние сильно затруднен. [c.29]

    Аморфное состояние. Аморфные вещества отличаются от кристаллических изотропностью, т. е., подобно жидкости, одинаковыми значениями данного свойства при измерении в любом направлении внутри вещества. Аморфная структура, так же как и структура жидкости, характеризуется ближним порядком. Поэтому переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств — вот второй важный признак, отличающий аморфное состояние твердого вещества от кристаллического состояния. Так, в отличие от кристаллического вещества, имеющего точку плавмния при которой происходит скачкообразное изменение свойств (рис. 156, а), аморфное вещество характеризуется интервалом размягчения -г-Тц и непрерывным изменением свойств (рис. 156, б). Этот интервал в зависимости от природы вещества может иметь величину порядка десятков и даже сотен градусов. Наличие интервала размягчения, в котором аморфное вещество находится в пластичном состоянии, непосредственно свидетельствует о структурной неэквивалентности его частиц и, как следствие, лишь [c.285]

    Аморфное состояние. Аморфные вещества отличаются от кристаллических изотропностью, т. е. подобно жидкости они имеют одинаковые значения данного свойства при измерении в любом направлении внутри вещества. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств-это второй важный признак. [c.169]

    Важную часть этого раздела составляет учение об агрегатных состояниях вещества, в котором рассматриваются взаимодействия молекул в газах, жидкостях и кристаллах, а также свойства веществ в различных агрегатных состояниях. Разработка и широкое применение физических методов исследования веществ рентгеноструктурного, электронографического, электронномикроскопического, оптического и других методов позволило получить ценные данные о строении жидкостей, а также твердых тел, как в кристаллическом, так и в аморфном состояниях. [c.7]

    Семь неметаллических элементов образуют простые вещества в виде двухатомных молекул, пять из которых — Н2, N3, О2, р2, С12 — при нормальных усповиях — газы ВГ2 — жидкость 12 — кристаллическое вещество, способное возгоняться, не плавясь. Благородные газы од-ноатомны остальные неметаллы при нормальных усповиях могут существовать как в кристаллическом, так и аморфном состояниях. Лишь кислород, азот, сера, углерод и благородные газы встречаются в природе в виде простых веществ, остальные неметаллы в природе находятся в виде соединений. [c.201]

    Некоторые вещества, обладая твердостью, не имеют упорядоченной внутренней структуры. Они отличаются от кристаллических веществ по многим важнейшим свойствам и в отличие от них называются аморфными веществами. Характерными примерами являются стекло и канифоль. Расколов стекло (или канифоль), можно наблюдать раковистый излом, характерный для аморфного вещества. Аморфные вещества должны рассматриваться как переохлажденные жидкости, которые находятся в неустойчивом состоянии. Эта неустойчивость может быть нарушена, при этом стекло теряет прозрачность (рас-стекловывается), приобретает кристаллическую структуру и тогда действительно переходит в кристаллическое состояние. [c.59]

    Кристаллическое и аморфное состояние вещества. Изучение жидкостей показало, что они проявляют одинаковые свойства, в каких бы направлениях эти свойства не изучались, т. е. жидкости являются изотропными телами. Если же взять кристалл какого-нибудь вещества, тО некоторые свойства его окажутся неодинаковыми в зависимости от того, в каких направлениях эти свойства изучать. В связи с этим говорят, что кристаллы анизотропны. Анизотропия кристаллов сказывается на многих свойствах (тепло- и электропроводность, механическая прочность и т. д.). Кристаллы особенно легко раскалываются в определенных направлениях. Примером этого может служить слюда, которая очень легко раскалывается на тонкие пластинки, но при попытках разделить ее в иных направлениях оказывается очень прочной. Плоакости, по которым кристаллы легко раскалываются, называются плоскостями спайности. [c.43]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Аморфное, стеклообразное и кристаллическое состояние вещества. Само понятие аморфности предполагает отсутствие какой бы ни было структуры как в дальнем, так и ближнем порядках, полное статистическое разупорядочение частиц. Такое положение осуще ствимо, если сила связи между частицами меньше энергии теплового возбуждения. Такого рода бесструктурное состояние можно приписать разреженным газам, в меньшей мере молекулярным жидкостям, которые кристаллизуются в виде молекулярных кристаллов со слабым ван-дер-ваальсовым взаимодействием между молекулами. С этой точки зрения ни один металл в термодинамически стабильном состоянии не может быть бесструктурным, поскольку в твердом, а тем более в жидком состоянии сохраняется металлическая связь, осуществляемая делокализованными электронами. Таким образом, аморфное состояние в данном понимании исключает полупроводимость. [c.258]

    Следует отметить, что при неограниченном увеличении интенсивности процесса охлаждения некоторые растворы могут переходить в аморфное состояние переохпажденных жидкостей. В этом случае вьщеление кристаллических продуктов невозможно, так как в последующем процессе сублимации растворитель и растворенное вещество будут возгоняться одновременно. [c.103]

    Твердое щество может находиться в кристаллическом и аморфном состоянии. Для торо чтобы нагляднее представить себе различия мсжд) кристаллическими и аморфными веществами, а также между твердыми телами и жидкостями, рассмотрим более подробно вопрос об упорядоченности во взаимном расположении атомов или молекул в них. Упорядоченность, которая проявляется иа расстояниях, сравнимых с межатомными, является упорядоченностью ближнего порядка, а упорядоченность, повторяющаяся на иеограииченпо больших расстояниях,— дальнего порядка. Как известно, в газах (точнее, в идеальных газах) расположение молекулы в какой-либо точке пространства ие зависит от расположения других молекул, т. е. в них отсутствует дальний и ближний порядок. Что же касается жидкостей и аморфных тел, то в них уже существует ближний порядок, характеризующийся некоторой закономерностью в расположении соседних атомов. Дальний порядок в жидкостях и аморфных телах отсутствует, так как на больших расстояниях этот порядок размывается и постепенно переходит в беспорядок . [c.11]

    Аморфное. состояние. Аморфные вещества отличаются от кристаллических изотропностью, т. е. подобно жидкости одинаковыми значениями данного свойства при измерении в любом направлении внутри вещества. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств — это второй важный признак, отличающий аморфное состояние твердого вещества от кристаллического состояния. Так, в отличиё от кристаллического вещества, имеющего определенную температуру плавления Тпл, при которой происходит скачкообразное изменение свойств (рис. 1.92а), аморфное вещество характеризуется интервалом размягчения Та — Т ь) и непрерывным изменением свойств (рис. 1.926). Этот интервал в зависимости от природы вещества может иметь значение порядка десятков и даже сотен градусов. [c.158]

    Нафевание жидкости, находящейся в равновесии с паром, при некоторых довольно строгих условиях, накладываемых на температуру, давление и объем системы, может приводить к внезапному исчезновению фаницы между жидкой и газовой фазой. Состояние вещества (или смеси веществ), возникающее при исчезновении различия между фазами, находящимися в равновесии друг с другом (например, между жидкостью и ее паром, между двумя жидкостями и др.), называют критическим состоянием. На фазовой диаграмме в этой точке кривая сосуществования жидкости и пара обрывается. Точка на термодинамической диаграмме, соответствующая критическому состоянию вещества, называется критической точкой. Критические состояния вещества свойственны не только системам с равновесием типа жидкость — ее насыщенный пар , но иногда также системам с равновесием несмешивающихся жидкостей и даже аморфнь[х или кристаллических твердых фаз. [c.169]

    Стекло является аморфным веществом, которое в отличие от кристаллических веществ не имеет ясно выраженного порядка во взаимном расположении частиц. Аморфные вещества по структуре аналогичны жидкостям и отличаются от них весьма малой подвижностью своих частиц. Входящие в состав силикатных стекол катионы щелочных металлов размещаются между кремнекислородными тетраэдрами и обладают весьма малой подвижностью, поэтому в холодном состоянии стекло практически не проводит электрический ток. При расплавлении стекла пространственная структура, состря- [c.68]

    Между хаотическим движением молекул газа и жидкостей, с одной сторон111, и строгим порядком, свойственным кристаллическим твердым телам, с другой — имеются и промежуточные состояния. Существуют так называемые жидко-кристаллические вещества, которые обладают свойствами жидкости (текучесть) и некоторыми свойствами твердых кристаллов (анизотропией свойств). Жидкие кристаллы образуют вещества, молекулы которых имеют форму палочек или вытянутых пластинок. Взаимное расположение молекул в жидких кристаллах является промежуточным между твердыми кристаллами, где существует трехмерный координационный дальний порядок (упорядоченность в расположении центров тяжести молекул) и ориентационный дальний порядок (упорядоченность в ориентации молекул), и аморфными жидкостями, в которых дальний порядок полностью отсутствует. [c.11]

    Жидкое состояние вещества является промежуточным между твердым и газообразным (рис. 1.1). Сбласть существования жидкости ограничена со стороны низких температур переходом в твердое состояние (точки сМ ), а со стороны высоких — переходом в газообразное состояние (точки с, е). Линия АК, разделяющая жидкую и газообразную фазы, заканчивается критической точкой, соответствующей температуре и давлению р р, выше которых невозможно существование жидкости в равновесии с паром. Линия равновесия жидкость — твердая фаза критической точки не имеет. У металлов температура плавления повышается с увеличением давления (кривая АВ) у льда, кремния, гер1иа-ния — понижается (кривая АВ ). Точка А на диаграмме состояния соответствует температуре и давлению, при которых в закрытом сосуде находятся в равновесии твердая, жидкая и газообразная фазы. Жидкости сочетают некоторые свойства как твердых тел, так и газов. Твердые тела бывают кристаллические и аморфные. По типам связи кристаллы подразделяют на атомные, ионные, металлические и молекулярные. Они обладают ближним и дальним порядками. Ближний порядок означает правильное расположение около фиксированного атома, иона или молекулы определенного числа ближайших соседей. Дальним порядком называется расположение частиц в определенной последовательности с образованием единой трехмерной решетки. При наличии дальнего порядка расстояние до любого атома кристалла вычисляется через параметры элементарной ячейки по формуле [c.7]

    В качественном анализе для установления состава анализируемого вещества к нему прибавляют другие вещества, вызывающие такие химические нревраи ения, которые сопровождаются образованием новых соединений, обладающих специфическими свойствами определенным физическим состоянием (осадок, жидкость, газ) известной растворимосгью в воде, кислотах, щелочах и других химических растворителях характерным цветом кристаллической или аморфной структурой запахом и т. п. [c.22]

    При быстром понижении температуры жидкости ниже температуры плавления (переохлаждение жидкости) возрастание вязкости препятствует кристал лизации вещества и жидкость переходит в стеклообразное (аморфное) состояние. Стеклообразное состояние наблюдается у соединений, состоящих из сложных молекул, или у веществ со сложным геометрическим строением кристаллической решетки. В стеклообразном состоянии могут находиться неорганические вещества (5102, В2О3, АЬОз), сахара, органические полимеры. При сверхбыстром охлаждении расплавленных металлов получают металлы в стеклообразном состоянии. Они отличаются очень большой прочностью, пластичностью, стойкостью к коррозии, к стеклообразным веществам относит-ч ся карамельная масса, которую получают на конди терских фабриках быстрым охлаждением уваренного до высокой концентрации сахаро-паточного сиропа. Вязкость сиропа быстро увеличивается, сахароза не успевает кристаллизоваться и масса затвердевает, сохраняя стеклообразное состояние. [c.32]


Смотреть страницы где упоминается термин Кристаллическое состояние вещества . 5.1.2. Аморфное состояние вещества Жидкости: [c.37]    [c.131]    [c.242]    [c.160]    [c.131]   
Смотреть главы в:

Общая химия 2000 -> Кристаллическое состояние вещества . 5.1.2. Аморфное состояние вещества Жидкости




ПОИСК





Смотрите так же термины и статьи:

Вещества аморфные

Вещества кристаллические

Кристаллическое и аморфное состояние вещества

Состояни аморфное

Состояни кристаллическое

Состояние аморфное

Состояние веществ кристаллическое

Состояние кристаллическое



© 2025 chem21.info Реклама на сайте