Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоты адсорбции газов и паров

    Теплоты адсорбции газов и паров. Рассмотренные в разд. 6 этой главы схемы I, Пб и I, Пв процесса адсорбции (см. рис. П1,13) предполагают постоянство объема системы. При этом условии тепловой эффект процесса равен изменению внутренне энергии этой системы АС/. Интегральное изменение внутренней энергии системы при адсорбции пара по схеме I, Пв выражается уравнением (П1,96) или приближенно уравнениями (П1,96а). При их выводе мы предполагали, что пар поступает в подсистему I с адсорбентом из подсистемы Пв без изменения давления пара над мениском жидкости в микробюретке. На испарение перешедшего в подсистему I количества га = га -f я га молей адсорбата была затрачена скрытая теплота испарения L [или VL в расчете на единицу площади поверхности адсорбента в подсистеме I, см. выражения (П1,96а) и (111,97)]. Однако в рассматриваемом случае, т. е. при переходе этих га молей адсорбата в подсистему I, не производится какой-либо работы внешними силами, так как при соединении подсистем I и Пе нар расширяется в подсистему I самопроизвольно. В одном из опытов, описанных Кальве [29], сосуд с адсорбентом, соответствующий нашей подсистеме /, и сосуд с жидким адсорбатом, соответствующий нашей подсистеме Пв, помещались в один и тот же калориметр, в котором измерялась так называемая чистая теплота адсорбции, т. е. разность между теплотой адсорбции пара и теплотой испарения жидкости в соответствующих условиях. Если положительной счи- [c.141]


    На рис. 17 приведены зависимости изостерической теплоты адсорбции газов от адсорбции, которые получены автором при определении изотерм, приведенных на рис. 8. Теплота адсорбции была рассчитана с помощью уравнения Клаузиуса — Клапейрона по значениям установившегося давления над адсорбентом при температуре, соответствующей температуре кипения жидкого азота при нормальном давлении, и температуре, установившейся после увеличения (или уменьшения) давления паров азота над жидкой фазой. Такой метод позволяет определить теплоту адсорбции в лю- ой экспериментальной точке изотермы. [c.88]

    Проблема установления связи между теплотой адсорбции газов и паров цеолитами и их внутренним строением и химическим составом — одна из центральных в фи-зико-химии молекулярных сит. В ранних работах, когда объектами исследований являлись природные цеолиты, всякие попытки соотнесения величии теплот адсорбции с какими-либо конкретными адсорбционными центрами были невозможны, так как структуры большинства цеолитов были не расшифрованы, а химический состав образцов обычно не определялся. Основное внимание уделялось выявлению особенностей и установлению некоторых общих закономерностей адсорбции на цеолитах. Например, на природном шабазите отчетливо был продемонстрирован эффект взаимодействия молекулярного квадруполя с ионами поверхности адсорбента [1]. [c.118]

    Теплоты адсорбции газов и паров цеолитами обычно весьма чувствительны к изменениям температуры [33—45]. Это заставляет с осторожностью относиться к экспериментальным значениям изо-стерических теплот адсорбции и ограничивает возможности обобщения имеющихся в литературе экспериментальных данных. [c.120]

    Калориметрические методы измерения теплот адсорбции газов и паров и теплоемкости адсорбционных систем [c.4]

    Глава 8. Адсорбционно-калориметрическая установка для измерения теплот адсорбции газов и паров при комнатной температуре. .. 133 [c.4]

    КАЛОРИМЕТРИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ ТЕПЛОТ АДСОРБЦИИ ГАЗОВ И ПАРОВ И ТЕПЛОЕМКОСТИ АДСОРБЦИОННЫХ СИСТЕМ [c.133]

    ГЛАВА 8. АДСОРБЦИОННО-КАЛОРИМЕТРИЧЕСКАЯ УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОТ АДСОРБЦИИ ГАЗОВ И ПАРОВ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ [c.133]

    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]


    Различают физическую и химическую адсорбцию (хемосорбцию). При физической адсорбции молекулы адсорбента и поглощаемого вещества не вступают в химическое взаимодействие. При хемосорбции имеет место химическое взаимодействие молекул поглощаемого вещества с адсорбентом. Адсорбция — процесс экзотермический, т. е. идет с выделением тепла. Для газов и паров тепло.та адсорбции примерно равна теплоте их конденсации, а при адсорбции из растворов теплота адсорбции меньше. [c.315]

    Физическая адсорбция является экзотермическим процессом. Теплота адсорбции из газов и паров примерно равна теплоте их конденсации, теплота адсорбции из растворов несколько меньше. [c.274]

    Адсорбция сопровождается выделением теплоты. Теплота адсорбции из газовой фазы — величина примерно того же порядка, что и теплота конденсации, и ориентировочно составляет (в килоджоулях на 1 кг поглощенного газа [123]) для углекислоты 710, метана П80, этана и этилена 590, пропана 460, газового бензина (М 80) 630, водяного пара при +.10° С 2320, то же при + 40°С 2170. [c.402]

    При всяком адсорбционном процессе часть энергии выделяется в виде тепла. Определение теплоты адсорбции различных газов или паров металлами, окислами, углем и другими твердыми ве.цествами оказало неоценимые услуги для понимания поверхностных процессов, структуры поверхности и явлений гетерогенного катализа. [c.94]

    Изучая одним из статических методов количество поглощенного газа в зависимости от его равновесного давления при постоянной температуре, получают изотерму адсорбции. Выполняя эксперимент при постоянном давлении и при различной температуре, можно получить зависимость адсорбции от температуры и из этих данных рассчитать теплоту адсорбции. По характеру и взаимному расположению изотерм адсорбции, полученных для разных газов или паров, можно судить об избирательном действии выбранного адсорбента по отношению к тому или иному газу. Данные, получаемые из статических измерений, позволяют также рассчитывать пористость, удельную поверхность, коэффициент диффузии и другие характеристики адсорбента и адсорбата. [c.112]

    По изотерме адсорбции газа или пара кроме Зц п можно рассчитать ди( х )еренциальную теплоту адсорбции д, характеризующую энергию взаимодействия адсорбированных молекул в адсорбционном слое. Для приближенного расчета достаточно иметь всего две изотермы адсорбции при различных, не сильно отличающихся температурах [c.31]

    Теплотой адсорбции называется количество тепла, выделяемое газами или парами при их адсорбции поверхностью твердых тел (адсорбентами). [c.108]

    Теплота адсорбции зависит как от природы адсорбента, так п от природы адсорбируемых газов. Для активированного угля найдены следующие величины теплоты адсорбции паров в ккал кг этиловый спирт — 15, метиловый спирт — 13,1, метан — 4,5, бензол — 14,7. [c.108]

    Такой способ обработки экспериментальных данных можно использовать и в более сложном случае адсорбции газов и паров цеолитами. И здесь уравнения изотермы и теплоты адсорбции, содержащие в экспоненте члены вириального разложения [уравнения [c.230]

    В монографии (1-е изд.— 1973 г.) рассматриваются адсорбционные и хроматографические методы исследования хи-мин поверхности н структуры твердых тел. Подробно описаны статические н газохроматографические способы получения изотерм адсорбции газов н паров, определения теплот адсорбции и теплоемкости адсорбционных систем, структурных характеристик твердых тел, спектроскопические методы исследования химической природы поверхности, методы изучения адсорбции из бинарных и многокомпонентных растворов и их применение в жидкостной молекулярной хроматографии. В приложении приведены способы получения адсорбентов и носителей и химического модифицирования их поверхности для использования в молекулярной хроматографии. [c.215]

    Определение yдeJ ьнoй поверхности пористых объектов — задача довольно сложная. Существует ряд методов оценки удельной поверхности по адсорбции газов, паров или растворенных веществ, по теплоте смачивания, по скорости растворения и др. [c.72]

    Лэмб и Оль[ ] определяли интегральные теплоты адсорбции многих паров на шабазите и тоже получили значительно большие значения, чем при адсорбции тех же паров на угле. Интегральные теплоты адсорбции углекислого газа, окиси азота, хлористого метила и метилового спирта составляют соответственно 12,41, 12,83, 13,47 и 23,32 ккал/моль, в то время как на угле получено 7,7, 7,76, 7,18 и 14,3 тал моль. Пары перечисленных веществ адсорбируются в больших количествах, так как их молекулы достаточно малы, чтобы проникнуть в поры шабазита. Наоборот, этиловый спирт и хлористый этил адсорбируются очень слабо их молекулы слишком велики и не могут проникнуть в поры, и теплоты их адсорбции меньше, чем на угле. Интегральные теплоты адсорбции этилового спирта и хлористого этила на шабазите равны 9,27 и а,06 ккал моль, а на угле—соответственно 16,4 и 13,I9 ккал моль. Лэмб и Оль полагают, что адсорбция этих двух паров протекает лишь на внешней поверхности кристаллов шабазита. [c.503]


    ДЛадс — интегральная теплота адсорбции газа или пара при равновесном давлении Ро и температуре Т  [c.330]

    Накопленный к настоящему времени экспериментальный материал по теплотам адсорбции газов и паров цеолитами весьма обширен, но неравноценен, и во многих случаях данные, полученные разными авторами, плохо согласуются между собой. Если в исследованиях адсорбции неспецифнческн адсорбирующихся и достаточно низкомолекулярных веществ достигается обычно вполне удовлетворительная воспроизводимость результатов измерений, то, как видно из рис. П.1, уже в случае азота расхождения между экспериментальными данными разных авторов очень велики [10—12]. Опубликованные недавно изотермы теплот адсорбции СО2 на не- [c.119]

    В литературе не встречается сведений по теплотам адсорбции газов и паров чисто натриевыми формами природных шабазитов. В [49, 180, 181] были исследованы теплоты адсорбции СОг и ЫНз на синтетических натриевых шабазитах — цеолитах типа Е. По рентгеновским характеристикам, молекулярноситовым свойствам и термостабильности эти цеолиты несколько отличаются от ионообменных форм природных шабазитов близкого химического состава [21]. Предполагается, что алюмокремнекислородный каркас цеолитов типа Е деформирован более значительно, чем это имеет место у природных шабазитов. [c.150]

    В работе [Л. 36] также показано, что адсорбционный детектор может быть использован как анализатор содержания водяных паров, и указана возможность применС ния его для измерения теплоты адсорбции газов. [c.43]

    В кннге описаны разнообразные методы исследования химии поверхности твердых тел, адсорбции газов, паров и растворенных веществ, а также газовой и молекулярной жидкостной (адсорбционной и ситовой) хроматографии. Наряду с вакуумными метода.ми измерения изотерм адсорбции рассмотрены калориметрические измерения теплот адсорбции и теплоемкости адсорбционных систем, хроматографические, спектроскопические, радиоспектроскопические, масс-спектро-метрические, электронно-микроскопические и другие методы, позволяющие исследовать пористость и химическое строение поверхности адсорбентов, носителей, катализаторов и состояние адсорбированных молекул. Книга написана авторами, принимавшими непосредственное участие в разработке и применении описанных экспериментальных методов, и содержит много полезных практических советов, составленных на основе многолетнего опыта. Описания ряда новых методов содержат краткие изложения их теоретических основ. Большое внимание уделено анализу погрешностей измерений и конкретным примерам. [c.2]

    В области малых заполненийХобычно трудно определить малые давления р при разных температурах с нужной для построения изостеры точностью. Поэтому в этом случае предпочтительно определять теплоту адсорбции калориметрически. Впуская последовательно небольшие порции газа (пара) в калориметр с адсорбентом, измеряют выделяюш,ийся тепловой эффект, деля который на соответствующее количество адсорбированного вещества, получают теплоты, близкие к определяемым из изостер дифференциальным теплотам адсорбции. [c.485]

    При адсорбции углеводородных газов и нефтяных паров на поверхности твердых тел выделяется тепло. По теплоте адсорбции судят об адсорбируемости данного вещества на определенном адсорбенте. Количество тепла, выделяющееся при адсорбции, зависит от природы адсорбируемого вещества и адсорбента. Например, найдены следующие величины теплоты адсорбции на активированном угле паров различных веществ (в ккал/молъ) этиловыйс нирт 15, бензол 14,7, метиловый спирт 13,1, метан 4,5. Теплоты адсорбции паров [c.78]

    Дифференциальная теплота адсорбции определяется из тангенса угла наклона прямой tg а = —qd R). Построение изостер при разных заполнениях поверхности адсорбента позволяет проследить изменение дифференциальной теплоты адсорбции, которую часто называют изостерической. По мере заполнения поверхностного слоя изостерическая теплота адсорбции уменьшается. Из рис. П. 7 видно, что теплоты адсорбции паров и газов положительны (энтальпия уменьшается), т. е. теплота выделяется из системы. Как следует из соотношения (11.61), они измеряются в единицах теплоты, приходящейся на единицу массы вен1ества (Дж/моль). [c.44]

    Зависимость, представленная иа pli . III.8, соответствует положительному тепловому эффекту адсорбции, q > О, что указывает на выделение теплоты в процессе адсорбции газов и паров. [c.123]

    Как уже указывалось (стр. 93), по современным представлениям следует различать 1) обычную адсорбцию за счет сил притяжения и 2) хемосорбцию за счет химических валентных сил. Несмотря на то, что между обоими типами адсорбции нельзя провести резкой грани, во многих отношениях они значительно различаются. При обычной адсорбции газ или пар конденсируется по всей поверхности многослойно, выделяющаяся при этом теплота адсорбции невелика и составляет 2000—8000 тл1г-мол, и процесс обратим. В случаях хемосорбции образуется мономолекулярный слой, занимающий обычно не всю поверхность, а локализующийся на наиболее активных участках. Остальная часть поверхности при этом также сорбирует, но чаще всего лишь физически. Теплота хемосорбции может доходить до 200 000 кал г-мол, причем десорбция протекает с большим трудом, и часто вещество десорбируется химически измененным. При хемосорбции получаются настоящие двумерные химические соединения, поэтому их часто называют двумерными. Для образования таких соединений необходима некоторая энергия активации. [c.116]

    Силы, действующие на поверхности твердого тела, ненасыщены. Поэтому всякий раз, когда свежая поверхность подвергается действию газа, на ней создается более высокая концентрация молекул газа, чем в объеме собственно газовой фазы. Такое преимущественное концентрирование молекул на поверхности называется адсорбцией. Прочность связи молекул адсорбата с поверхностью адсорбента, а также величина адсорбции могут сильно меняться от системы к системе. Процессы адсорбции можно разделить на два основных типа физическую адсорбцию и хемосорбцию. Физическая адсорбция вызывается силами молекулярного взаимодействия, к которым относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента, Типы адсорбции различают по нескольким критериям 1) по теплотам адсорбции. Количество выделившейся в процессе физической адсорбции теплоты, отнесенное к одному молю адсорбированного вещества, обычно изменяется в пределах 8—40 кДж. Как правило, теплота хемосорбции превышает 80 кДж/моль 2) по скорости протекания процесса. Поскольку физическая адсорбция подобна процессу сжижения газа, то она не требует активации и протекает очень быстро. Хемосорбция же, аналогично большинству хи- [c.425]

    Теплоты адсорбции катионированными цеолитами, особенно лолярных молекул, велики, поэтому соответствующие изотермы адсорбции поднимаются при обычной температуре очень круто. Константы Генри так велики, что их определение методом газовой хроматографии затруднительно, так как время удерживания в колонне велико и пики сильно размываются. Это же мешает газохроматографическому разделению на цеолитах многих веществ за исключением легких газов и паров. Поэтому здесь будут рассмотрены результаты исследований адсорбции цеолитами, полученные главным образом статическими методами. Этими методами адсорбция изучается не только при малых, но и средних, а иногда и больших заполнениях полостей цеолита. Следует однако иметь в виду, что при определении константы Генри и начальных [c.32]

    Модель двухмерного ассоциированного вандерваальсова газа на однородной поверхности. Уравнение состояния и зависимость степени ассоциации от заполнения поверхности и от константы ассоциации. Изотерма и теплота адсорбции двухмерного ассоциированного вандерваальсова газа. Двухмерный фазовый переход конденсат — пар и зависимость его критической температуры от ассоциации адсорбированных молекул. Определение бинодали для двухмерных ассоциированных состояний. [c.233]


Смотреть страницы где упоминается термин Теплоты адсорбции газов и паров: [c.484]    [c.275]    [c.96]    [c.450]    [c.450]    [c.503]    [c.457]    [c.457]    [c.589]    [c.121]    [c.331]    [c.76]    [c.176]   
Смотреть главы в:

Адсорбция газов и паров на однородных поверхностях -> Теплоты адсорбции газов и паров




ПОИСК





Смотрите так же термины и статьи:

Адсорбции теплота

Адсорбция газов

Адсорбция паров

Адсорбция теплота теплота адсорбции



© 2025 chem21.info Реклама на сайте