Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика гидролиза АТФ

    Гидролиз солей. Типы гидролиза, константы и степени гидролиза солей. Термодинамика гидролиза. [c.84]

    Процеос метанизации окиси и двуокиси углерода, термодинамика и кинетика реакций которого рассмотрены в гл. 5, — важная технологическая стадия в переработке жидких твердых вадов топлива в ЗПГ. Обычно принято считать, что на подготовительных стадиях процесса производства ЗПГ в ходе различных реакций газификации, которые были рассмотрены в предыдущих главах, одновременно с образованием метана идет образование целого ряда низкокалорийных газов. Так, в результате окислительного пиролиза и паровой конверсии образуются окислы углерода причем теплота сгорания их колеблется от нуля (чистая двуокись углерода) до 3021 ккал/м , или 12 650 кДж/м (окись углерода). При гидролизе в образующейся смеси газов, теплота сгорания которой также близка к 3000 ккал/м , или 12 тыс. кДж/адз, как правило, содержится некоторое количество остаточного водорода. [c.176]


    Еще одной особенностью биохимической термодинамики является участие в биохимических процессах специальных групп молекул, которые способны накапливать и передавать энергию в ходе реакций. Эти молекулы назьшаются высокоэнергетическими, или макроэргами, так как при их гидролизе высвобождается более 20 кДж/моль. По химическому строению макроэрги - чаще всего ангидриды фосфорной и карбоновых кислот, а также слабых кислот, какими являются тиолы и енолы. Эту макроэргическую связь не надо смешивать с понятием энергия связи, под которым в физической химии понимают энергию, необходимую для разрыва связи в молекуле. [c.75]

    Наряду с процессами распада, гидролитическими процессами в живой клетке всегда происходят и процессы синтеза. Следовательно, можно предполагать, что в клетке имеются, кроме гидролитических ферментов, и ферменты синтетические. Но они найдены не были. В дальнейшем, когда был изучен механизм ферментативного катализа, оказалось, что в определенных условиях один и тот же фермент может катализировать или процессы сннтеза, или процессы гидролиза. Это отвечает требованиям термодинамики, иначе ферменты могли бы смещать химическое равновесие. Таким образом, состояние фермента внутри клетки определяет направленность его действия.-Исследования школы академика А. Н. Баха показали, что ферменты, участвующие в процессах синтеза, более тесно связаны с протоплазмой клетки, чем гидролизующие. [c.524]

    При механическом измельчении образца может выделяться количество тепла, достаточное для того, чтобы вызвать потерю значительных количеств воды. Обезвоживание при повышенных температурах может сопровождаться потерей других летучих компонентов, а также реакциями гидролиза, окисления и конденсации [221 ]. Однако при использовании метода дистилляции протекание реакции окисления менее вероятно, чем при сушке в воздушном сушильном шкафу наличие паров растворителя изолирует образец от кислорода. При использовании метода азеотропной отгонки упомянутые выше отрицательные факторы проявляются в меньшей степени, чем при сушке в сушильном шкафу и эксикаторе или поглощении влаги абсорбентами [221 ]. Дистилляцию рекомендуют [221 ] в качестве лучшего контрольного метода определения воды в пищевых продуктах. Была изучена [221 ] также термодинамика и кинетика азеотропной отгонки. В соответствии с термодинамическими представлениями при азеотропной отгонке система стремится прийти в стационарное состояние, а не в равновесное, в котором отсутствует перенос водяного пара. Было теоретически показано, что давление паров воды в перегонном аппарате обратно пропорционально растворимости воды в жидком органическом компоненте, применяемом в качестве перенос- [c.237]


    Основные научные работы относятся к химии и термодинамике металлургических процессов. Изучил кинетику и механизм восстановления и диссоциации оксидов металлов. Разработал адсорбционно-каталитическую теорию восстановления оксидов металлов. Выполнил (1928—1930) исследования, связанные с переработкой Соликамских калийно-магниевых солей разработал способы гидролиза хлорида магния. Исследовал химизм горячего лужения и цинкования металлов и травления металлов кислотами установил возможность ингибирования этого процесса (1930—1932). Исследовал кинетические закономерности обезуглероживания трансформаторной стали. Изучал физико-химические свойства ферритов, манганитов и других сложных оксидов. [282] [c.561]

    При приложении законов термодинамики к промежуточному обмену веществ изменения энтропии обычно не столь важны, как изменения свободной энергии. Однако в то же время нельзя забывать об этих изменениях или преуменьшать их значение. Так, например, ранние определения АН для гидролиза АТФ дали величину, равную примерно 12 ккал. Считалось, что энтропийный член уравнения мал, и поэтому изменение свободной энергии принимали равным 12 ккал. Современные исследования дали величину АН для гидролиза АТФ, равную приблизительно 5 ккал, и энтропийный [c.84]

    Термодинамика реакций этерификации. Взаимодействие спиртов с некоторыми неорганическими кислотами (серной, азотной) является экзотермическим процессом, но с карбоновыми кислотами они реагируют практически без выделения или поглощения тепла (—АНш О). Соответственно кислотный гидролиз эфиров карбоновых кислот, а также алкоголиз, ацидолиз и переэтерификация тоже имеют тепловой эффект, близкий к нулю. Следовательно, константы равновесия всех этих реакций должны мало зависеть от температуры. [c.258]

    Как и при комплексообразовании в растворе, термодинамика процесса комплексообразования с. участием комплекситов может быть оценена по влиянию температуры на константу равновесия реакции комплексообразования и прямыми калориметрическими измерениями. Определить термодинамические функции прямыми калориметрическими измерениями весьма сложно. Это связано с тем, что процесс комплексообразования сопровождается ионным обменом, гидролизом ионизированных [c.141]

    В предыдущих главах были рассмотрены равновесные состояния процессов внутри электролитов с участием ионов (электролитическая диссоциация, гидролиз, сольватация и т. д.) и процессов на электродах (электрохимические реакции и характеризующие их параметры— обратимые электродные потенциалы). Эти состояния не зависят от времени, к ним применимы оба основных закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а раздел электрохимии, посвященный им, — термодинамикой электрохимических процессов. Для электродных процессов равновесие характеризуется отсутствием электрического тока. [c.572]

    Задач, помещенных в конце каждой главы, стало больше, и сами задачи стали лучше, причем большая их часть снабжена ответами. Даны литературные ссылки на более поздние работы, добавлено много новых ссылок. Значительно расширен материал о силах притяжения между ионами, атомами и молекулами. В первую главу включен раздел о температуре и о нулевом законе термодинамики. Вторая глава знакомит читателя с маленьким существом, известным под именем демона Максвелла там же дан значительно более строгий вывод кинетического уравнения газов, кратко затронуты вопросы статистической термодинамики. 13 третьей главе расширен раздел о свободной энергии и химическом равновесии, обсуждается вопрос о влиянии температуры на химическое равновесие. В четвертую главу добавлен материал о гидролизе АТФ, а также о целлюлозных ионообменниках, используемых при очистке белков. В пятой главе дополнительно рассматривается кислородный электрод в нее включен также новый раздел об электрических потенциалах и о движении ионов через мембраны. В шестой главе [c.7]

    При изучении термодинамики гидролиза ацил-химотрип-синов, образующихся при реакции метиловых эфиров Н-ацетил-Ь-аминокислот с а-химотрипсином [9], были получены активационные параметры, приведенные в табл. 10. Найти изокинетическую температуру для реакции деацилирования фермента. [c.255]

    Для процесса газификации с целью получения водорода можно применять пиролиз (однако этот способ довольно неэффективен, поскольку в данном случае получают значительное количество полимеров, смолы, пироуг Герода, кокса и прочих полупродуктов), а также гидролиз, окислительный пиролиз и прочие эндо- и экзотермические методы газификации сырья. Очевидно, что вследствие не совместимых с точки зреиия термодинамики требований, предъявляемых перечисленным выше ироцессам, целесообразно объединить процессы гидролиза и окислительного пиролиза, т. е. сырье подвергать обра)ботке и паром, и кислородом, как это осуществлено в процессе фирмы Шелл (штат Техас, США) и в других подобных процессах, называемых процессами с частичным окислением 1[4]. [c.131]


    Вопросы, решаемые химической кинетикой, исключительно важны для биологических систем. Биологические системы являются неравновесными. Однако многие реакции в них, которые в соответствии с термодинамикой должны протекать самопроизвольно, идут с пренебрежимо малыми скоростями только из-за кинетических ограничений (например, гидролиз нуклеиновых кислот, полисахаридов, белков). Кинетические исследования позволяют понять механизмы регулирования скорости биопроцессов, действия ферментов и ингибиторов, протекания фотохимических и цепных реакций. [c.246]

    Из этих соотношений наиболее широко применяется ураенение Гаи мета, относящееся К скоростям и равновесиям многих реакции органических соединений, содержащих фенильную и замещенные фенильные группы. В 1930 годах обратили внимание на то, что существует связь между кислотностью замешенных бензойных кислот и рядом химических реакций, например скоростью гвдролиза замещенных этилбёвзоа-тов. Эту корреляцию нллйстрирует рис. 4.2, где графически показана зависимость цк/ко от Ig К/Кс, где ко — константа, скорости гидролиза этилбензоата, к — константы скоростей гидролиза замещенных этилбен-зоатов /(о и /( соответствующие константы кислотной диссоциации. Аналогичные диаграммы для многих других реакций ароматических соединений обнаруживают такую же линейную зависимость от констант кислотной диссоциации замещенных бензойной кислоты. Ни принципы термодинамики, ни кинетические теории не требуют существования таких линейных соотношений, Фактйческн, существуют многочисленные реакции, для которых не удалось обнаружить подобных корреляций. Некоторого понимания природы корреляции можно достичь путем рассмотрения зависимости между линейной корреляцией н изменениями свободной энергии, происходящими в двух процессах. Прямая линия на рис. 4.2 выражается уравнением (т —наклон прямой  [c.130]

    Р. X. изображают с помощью хим. ур-ний, к-рые определяют количеств, соотношения между реагентами и продуктами р-ции (см. Стехиометрия реакции) и выражают сохра-нения массы закон. Глубина протекания Р. х. характеризуется либо степенью превращения (степенью конверсии) — отношением кол-ва в-ва, вступившего в р-цию, к его исходному кол-ву, либо выходом р-ции — отношением кол-ва получ. продукта к исходному кол-ву реагента. Важные характеристики Р. X.— равновесЕгая степень превращения (максимально возможная в данных условиях), к-рую находят на основании законов термодинамики, и скорость реакции. Для классификации Р. х. часто используют назв. функц. группы, к-рая появляется в молекуле реагента или исчезает в результате р-цин (напр., нитрование, декарбоксилирование), или характер изменения структуры исходной молекулы изомеризация, циклизация). Многие хим. реакции имеют спец. названия (нейтрализация, гидролиз, горение и др.). По способу разрыва хим. связи в молекуле реагента различают гомолитические реакции и гетероли-тические реакции. Р. х. могут сопровождаться изменением степени окисления атомов, входящих в состав реагентов (см. Окислительно-восстановительные реакции). [c.499]

    Было бы весьма ценно, если бы физпко-химики столь же просто смогли предсказывать скорости химических процессов, однако в настоящее время они не в состоянпи это сделать, так как химическая кинетика, имеющая дело с новой переменной — временем, оказалась значительно сложнее химической термодинамики. Например, известно, что при температуре кипения воды бромистый метил реагирует с жидкой водой с такой скоростью, что через 8 мин гидролиз заканчивается наполовину, тогда как гидролиз фтористого метила при тех же условиях идет в 300 раз медленнее. Однако теории, которая могла бы предвидеть или хотя бы истолковать эти наблюдения, еще не создано. Таким образом, проблемы, рассматриваемые физической химией, простираются от таких, ио которым существуют почти исчерпывающие сведения, до почти совершенно неизученных. Этот курс мы начнем с рассмотрения тех основных фактов, на которых строится химическая теория. [c.12]

    Уникальные свойства аденилатциклазы [85] и родственной ей гуанил-атциклазы [86] уже рассматривались в предыдущих главах (гл. 5, разд. В,5 гл. 6, разд. Е,5). С кинетической точки зрения молекула циклического АМР исключительно стабильна, однако с точки зрения термодинамики (в отношении возможности гидролиза этого соединения) она нестабильна. Специфическая фосфодиэстераза катализирует расщепление сАМР с образованием 5 -адениловой кислоты [АМР стадия б в уравнении (7-25)]. Две последовательные реакции в уравнении (7-25) обеспечивают образование и разрушение сАМР. Следует обратить внимание на сходство этой последовательности реакций с двумя стадиями реакции (7-19), катализируемой рибонуклеазой. [c.131]

    Кинетика гидролиза (2.139) исследована в работе [244]. В ходе реакции быстро образуется соединение (2.138), которое затем медленно разлагается. Константа скорости, приведенная к нулевой концентрации буферных растворов, линейно увеличивается с ростом pH. Константа скорости реакции, катализированной гидроксил-ионом, составляет 2 10 для стадии образования (2.138) и 2 10 л/моль с — для гидролиза (2.138). И здесь корреляция Бренстеда дает р = 1,05, что свидетельствует о переносе протона в лимитирующей стадии в направлении, неблагоприятном с точки зрения термодинамики. Наличие ими-даЗольной группы в (2.139) ускоряет стадию образования (2.138) в 5 X X 10 раз. Эффективность ядра имидазола и имидазолил-аниона как нуклеофилов внутримолекулярного действия в циклизации (2.13 равна соответственно 1,6 10 и 7 10 моль/л [244]. [c.111]

    Начало биохимическому подходу к изучению обмена веществ было положено исследованиями катаболизма и в особенности дыхания и брожения. При этом биохимики условились при изучении окислительно-восстановительных потенциалов обозначать окислительный потенциал как - -ие, тогда как физикохимики обычно обозначают окислительный потенциал как —ае. Подобным же образом, в термодинамике биохимиков интересует теплота сгорания тех или иных соединений и в качестве исходных продуктов они рассматривают продукты полного сгорания (СО2 и Н2О). Для физикохими-ков же исходным состоянием является состояние элементов при стандартных условиях. Таким образом, макроэргические соединения обладают сравнительно большой теплотой сгорания, но сравнительно малой теплотой образования. В этом смысле жиры и углеводы— это макроэргические соединения. Однако Липман использовал свой термин только применительно к тем соединениям, при гидролизе которых происходит значительное изменение свободной энергии. Поскольку, как оказалось, современные методы дают более низкие значения для свободной энергии гидролиза, в настоящее время наибольшее внимание уделяется ангидридосоединениям. Проблема анаболизма в значительной степени является проблемок создания ангидридных связей в водном окружении клетки. Процесс окислительного фосфорилирования, при котором из АДФ и неорганического фосфата (Фн) образуется АТФ, рассматривается в гл. 5, но здесь мы хотим обратить внимание читателя на возможное значение окислительного фосфорилирования в липидных мембранах митохондрий. [c.89]

    Увеличение разбявления водяным паром % положительно сказывается на превращении ЭВБ в ДВБ и с точки зрения термодинамики должно быть максимальным, но конкретная величина разбавления должна выбираться на основе кинетических исследований процесса дегидрирования с учетом возможного гидролиза реагентов и экономических соображений  [c.58]

    Равновесие первой стадии в количественном отношении очень близко к процессу этерификации карбоновых кислот. В случае первичных и в меньшей мере — вторичных спиртов оно также смещено вправо. Так, при эквимольных количествах 100%-ной серной кислоты (моногидрат) и этанола реакция прекращается, когда степень превращения достигнет примерно 65%. Константа равновесия второй стадии, когда образуется диалкилсульфат, значительно меньше. Поэтому в случае сульфатирования спиртов даже моногидратом серной кислоты равновесное содержание диалкилсуль-фатов вследствие их гидролиза образующейся водой оказывается небольшим и еще более снижается при наличии воды в исходной кислоте. Очевидно, что равновесная степень конверсии спирта в алкилсульфаты увеличивается, кроме того, с ростом отношения кислота спирт. Таким образом, по условиям термодинамики повышению выхода моноалкилсульфата благоприятствуют избыток кислоты и высокая ее концентрация. Такие именно условия и создают в промышленности для синтеза моющих веществ типа алкилсульфатов. Наоборот, повышению степени гидролиза моно-алкилсульфатов при сернокислотном методе получения спиртов из олефинов способствуют разбавление реакционной массы водой и отгонка образующегося спирта. [c.297]

    Аминокислоты. Наконец, Дж. Эрдман (J. Erdman, 1961) указывает на то, что в результате гидролиза белков получается ряд аминокислот, которые посредством декарбоксилирования и восстановительного дезаминирования могут дать выход парафинам с разветвленной цепью. Если приемлемы выводы по термодинамике образования к-парафинов из аминокислот, то те же самые выводы имеют силу и для парафинов с разветвленной цепью. Однако источник или источники неизопреноидпых изопарафинов, очевидно, (все же. — Ред.) неясны. [c.128]

    Термодинамика реакций этерификации. Взаимодействие спиртов с некоторыми неорганическими кислотами (серной, азотной) является экзотермическим процессом, но с карбоновыми кислотами они реагируют практически без выделения или поглощения тепла (—ДЯ298 0). Соответственно кислотный гидролиз эфиров карбоновых кислот, а также алкоголиз, ацидолиз и переэтерифи- [c.224]

    Изучение термодинамики реакций гидролиза органических фосфатов представляет особенный интерес для биологии . В случае моноэфиров ортофосфорной кислоты стандартная свободная энергия АГ сравнительно мала, н ичем Арн-38- -тг-рН 8,5тгц зменяется от" —2,2 ккал для а-глицерофосфата до —4,9 ккал/моль для глюкозо-1-фосфата. Здесь мы имеем дело с фосфатными связялщ низкой энергии . Зато связи С—О—-Р в кислых смешанных ангидридах и связи Р—О—Р являются связями высокой энергии , что видно из следующих величин АР  [c.553]

    Термодинамика реакций гидролиза. При гидролизе солей типа K N и AI I3 константы гидролиза выражаются соответственно уравнениями (8.27) и (8.28). После логарифмирования этих уравнений и перехода к AG при помощи уравнения (5,15) [c.104]


Библиография для Термодинамика гидролиза АТФ: [c.753]   
Смотреть страницы где упоминается термин Термодинамика гидролиза АТФ: [c.226]    [c.196]    [c.1455]    [c.546]    [c.330]    [c.376]    [c.546]   
Смотреть главы в:

Физическая химия -> Термодинамика гидролиза АТФ




ПОИСК





Смотрите так же термины и статьи:

Фосфоенолпировиноградная кислота фосфоенолпируват термодинамика гидролиза



© 2024 chem21.info Реклама на сайте