Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление кислот в спирты

    Каталитическая гидроконденсация окиси углерода с олефинами представляет собой промышленно приемлемый способ получения альдегида, содержащего на один атом углерода больше, чем исходный олефин. Эти альдегиды важны не сами по себе, а как промежуточные продукты для производства кислот, спиртов и соединений с большим молекулярным весом (гл. 16). Использование каталитической гидроконденсации окиси углерода для производства кислот, которые могут быть получены в одну стадию из олефинов, окиси углерода и воды (см. ниже), не представляет больших преимуществ восстановлением же альдегидов получаются важные для промышленности первичные спирты, которые нельзя легко получить с помощью других нефтехимических процессов. Обычные методы переработки олефинов для получения спиртов позволяют производить только вторичные спирты (гл 8), а первичные спирты, не считая этилового, могут быть получены исключительно с помощью довольно сложных синтезов (гл. 16, стр. 303). [c.196]


    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]

    Пригодность окисных катализаторов для восстановления кислот в спирты объясняется избирательной адсорбцией. Окислы обладают склонностью к адсорбции окиси углерода или карбонильной группы, при этом связь С=0 разрыхляется и становится способной к реакции с водородом  [c.404]

    Получаемые при восстановлении высших жирных кислот спирты употребляют главным образом для получения сульфатов, т. е. солей соответствующих алкилсерных кислот, заменяющих в ряде случаев обычные мыла. В этом отношении интересны высокомолекулярные спирты, полученные восстановлением кислот, образованных при окислении парафинов и нефтяных остатков. [c.405]

    Литийалюминийгидрид восстанавливает альдегиды, кетоны и кислоты в спирты. Так, например, восстановление кислот протекает по уравнению [c.144]


    Глюкоза является одной из наиболее распространенных альдогексоз. При окислении глюкозы образуется глюконовая кислота, а при восстановлении — шестиатомный спирт — сорбит. При переходе ациклической формы в циклическую полуацетальную форму у первого [c.368]

    Пользуясь этой реакцией, из ацетилена можно получить уксусный альдегид, его восстановлением — этиловый спирт, а окислением — уксусную кислоту. [c.54]

    Восстановление кислот. При восстановлении кислот образуется соответствующий альдегид, который при дальнейшем восстановлении превращается в спирт  [c.145]

    Как видно из уравнения, промежуточным продуктом является непредельный спирт (виниловый спирт). Спирты, у которых группа ОН находится при углероде с двойной связью, неустойчивы, водород гидроксильной группы переходит к соседнему атому углерода (показано стрелкой), в результате чего образуется устойчивое соединение — альдегид. Эта реакция получила название реакции Куче-рова в честь русского ученого М. Г. Кучерова, открывшего ее в 1881 г. Этой реакцией в промышленности из ацетилена получают уксусный альдегид, а из него при восстановлении — этиловый спирт (а), при окислении — уксусную кислоту (б)  [c.351]

    Эфиры карбоновых кислот служат исходными веществами для важных реакций, как-то аминолиз, сложноэфирная конденсация (см. разд. Г, 7.26), реакции Гриньяра (см. разд. Г, 7.3.6), восстановление до спиртов [см. схему (Г. 7.94) и разд. (Г, 7.3.4), пиролиз (см. табл. 56)]. [c.83]

    Карбоновые кислоты можно восстановить только с помощью очень сильных восстановителей. Поэтому при восстановлении кислот никогда не получаются альдегиды, а только первичные спирты. Это объясняется тем, что при действии сильных восстановителей альдегиды легко превращаются в спирты. Наиболее часто используют алюмогидрид лития. Общая схема реакции  [c.143]

    Для восстановления кислот в первичные спирты можно использовать также диборан. [c.143]

    Гидролиз. Взаимодействие с кислотами, спиртами, аммиаком. Восстановление. Ацилирование бензольного кольца 123 [c.5]

    До разработки синтетических методов получения этот триол получали омылением жиров и масел. И в настояш,ее время во многих развитых странах мира (США, Япония и др.) основную долю производимого глицерина составляет продукт, получаемый из природного сырья, несмотря на то, что на выработку 1 т глицерина расходуется 10-12 т жира. Производство глицерина из натурального сырья основано на совместном получении его с жирными кислотами или продуктами восстановления последних - спиртами. Однако потребление их растет менее динамично, чем потребление глицерина. [c.7]

    Этерификация жирных кислот спиртами может осуществляться при повышенных температурах без катализатора. Эксперименты показали, что оптимальными условиями термической этерификации являются температура 250—320° С и давление 10— ООатга. Процесс должен проводиться с избытком метанола. Гидрирование метиловых эфиров может осуществляться на медпохромовом или медноцинковом катализаторах. Однако эти катализаторы имеют сравнительно короткий период работы без регенерации. Весьма перспективным оказывается применение для восстановления эфи= ров цпнкхромового катализатора. Этот катализатор работает стабильно, однако при гидрировании эфиров образуется значительное количество углеводородов (до 6—10%). Некоторая модификация катализатора, а также тщательное осуществление процесса восстановления катализатора позволяют снизить содержание углеводородов в сырых спиртах до 2—3%. [c.101]

    К исходному сырью добавляется 1% мелкодисперсного меднохромового катализатора. Полученная смесь под давлением 300 ат подается в гидрогенизационную колонну, где в токе циркуляционного водорода при температуре порядка 300° С происходит восстановление кислот в спирты. Отделение катализатора от гидрогенизата осуществляется на рамных фильтрпрессах. Отфильтрованный катализатор после прокаливания и дробления вновь возвращается в процесс. В результате 5—6-кратного использования катализатор теряет свою активность и заменяется евежимг В ФРГ на заводе Хемише фабрик смонтирована опытная установка по прямому гидрированию жирных кислот на суспендированном катализаторе 94]. Меднохромовый катализатор подается в виде суспензии его в жирных спиртах. Процесс осуществляется при давлении 325 ат, температуре 300° С и объемной скорости 0,4 сырья на 1 реакционного пространства в час. Гидрогенизат поступает в отстойник, где разделяется на 2 слоя, Нижний слой, представляющий собой суспензию с содержанием 30—40% катализатора, вновь возвращается в процесс верхний слой дополнительно обрабатывается на центрифугах для окончательного отделения катализатора от полученных спиртов. [c.179]

    Очень активные катализаторы получаются из растертых смесей нитратов с бихроматом аммония (хромитные катализаторы). Смесь при прикосновении к ней раскаленной проволокой или палочкой самораскаляется и превращается в мелкоднспергированный хромит, очень активный для восстановления кислот в спирты, дегидрирования и других реакций (стр. 342). Весьма активны для различных реакций гидрирования металлы, полученные термическим разложением Ре(СО)5, N ( 0)4, 3 также никель, образующийся при разложении его формиата (при 200—250°)  [c.50]


    Восстановление спиртов и фенолов в углеводороды. Восстановление алифатических спиртов в углеводороды протекает гораздо труднее, чем восстановление карбонилсодержаших соединений. Раньте пользовались нагреванием с избытком иодистоводородной кислоты, действием амальгам и т. п., теперь эти процессы очень гладко проводят, применяя Ni Ренея. В противоположность алифатическим, ароматические спирты восстанавливаются над Ni в углеводороды исключительно легко бензиловый спирт образует количественно толуол, фенилэтиловый—этилбензол и т. д. При избытке водорода происходит гидрирование бензольного кольца с превращением в производные циклогексана. [c.401]

    Восстановление кислот в спирты. До недавнего времени все попытки прямого восстановления кислот до спиртов R 00H--> НСН,ОН + Н.,0 [c.402]

    При действии LiAlH4 на эфир карбоновой кислоты, растворенный в каком-нибудь индифферентном, растворителе, обычно гладко протекает реакция восстановления до спирта при комнатной температуре по схеме  [c.111]

    Строение аллилового спирта вытекает, с одной стороны, из его не-иасыщенности, находящей свое выражение, наиример, в сиособностн этого соединения присоединять два атома галоида или два атома водорода с другой стороны, аллиловый спирт может быть окислен до непредельного альдегида (акролеина) и непредельной кислоты (акриловой кислоты), что доказывает наличие первичной спиртовой группы СН2ОН.. Каталитическое восстановление аллилового спирта водородом [c.142]

    Фени л пропиловый спирт СоНзСНгСНзСНоОН, т. кнп, 235°. содержится в впде эфира коричной кислоты в различных бальзамах и смолах синтетически он получается путем восстановления коричного спирта амальгамой натрия илп из эфира коричной кислоты по способу Буво и Блана. По запаху ( еиилпропиловый спирт напоминает гиацинты и в виде сложных эфиров применяется в парфюмерных композициях. [c.564]

    Электролиз является практически единственным способом получения важнейших металлов (А1, Mg). Существенное значение имеет электролиз раствора Na l с получением хлора, водорода и щелочи, а также электролитический способ производства КМПО4, Na lO, органических фторпроизводных и др. Электролиз имеет большое значение для получения таких важных для синтеза лекарственных веществ, как амины и спирты. Амины получают восстановлением соответствующих иитросоединений в присутствии катализаторов в спиртоводной среде. В качестве катодов применяют ртуть, свинец и уголь. Спирты получают при катодном восстановлении кислот, кетонов и альдегидов как в кислых, так и в щелочных растворах на ртути, меди и свинце. [c.209]

    Полисахариды состоят из остатков моносахаридов, связанных между собой гликозидной связью. Эта группа углеводов включает низкомолекулярные (сахароподобные) полисахариды, содержащие от 2 до 10 остатков моноз, и высокомолекулярцые, состоящие от десятков до нескольких десятков тысяч остатков моноз. Глюкоза является одной из наиболее распространенных альдогексоз. При окислении глюкозы образуется глюконовая кислота, а при восстановлении — шестиатомный спирт — сорбит. При переходе ациклической формы в циклическую полуацетальную форму у первого углеродного атома формируется полуацетальная гидроксигруппа. Пр своим свойствам эта группа отличается от спиртового. [c.401]

    Свойства. Как соединения со смешанными функциями, альдегидо- и кетонокнслоты проявляют, с одной стороны, все характерные свойства карбоновых кислот (образуют соли, сложные эфиры П др.), с другой — дают реакции, присущие альдегидам и кетонам (стр. 137). В частности, подобно тому как альдегиды и кетоны при восстановлении образуют спирты, альде1идо- и кетонокнслоты восстанавливаются в соответствующие оксикислоты. Например  [c.217]

    Пировиноградная кислота представляет собой вязкую жидкость с т. кип. 165 °С, смешивается с водой. Является важным промежуточным соединением во многих процессах обмена веществ. Для нее свойственно большинство обычных реакций карбоновых кислот — образование солей, сложных эфиров, амидов и т.д., а также многие реакции кетонной функции — образование оксимов, фенилгидразонов, восстановление до спирта (Н,5-молочная кислота). [c.242]

    Способы получения. Ароматические альдегиды могут получаться всеми способами получения альдегидов жирного ряда (скнслен ем соответствующих спиртов, восстановлением кислот, хлорангидридов и др.). [c.289]

    Катализаторы этого рода более активны по отношению к кислородсодержащим группам, чем по отношению к ненасыщенным связя.щ ароматические ядра в их присутствии не восстанавливаются. Альдегиды и кетоны под давлением 100 ати и при температуре 125—15( сюстанавли-ваются до спиртов, без образования побочных продуктов, ч1 о в опреде ленных условиях дает преимущество этим катализаторам перед всеми остальными. Они применяются для восстановления карбоновых кислот, их эфиров и их амидов, в таких случаях другие катализаторы не дают хороших результатов. Восстановление кислот и эфиров ведут под давлением 200—300 ати при температуре 200—250°. Первичнее спирты получаются с хорошими выходами, благодаря чему этот метод может конкурировать с методом Буво и Блана. Амиды при еще более высокой температуре (250—265°) преврашаются в амины, причем необходимо большое количество катализатора (15% от веса амида). [c.531]

    Каталитическое восстановление кислот или сложных эфиров до первичных спиртов осуществляется при помощи таких катализаторов, как никель Ренея или хромит меди при высоком давлении и высокой температуре, Методы получения этих катализаторов описаны в литературе никеля Ренея различной степени активности, обозначаемого и -1, W-2, W-3, W-4, W-5, W-6 и W-7, в работах 154, 55) катализатора, состоящего из меди, бария и окиси хрома, в статьях [56, 57]. Эти методы требуют специального оборудования и особой техники, и поэтому они осуществляются труднее, чем методы с применением гидридов метал.тов. [c.231]

    Глюкоза является восстанавливающим сахаром, образует производные, характерные для альдегидов (озазоны, фенилгидразоны). При восстановлении образует спирт сорбит, при окислении альдегидной группы — О-глюконовую или О-сахарную кислоты, при окислении вторизной спир- товой группы — О-глюкуроновую кислоту. Пиролиз глюкозы дает а- и р-глюкозаны.  [c.102]

    Углеводородами называются соединения, состоящие из углерода и водорода. Различают алифатические предельные и непредельные углеводороды, циклические (нафтены) н ароматические. Наиболее важным источником получения предельных углеводородов состава С Н2 -2 является нефть. При перегонке последней отбирают фракцию т. кип. 150—170° —бензин, нз которой дробной перегонкой получают легкий бензин уд. в. 0,64 -0,66, т. кип. 40 -75°, известный под названием петролейный эфир. Выше кипящая фракция —средний бензин, т. кип. 70—120 , уд. в. 0,70—носит название авиационного бензина, его применяют для приготовления йод-бензнна (раствора йода в бензине, используемого иногда для дезинфекции) и особенно широко в технике для двигателей с зажиганием и в качестве растворителя. Фракцию г. кип. 150 —300° — керосин используют в качестве горючего также для двигателей внутреннего сгорания и иногда в быту, а также для освещения. Фракции, перегоняющиеся без разложения при температурах Кипения, более высоких, чем керосин, называют соляровыми маслами их используют в качестве дизельного топлива, смазочных масел или путем Крекирования превращают в более легкие углеводороды. Перегонкой с водяным паром фракций, кипящих выше 300", получаюг вазелин, который представляет собой густую смесь жидких и твердых углеводородов. Из нефти выделяют, кроме того, смесь твердых углеводородов, называемую парафином, Предельные углеводороды получают и синтетическим путем восстановлением галогенопроизводных, спиртов, альдегидов, кетонов, непредельных соединений, декарбоисилированием кислот, электролизом солеи жирных кислот н др. [c.105]

    Почти все реакции, которые обсуждались до сих пор, представляют собой превращения карбоновых кислот и их производных. В этом разделе мы рассмотрим восстановление кислот и их производных, которое в большинстве случаев приводит к первичным спиртам. Иачпем с восстановлепия самих карбоновых кислот. [c.143]

    Подобно тому как описанный выше метод представляет собой способ превращения кислоты в соответствующий альдегид, десульфуризация тиолового эфира [[ри помощи обычного (не дезактивированного в ацетоне) никеля Ренея позволяет осуще-стшть избирательное полное восстановление кислоты до спирта. Из различных простых тиоловых эфиров, таких, как бензи ловый эфир тиобензойной кислоты или метиловый эфир тио-пальмитиновой кислоты, были получены ожидаемые спирты [c.413]

    Одним из наиболее трудно осуществимых вариантов селективного госстаиовлепия является преврг1щенке производных карбоновых кислот альдегиды без дальнейшего восстановления до спиртов. Такая селек- [c.121]

    Ароматические альдегиды легко восстанавливаются до соответствующих спиртов [103, 122, 123, 129—132], ио в отличие от алифатических альдегидов более склонны превращаться в гликоли, в особенности на катодах с высоким перенапряжением водорода в гальваностатических условиях В 5%-и спиртовой серной кислоте иа п татице, никеле и меди спирты являются главными продуктами восстановления выход спиртов уменьшается с увеличением температуры. Бензальдегид иа ртути ко-личественно может быть превращен в бензиловый спнрт [121]. [c.325]


Смотреть страницы где упоминается термин Восстановление кислот в спирты: [c.404]    [c.479]    [c.111]    [c.41]    [c.179]    [c.76]    [c.146]    [c.20]    [c.502]    [c.375]    [c.85]    [c.518]   
Смотреть главы в:

Органическая химия -> Восстановление кислот в спирты




ПОИСК





Смотрите так же термины и статьи:

Бензиловый спирт, получение восстановлением бензойной кислот

Взаимодействие с кислотами, спиртами, аммиаком. Восстановление Ацилирование бензольного кольца Реакции ангидридов кислот

Восстановление замещенных трифенилкарбинолов спиртами и серной кислотой

Восстановление карбоновых кислот, их эфиров, хлорангидридов, ангидридов и амидов в альдегиды и спирты

Жирные спирты получение восстановлением эфиров жирных кислот

Жирные спирты, получение восстановлением жирных кислот

Жирные спирты, получение восстановлением жирных кислот натрием и низшим спиртом

Жирные спирты, получение восстановлением жирных кислот смесей

Жирных кислот эфиры, восстановление до спиртов

Каталитическое восстановление органических кислот до первичных спиртов

Непредельные спирты, восстановление действие серной кислоты

Препаративные методы синтеза спиртов Синтезы Гриньяра, гидроборирование-окисление, восстановление альдегидов, кетонов, сложных эфиров, карбоновых кислот

Розенмунда метод восстановления кислот до спиртов

Синтезы Гриньяра, гидроборирование-окисление, восстановление альдегидов, кетонов, сложных эфиров, карбоновых кислот Химические свойства спиртов

Спирто-кислоты

Черкаев, Н. В. Б л и з н я к, А. А. Б а г. Селективное каталитическое восстановление эфиров ненасыщенных кислот в ненасыщенные спирты

Электролитическое восстановление бензойной кислоты до бензилового спирта



© 2025 chem21.info Реклама на сайте