Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм действия составов

    Механизм действия катализаторов этого типа изучали по конверсии о-водорода в п-водород, по поведению радиоактивной окиси углерода и спиртов (с изотопом С ), карбидов и карбонильных соединений металлов и т. д. Анализ их структуры был проведен при помощи новейших методов (электронномикроскопического, адсорбционного и т. д.). Состав продуктов реакции определяют обычно при помощи масс-спектрографа. [c.254]


    Так, вкратце, выглядит механизм действия противозадирных и противоизносных присадок, входящих в состав трансмиссионного масла. [c.187]

    Зная сущность механизма действия буферных систем, нетрудно догадаться, что наибольшей буферной емкостью обладают растворы, содержащие большие концентрации входящих в состав буфера компонентов, и растворы, составленные из компонентов, взятых в равных количествах. Влияние величины соотношения компонентов буферных смесей на их емкость связано с тем, что при равных величинах числителя и знаменателя величина дроби наиболее устойчива к изменению своего числового значения. Поэтому и величина соотношения компонентов, входящих в состав буфера, будет меньше подвержена изменениям. [c.215]

    Элементы теории катализа. Для объяснения механизма действия катализаторов обратимся к теории переходного состояния. Специфические свойства активированного комплекса определяют скорость процесса, состав продуктов, степень влияния на процесс различных факторов. Активированный комплекс находится в равновесии как с реагентами, так и с продуктами реакции. В общем случае в его состав могут входить и посторонние вещества, например растворитель при взаимодействиях в растворах. (Этим и объясняется влияние растворителя на скорость реакций). Катализаторы также могут участвовать в формировании промежуточных соединений, при распаде которых происходит образование продуктов реакции и регенерация катализатора, хотя его физическое состояние может измениться. Активированный комплекс, образовавшийся при участии катализатора, естественно, отличается по строению и свойствам от комплекса, образованного только молекулами реагентов. Вследствие различия в структуре и свойствах этих комплексов изменяется энергия и энтропия активации. Это, в свою очередь, может стать причиной того, что в присутствии катализатора образуются одни продукты, а без него другие. В-третьих, из одних и тех же реагентов могут получиться разные продукты, так как различные катализаторы с одними и теми же реагентами образуют неодинаковые активированные комплексы. [c.156]

    Механизм действия флокулянта-осадителя объясняется адсорбцией последнего на поверхности частиц осадка с образованием рыхлых граничных слоев. Одновременно флокулянт может осаждаться из-за смешения с высокоминерализованными водами. Фильтрационные эксперименты на моделях пласта показали, что гелевый состав на основе пяти частей ОЩ-2 с добавкой одной части жидкого стекла, образующейся в пористой среде, выдерживает градиент давления в 10 МПа/м, что обеспечивает в условиях реального пласта полное прекращение фильтрации воды. [c.329]


    Из производных никотиновой кислоты наиболее важное физиологическое значение имеет амид никотиновой кислоты. Он входит в состав молекул коферментов кодегидразы I (козимазы) и кодегидразы II (кофермент Варбурга). Механизм действия указанных коферментов заключается в окислительновосстановительных реакциях. [c.199]

    Механизм действия композиций УЩР + полимер на проницаемость пористых сред подобен ранее рассмотренному для растворов УЩР. Коагулирующие коллоидные частицы способны образовывать крупные агрегаты, кольматирующие поровые каналы, или сорбироваться на их поверхности. В высокопроницаемых пористых средах основным процессом становится образование крупных агрегатов УЩР. Входящий в состав композиции полимер образует надмолекулярные комплексы с гуминовыми частицами (ПАА), а также структу- [c.61]

    Введение в состав соляной кислоты алюмосиликатов (АС) значительно замедляет скорость реакции соляной кислоты с карбонатной породой (рис.59), т.е. подтверждается вывод об эффективности в этом отношении коллоидных и гелеобразующих реагентов. Кинетические кривые выделения СО2 при взаимодействии кислотных золей алюмосиликатов с карбонатом хорошо описываются кинетическим уравнением (8.1) (табл.75, рмс.5Р). По-видимому, механизм действия добавки алюмосиликатов к соляной кислоте связан с образованием защитного слоя геля на поверхности карбоната, а также со снижением скорости диффузии в коллоидном растворе. Заметного расходования кислоты на реакцию с алюмосиликатами не происходит (табл.75). [c.181]

    Известно несколько различных семейств протеиназ, причем не все они обязательно содержат в активном центре серин. В одно из семейств входит пепсин желудка и родственные ферменты, например реннин из четвертого желудка (сычуга) теленка. Реннин вызывает быстрое свертывание молока и широко применяется в сыроварении. К этому же семейству относятся некоторые внутриклеточные катепсины и протеиназы различных грибов. Необычным свойством пепсинового семейства протеиназ является то, что они наиболее активны в интервале pH от 1 до 5. Это свойство делает понятным, почему серин и гистидин не входят в состав активного центра этих ферментов. Считают, что у кислых протеиназ в механизме двойного замещения роль нуклеофила выполняет карбоксилат-ион, а донором протона по отношению к уходящей группе служит вторая карбоксильная группа. Таким образом, механизм действия пепсина подобен механизму действия лизоцима. [c.113]

    Казанкин [15], исходя из установленного им механизма действия газообразных HjS и HG1, нашел, что все основные характеристики электролюминофоров — спектр излучения, гранулометрический состав, стабильность — зависят от соотношения между HaS и HG1. Свойства электролюминофоров зависят также от концентрации Си, структуры основы и температуры прокаливания. [c.130]

    Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. [c.4]

    Механизм действия оксигеназ включает изменение валентности входящих в их состав ионов двухвалентных металлов (железа или меди). Диоксигеназы присоединяют к субстрату молекулярный кислород, активируя его за счет электрона атома [c.313]

    Токоферолы участвуют в переносе водорода в окислительно-восстановительных реакциях, протекающих в мышечной, сосудистой, соединительной и других тканях организма, по-видимому, входя в состав ферментных систем. Механизм действия токоферолов точно не установлен возможно, они принимают участие в окислительном фосфорилировании [2131. [c.284]

    В состав ФПК входят, помимо основной органической составляющей, фотоинициатор и ингибитор. Фотоинициатор служит сенсибилизатором, который под действием УФ излучения приобретает избыточную энергию, возбуждается и обеспечивает образование свободных радикалов, необходимых для развития цепной химической реакции в основной органической составляющей. Ингибитор необходим для предотвращения спонтанных реакций, инициированных теплотой при хранении в период между введением фотоинициатора и непосредственным использованием, и для регулирования скорости фотолиза. Механизм действия ингибитора сводится к отдаче атома водорода его молекулой для насыщения свободной валентности активного радикала. Благодаря значительной вязкости ФПК обрыв органических цепей в результате взаимодействия радикалов протекает медленно. Это позволяет ингибитору оказать сдерживающее влияние [98]. [c.186]

    При Сб-дегидроциклизации алканов и Сз-циклизациц алкенов на Pt/AbOa показано [84, 126], что скорость реакции в отсутствие Нг быстро падает, доходя фактически до нуля, и наоборот, в токе Нг проходит успешная циклизация как алканов, так и алкенов. Роль водорода при образовании циклопентанов в присутствии алюмоплатиновых катализаторов с низким содержанием Pt пока недостаточно ясна. Возможно, что влияние водорода на протекание реакции осуществляется по нескольким направлениям, часть которых обсуждалась выше. Не исключая этих возможностей и в случае нанесенных Pt-катализаторов, следует также обсудить ассоциативный механизм действия водорода [84], представляющийся авторам книги одним из наиболее вероятных. В соответствии с обсуждаемой схемой водород в случае реакции Сб-дегидроциклизации алканов играет ту же роль, что и в ряде других реакций, протекающих в присутствии металлсодержащих катализаторов, в частности в реакции миграции двойной связи в алкенах [127] и в конфигурационной изомеризации диалкилциклоалканов [128]. В этих реакциях водород входит в состав переходного комплекса, образующегося на поверхности катализатора по ассоциативной схеме. Можно полагать, что реакция Сз-дегидроциклизации, также протекающая при обязательном присутствии и, по-видимому, с участием Нг, проходит через промежуточные стадии образования и распада переходного состояния  [c.230]


    Выяснение механизма действия присадок в процессе обезмас-ливания имеет большое значение для направленного поиска наиболее эффективных продуктов. В основу изучения механизма действия ПАВ в процессе кристаллизации твердых углеводородов может быть положено распределение присадки между твердой и жидкой фазами при депарафинизации и обезмасливании масляного сырья. Как указывалось выше, при депарафинизации в присутствии присадки последняя выделяется с твердой фазой. Однако этот вывод нельзя автоматически перенести на процесс обезмас-ливания, учитывая разную концентрацию твердых углеводородов и состав жидкой фазы в сырье этих двух процессов. Использование в качестве критерия распределения присадки между продуктами обезмасливаиия петролатума рекомендованных ранее значений поверхностного натяжения и удельного объемного сопротивления модельных и реальных систем [106] показало, что с увеличением содержания присадки в модельных системах удельное объемное сопротивление церезина и фильтрата от обезмасливаиия монотонно снижается (рис. 65). [c.178]

    Механизм действия антиокислительных присадок нельзя понять без знания механизма окисления углеводородов, входящих в состав масел. Все углеводороды, присутствующие в нефтяных маслах, под действием кислорода воздуха (особенно при высоких температурах и каталитическом воздействии металлов) подвергаются окислению, превращаясь в различные продукты. Для объяснения механизма окислительных процессов, совершающихся под влиянием молекулярного кислорода, были предложены различные теории [15, с. 53] в частности перекисная, гидроксиляционная, теория дегидрирования, альдегидная и др. Однако ни одна из них не могла в достаточной степени объяснить характерные особенности окисления полное истолкование этого процесса оказалось возможным в результате развития учения о цепных реакциях [25, с. 241]. [c.59]

    Механизм действия моющих присадок многообразен и зависит от их свойств в объеме масла и на поверхности металла. Важными составляющими действия моющих присадок в объеме масла являются пептизация (диспергирование продуктов уплотнения), солюбилизация (поглощение углеродистых образований мицеллами присадок) и стабилизация суспензии твердых частиц (предотвращение их слипания и осал<дения). К поиерхпостному действию присадок относят понижение адгезионного взаимодействия частиц нагаров с металлическими поверхностями, некоторые электрические и другие эффекты. Эффективность щзисадок повышается при способности их тормозить процессы окисления углеводородов масел и нейтрализовать образующиеся кислоты. Существенны также концентрация присадок и состав масел. [c.307]

    Электрохимическую коррозию частично устраняют введением в состав масла защитных присадок, называемых противоржавейными. Механизм действия защитных присадок сводится к вытеснению влаги и других электролитов с поверхности металла и образованию на нем прочной адсорбционной пленки, предотвращающей контакт металла с агрессивной средой. Таким образом, эта пленка, в отличие от пленки, образоЬанной антикоррозионными присадками, устойчива к действию не только органических кислот, но и воды. [c.190]

    Для замены ингибиторов углекислотной коррозии ИКИПГ-1, КО, АНПО и ряда других был создан новый ингибитор, получивший название СТ. В его состав входят алифатические амины (до 10%), диэтиленгликоль (до 30%) и флотореагент ВЖС (до 60%). Диэтиленгликоль является гомогенизатором тройной смеси, а также снижает температуру застывания. Его защитное действие как простого эфира проявляется в том, что, будучи десорбентом воды, диэтиленгликоль создает благоприятные условия для адсорбции основных компонентов ингибитора на поверхности металла. Механизм действия ингибитора СТ [146] можно упрощенно представить следующей схемой удаление воды с поверхности образование органических радикалов [c.224]

    Исходя из механизма действия водорастворимых силикатов и геологических условий, состав силикатной ванны в основном определяется составом и концентрацией электролитов пластовых вод, величиной их pH, приемистостью коллекторов, температурой, давленнем и др. При подборе состава следует учитывать также вид химической обработки промывочной жидкости и ее показатели, в частности, величины водоотдачи и толщины корки. [c.250]

    Различная степень взаимодействия присадок, приводящая в отдельных случаях к осаждению из растворов, подтверждена с помощью метода лазерной спектроскопии. Как видно из рис. 9.8, различные композиции присадок отличаются размерами коллоидных образований в масляных композициях. Знание размеров этих образований позволяет определить пути повыше шя коллоидной стабильности растворов присадок, Так, например, для повышения коллоидной стабильности присадки АБЭС, входящей в состав масла ИГС ,-38д, важно учитывать ее взаимодействие с ингибиторами коррозии. Можно предположить, что замена В-15/41 на присадку А (размеры коллоидных образований в системах 1,58 и 0,53 мкм, соответственно, рис. 9.8) повысит коллоидную стабильность раствора присадки АБЭС. Механизм действия присадки А, по-видимому, заключается в диспергировании нерастворимых ассоциатов на мельчайшие частицы, за счет чего предотвращается их коагуляция и выпадение в осадок. Более того, можно предположить, что присадка А одновременно препятствует превращению растворимых в масле продуктов окисления в нерастворимые вещества и их седиментации. Образующиеся при этом коллоидные частицы удерживаются во взвешенном состоянии в масле за счет солюбилизации. Таким образом, очевидно, присадка А обладает некоторой антиокислительной функцией. [c.274]

    Сравнивается действие двух или нескольких ферментов на один поли- или олигомерный субстрат и выявляется состав образующихся продуктов (различное распределение моно- или олигомерных продуктов по степени их полимеризации и по относительной концентрации). При этом состав продуктов действия одного из ферментов более характерен для неупорядоченного (многоцепочечного) способа действия по сравнению с действием других ферментов. Этого, как правило, для авторов достаточно, чтобы заключить о частичном проявления одноцепочечного механизма действия в последнем случае и, базируясь на выбранной ими модели, рассчитать степень множественной атаки. Кроме того, практически ни в одной из приведенных нами работ не вводились количественные поправки на возможную повторную атаку ( вторичный гидролиз образующихся продуктов реакции), исходя из кинетических параметров ферментативного гидролиза олигомеров с различной степенью полимеризации. Иначе говоря, авторы, априори принимая только механизм множественной атаки, не делают контрольных расчетов по альтернативным механизмам ферментативного гидролиза полимеров. [c.102]

    Увеличению прочности цементного камня способствует введение в состав цементов в оптимальных количествах молотого сульфоалюминатного клинкера. Однако механизм действия этих крентов на прочность цементов представляется несколько иным. Безводный сульфоалюминат кальция является быстрореагирующимся соединением, способным образовывать достаточно крупные кристаллы гидратов уже в возрасте 1—3 сут. Поэтому введение его придает цементу свойства быстротвердеклцего. [c.356]

    При периодическом деформировании образца в той или иной мере проявляются все механизмы внутреннего трения, однако их вклад в общее затухание колебаний образца различен, так как каждый механизм при неизменных внешних условиях (температура, давлений, состав остаточных газов и т. д.) и выбранном интервале амплитуд деформации наиболее интенсивно проявляется в определенной области частот, что, согласно (351) и (352а), отражается максимумом на кривой Q (со). Если механизмы действуют независимо один от другого, то можно полагать, что общее затуха- [c.199]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    ТИАМИНДИФОСФАТ [ТДФ, кокарбоксилаза, тиаминпирофосфат формулу см. в ст. Тиамин, Х = = ОРО(ОН)ОРО(ОН)2], коферментная форма тиамина fr., 241—243 С (с разл.) раств. в воде (22%), не раств. в орг, р-ритедях. Широко распространен в природе, содержится в животных тканях, растениях и микроорганизмах. Входит в состав каталитич. центров важнейших ферментов углеводного обмена. Механизм действия основан иа способности диссоциировать с отщеплением протона при втором атоме углерода тиазолового кольца. Получ. синтетически из тиамина и пирофосфорной к-ты. Примеп. для лечения сердечно-сосудистых заболеваний. Кроме Т., в организме присутствуют моно- и трифосфорный эфиры тиамина (ТМФ и ТТФ). [c.576]

    Как я Б случас амипокспдов, при наличии более одного р-водород-ного атома образуются смеси олефинов. Для нециклических соединений состав олефинов часто приближается к составу, предполагаемому на основе статистического распределения по числу водородных атомов каждого типа. Обычно для каждой пары изомеров более предпочтительным оказывается транс-олефин, чем ц с-изомер. Для циклических систем конформационные особенности, напряжение кольца и родственные факторы обычно изменяют состав, смеси, ожидаемый на основе статистических даппых. Элиминирование по направлению, при котором действует с -механизм, оказывается значительно предпочтительнее другого направления, где этот механизм действовать не может, например [85]  [c.217]

    АДЕНОЗИНТРИФОСФАТАЗЫ (АТФ-фосфогидролазы, АТФазы), ферменты класса гидролаз, катализирующие гидролиз АТФ с отщеплением от молекулы кош1евого остатка фосфорной к-ты и образованием аденозиндифосфата (АДФ). Мол. массы, субъединичиый состав, строение активных центров и механизм действия А. из разл. источников существенно различаются. Аденозинтрифосфатазной активностью обладают мн. индивидуальные ферменты, а таюке комплексы, состоящие из неск. ферментов. В большинстве случаев А. активируются ионами и Са , в нек-рых-К и Na . К А. относят также ферменты АТФ-синтетазы, катализирующие наравне с синтезом АТФ его гидролиз. [c.33]

    Характер влияния гормонов на обмен веществ отличен от механизма действия ферментов и витаминов. Они не вхо 1Лт в состав молекул биологических катализаторов, ферментоп, отличаясь этим от питаминов. [c.241]

    Водородная функция стекла связана с его составом, гигроскопичностью, химической устойчивостью и толщиной мембраны. Однако роль этих факторов и механизм действия стеклянных электродов до сих пор не вполне объяснены. Большой вклад в развитие теории стеклянных электродов внесли работы Никольского. В настоящее время принято считать, что на поверхности стекла при длительном контакте мембраны с раствором молекулы воды проникают в нее на глубину 10 - 1000 А, образуя гидратированный поверхностный слой, в котором протекают реакции ионного обмена между катионами щелочных металлов, входящими в состав силикатов, и ионами водорода. Основные структурные характеристики стекла в гидратированном слое не меняются, но подвижность катионов значительно увеличивается по сравнению с подвижностью в плотной внутренней части стеклянной мембраны. При этом транспорт катионов в гидратированном слое регулируется ваканси-онным механизмом, согласно которому вакансиями являются катионы в межузловых положениях трехмерного скелета, построенного из кремнийкислородных цепочек (рис. 6.3). При контакте с раствором они могут обмениваться на другие катионы, главным образом на ионы водорода  [c.185]

    Учитывая вышеизложенный механизм действия ПАВ (СЖК) на устойчивость керамической дисперсии, состав технологических связок для промышленных испытаний подбирался исходя из следуюш,их соображений. Устанавливалась оптимальная концентрация СЖК, обеспечивающая минимальное содержание парафино-кислотной связки в литейноспособном шликере. Практическими данными подтверждено, что содержание ПАВ (СЖК) в связке в расчете на поверхность керамического порошка является определяющим в обеспечении литейных свойств шликера. В ряде случаев подбирались дополнительные парафинсодержащие компоненты (церезин, нефтяной воск, высокоплавкий парафин Пв), добавление которых, не ухудшая литейной способности шликера, могло в дальнейшем обеспечить более равномерное [c.18]

    Механизм действия адсорбционных индикаторов можно описать следующим образом. В процессе осаждения на поверхности осадка всегда адсорбируются катионы и анионы (первично адсорбированные ионы), входящие в состав кристаллической решетки, в зависимости от того, что находится в избытке. Вследствие этого, поверхность осадка приобретает заряд, под действием которого к частицам осадка из раствора притягиваются противоположно заряженные ионы (иротивоионы) индикатора, которые удерживаются слабее. Так, в процессе титрования галогенидов, до точки эквивалеитиости поверхность осадка имеет отрицательный заряд и анион индикатора отталкивается от осадка. При ирохождении изоэлектрической точки, первично адсорбированным ионом становится Ag, и анион индикатора адсорбируется на поверхности осадка в качестве иротивоиона, с измепепием цвета осадка  [c.36]

    Среди многочисленных компонентов биосистем молекулярного уровня исключительная роль в процессах жизнедеятельности, бесспорно, принадлежит белкам. Активно участвуя практически во всех протекающих в клетках и организме процессах, они наделены поистине универсальными биофизическими и биохимическими свойствами. Белки обладают способностью к взаимному превращению всех необходимых для жизни видов энергии тепловой, механической, химической, электрической и световой. Кроме того, они входят в состав соединительных и костных тканей, кожи, волос и других структурных элементов всех уровней живого организма, выполняя динамическую опорную функцию и обеспечивая нежесткую взаимосвязь органов, их механическую целостность и защиту. Нет смысла перечислять все функции белков, спектр их действия огромен. Отметим лишь, что по разнообразию своих физических и химических проявлений белки несопоставимы с возможностями любого другого класса соединений живой и неживой природы. Они "умеют" делать все, и именно поэтому назначение генетического аппарата любого живого организма сведено к хранению информации только о белках и к их синтезу. Биосистемы всех уровней, в том числе и молекулярного, можно считать "произведениями" белков. При функциональной универсальности природных аминокислотных последовательностей деятельность каждого отдельного представителя этого класса уникальна в отношении функции, механизма действия, природы лиганда и внешней среды. И, наконец, белки проявляют высочайшую активность в физиологических, мягких условиях и не образуют при своем функционировании побочных продуктов. [c.50]

    Механизм действия сульфгидрильных протеаз — папаина, фпцина и бромелаина — принципиально аналогичен изображенному на рис. 6.3. В роли акцептора ацильной группы здесь выступает сульфгидрильная группа входящего в состав активного центра остатка цистеина. Об этом свидетельствуют данные, полученные при изучении действия химических ингибиторов и рН-зависимости каталитической реакции (группа с р/Са 8,4 появляется на стадии ацилирования, а не на стадии деацилирования), а также тот факт, что методами спектроскопии в ацил-ферменте была обнаружена сложная тиоэфирная связь. При замене воды на оксид дейтерия катализируемые папаином реакции проявляют значительный кинетический изотопный эффект следовательно, лимитирующей стадией является перенос протона. О химической природе группы, выступающей в роли общего основного катализатора, мы уже говорили выше. Поскольку сложные тиоэфиры легче взаимодействуют с аминами, чем с кислородными сложными эфирами, папаин является лучшим катализатором реакции транспептидации по сравнению с химотрип-сином. [c.146]


Смотреть страницы где упоминается термин Механизм действия составов: [c.177]    [c.132]    [c.23]    [c.225]    [c.62]    [c.661]    [c.47]    [c.50]    [c.73]    [c.121]    [c.215]    [c.452]    [c.293]    [c.300]    [c.222]   
Смотреть главы в:

Ингибированные нефтяные составы для защиты от коррозии -> Механизм действия составов




ПОИСК





Смотрите так же термины и статьи:

Лакказа. Состав и строение активного центра, гипотезы о механизме действия

Механизм действия



© 2024 chem21.info Реклама на сайте