Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремния определение в сурьме

    Определение сурьмы в кремнии и его соединениях методами эмиссионного спектрального анализа [c.134]

    Казалось бы, посуда из платины в лаборатории пригодна на все случаи жизни, но это не так. Как ни благороден этот тяжелый драгоценный металл, обращаясь с ним, следует помнить, что при высокой температуре платина становится чувствительной к многим веществам и воздействиям. Нельзя, например, нагревать платиновые тигли в восстановительном и тем более коптящем пламени раскаленная платина растворяет углерод и от этого становится ломкой. В платиновой посуде не плавят металлы возможно образование относительно легкоплавких сплавов и потери драгоценной платины. Нельзя также плавить в платиновой посуде перекиси металлов, едкие щелочи, сульфиды, сульфиты и тиосульфаты сера для раскаленной платины представляет определенную опасность, так же, как фосфор, кремний, мышьяк, сурьма, элементарный бор. [c.191]


    Родаминовый метод применяют для определения сурьмы в свинце [4, 37, 38], меди и ее сплавах [13, 39], олове и его сплавах [40], цинке [16], стали [17], германии и кремнии [41], почвах и минералах [14], органических соединениях [20], природных водах [8]. [c.377]

    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы количество собственных переносчиков тока в кристалле было примерно на два порядка ниже. [c.89]

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    В настоящее вре.мя разработаны. методы определения небольших количеств кобальта путем облучения анализируемых образцов нейтрона.ми в ядерных реакторах [1095] в горных породах, морских отложениях и метеоритах [1335, 1336, 1341], в металлической сурьме [188], в электролитном цинке высокой чистоты [873], в алюминиевых сплавах [510], в железе [388], в кремнии высокой чистоты [869], в сталях [380, 1093], в биологических тканях [893, 1177] и других материалах [798, 1444]. [c.173]


    Радиоактивационный метод применяют для определения фосфора в горных породах и минералах [569, 760, 1109], в сталях и сплавах 542, 555, 738], в металлах — алюминии, железе, магнии, селене, теллуре, сурьме, никеле, кальции, литии, натрии, боре, меди и др. [310, 427, 466, 470, 471, 490, 503, 665, 698, 706, 707], в кремнии [134, 812, 836], в карбиде кремния [532, 1080], в окиси бериллия [252] и мышьяке [982]. [c.81]

    Метод отгонки также применяют при определении ванадия, вольфрама, молибдена, олова, сурьмы, иода, фтора, осмия, серы, селена, теллура, кремния и других элементов. [c.360]

Рис. 140. Диаграмма для определения меди, свинца, олова, хрома, сурьмы, мышьяка и кремния (проба испаряется из канала угольного электрода). Рис. 140. Диаграмма для <a href="/info/161978">определения меди</a>, <a href="/info/352900">свинца</a>, олова, хрома, сурьмы, мышьяка и кремния (проба испаряется из <a href="/info/1920367">канала угольного</a> электрода).
    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Смесь оксидов 18 элементов разбавили отдельно угольным порошком и фторидом лития до концентрации 0,01—0,17о затем из этих двух смесей приготовили девять образцов, основы которых содержали 0,5, 10, 25, 50, 75, 90, 95 и 100% фторида лития. Концентрация примесей во всех образцах была одинаковой. Пробы испаряли из канала угольного электрода диаметром 3 и глубиной 4 мм в дуге переменного тока силой 15 А. Исследовали влияние лития на чувствительность анализа и испарение элементов во время горения дуги. Добавление до 25% фторида лития повышает чувствительность определения всех элементов (за исключением цинка и сурьмы). Наибольшее почернение линий меди, кремния, железа, алюминия и серебра наблюдается при концентрации буфера около 25% хрома, никеля, ванадия, молибдена и титана — 25—75% свинца и олова— 100%. Почернение линий цинка и сурьмы с 5% буфера несколько повышается, но при дальнейшем увеличении его содержания снижается. Аналогичные данные были получены р при испарении пробы из канала угольного электрода диаметром [c.110]

    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    При содержании до 25% фтористого лития повышается чувствительность определения всех элементов, за исключением цинка и сурьмы (рис. 44—46). Наибольшее почернение линий меди, кремния, железа,-алюминия и серебра наблюдается при концентрации буфера около 25% хрома, никеля, ванадия, молибдена и титана 25—75% свинца й олова 100%. Почернение линий цинка и сурьмы с 5% буфера несколько повышается, но при дальнейшем увеличении его содержания снижается. [c.98]

    Для определения других элементов, кроме серы, кремния и тех, которые, подобно сурьме, образуют летучие хлориды, раствор пробы может >быть приготовлен обычным методом обработкой соляной кислотой, затем азотной кислотой и сплавлением нерастворимого остатка. [c.320]

    Определение нельзя заканчивать взвешиванием двуокиси марганца, так как она загрязнена кремнием, вольфрамом, ниобием и танталом, частично выделяюш имися но время выпаривания азотной кислоты, а также железом, кобальтом, сурьмой и ванадием, если значительные количества этих элементов находились в первоначальном растворе. При объемном методе определения марганца присутствие всех этих примесей не имеет такого большого значения, как при весовом. Ход отделения следуюш ий. [c.494]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]


    Метод комплексометрического определения алюминия обратным титрованием раствором железа с применением сульфосалициловой кислоты нашел очень широкое применение в лаборатория,х. Его используют для определения алюминия в ферросплавах [160, 588, 589], бронзах [354, 976], в цинковых сплавах [976], в сплавах алюминия с торием [977], с кремнием [161], сурьмой и галлием [104], вшлака.ч [182, 350], в нефелиновых концентратах [138], в глиноземистых материалах [108], в горных породах, силикатах, огнеупорах [267,277, [c.72]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Поэтому в конечном счете химик-аналитик прежде всего должен уметь количественно получать чистые химические препараты. Самые тщательные предосторожности при взвешивании, отмеривании и конечном определении элементов не приводят к желаемым результатам, если аналитик не сумеет количественно приготовить соединение, на основании которого производят вычисления, и количественно от елить его от всех других соединений, могз щих повлиять на правильность вычислений. Насколько большие трудности может представлять эта задача, можно судить по тому, какие делались ошибки, несмотря на огромные затраты времени и усилий, при определениях атомных весов. Так, например, в 1921 г. общепринятые атомные веса для алюминия, кремния и сурьмы были равны соответственно 27,1, 28,3 и 120,2. В 1925 г. атомные веса этих элементов были изменены на 26,97 28,06 и 121,77, причем разница здесь, выраженная pro mille, равна 4,8 8,6 и 12,9. [c.21]

    Система 8Ь—81. Первые исследования системы 8Ь—81 Вигуру (1896 г.) представляют ныне только исторический интерес-Диаграмма состояния этой системы разработана Вильямсом [230], который исследовал подробно 14 бинарных сплавов чистейшей сурьмы и 98,1%-ного кремния, а также ряд дополнительных. Вильямс установил, что никаких химических соединений в этой системе нет. Поэтому указание на наличие силицидов сурьмы в современной литературе [16] лишены оснований. Сурьма и кремний полностью смешиваются в расплавленном состоянии. Отсутствие видимых в микроскоп включений кремния в сурьме, при его содержании менее 0,3 вес. %, и сурьмы в кремнии, при содержании ее О—1 вес.%, явилось для Вильямса основанием считать, что при указанных концентрациях образуются твердые растворы. Джетт и Джеберт [89] показали с помощью рентгеновских определений параметров кристаллических решеток, что твердые растворы в системе 8Ь—81 практически отсутствуют. Во всяком случае растворимость кремния в сурьме менее 0,5%, что видно из постоянства параметров кристаллических решеток, приведенных в табл. 14. [c.92]

    Определение сурьмы в стибните. Анализ стибнита, обычной сурьмяной руды, служит иллюстрацией применения прямого ио-диметрического метода. Стибнит главным образом состоит из сульфида сурьмы, но содержит двуокись кремния и другие примеси. Если анализируемый материал не содержит железа и мышьяка, определение в нем сурьмы сложностей не представляет. Образец разлагают горячей концентрированной соляной кислотой для удаления сульфида в виде НгЗ. На этой стадии необходимо принять меры для предотвращения потери летучего трихлорида сурьмы. При добавлении хлорида калия увеличивается тенденция к образованию нелетучих хлоридных комплексов, вероятно, состава 5ЬС1 4 [c.400]

    I г измельченного кремния растворяют в платиновой чашке или платиновом тигле в 10 мл 40%-ной НР, добавляя по каплям 5 мл концентрированной HNO3 и избегая бурной реакции. В случае определения сурьмы образец растворяют в 20 мл НР, 5 мл HNO3 и добавляют еще 5 мл концентрированной H2SO4 [1]. [c.40]

    Твердость металлов больших периодов, являющаяся мерой сопротивления значительным пластическим деформациям, также зависит от электронной концентрации (рис. 105). При определении твердости методом царапания, характеризующим предельное сопротивление разрушению, максимумы приходятся на хром, молибден и вольфрам (как п для температур плавления), а при определении твердости методом вдавливания, характеризующим сопротивление большим пластическим деформациям, максимумы соответствуют хро-- 1У> рутению и осмию, имеющим минимальные межатомные расстояния и максимальные модули (см. рис. 104). Вторая система максимумов отвечает ко-иалентным кристаллам (алмаз, кремний, германий, сурьма). [c.235]

    Поданным Вебстера и Файрхола, определению сурьмы мешают золото, таллий и вольфрам, так как образуют с реагентом окрашенные соединения (вольфрам дает осадок). Известно, что железо(И1) и галлий также образуют экстрагируемые хлорантимонаты, окрашенные в красный цвет. В присутствии ртути(И) иод- и бром-ионы образуют осадки. Углеводороды (ацетилен) и гидриды кремния, азота, фосфора, мышьяка, серы, селена и теллура не мешают определению сурьмы, если они поглощаются раствором хлорида р ути(П). [c.233]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    Благодаря высокой чувствительности активационный анализ находит широкое применение в разработке методов получения и контроля производства веществ высокой степени чистоты, так необходимых сейчас во многих областях науки и техники, в частности, в полупроводниковой промышленности. Особенно эффективным является активационное определение содержания в кремнии и германии ряда примесей, наличие которых оказывает существенное влияние на электрофизические характеристики полупроводников. К таким примесям относится, например, индий и сурьма. Как следует из табл. 13, радиоактивацион-иые методы определения этих элементов характеризуются исключительно высокой чувствительностью. [c.168]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Плотность— 1,854 при 0° и 1,811 при 32°. При обычных температурах она не растворяет в себе углерод, водород, азот, кислород, кремний, теллур, металлы и не реагирует с ними. Исклю чение составляют щелочные металлы и сурьм а. Реакции со щелочными металлами сопровождаются взрывом при определенных температурах, изменяющихся от 30 (для цезия) до 180° (для натрия). Для лития такая температура не определена. [c.106]

    Силикокальций. Метод определения содержания фосфора Силикокальций. Метод определения кремния Силикокальций. Метод определения содержания железа Силикокальций. Метод определения кальция Силикокальций. Методы оиределения алюминия Феррониобий. Метод определения фосфора Феррониобий. Метод определения кремния Феррониобий. Метод определения суммы ниобия и тантала Феррониобий. Метод определения тантала Ферроьшобий. Метод определения алюминия Феррониобий. Метод определения титана Ферроьшобий. Метод определения содержания азота Феррониобий. Метод определения содержания кобальта Феррониобий. Метод определения содержания висмута Феррониобий. Метод определения содержания олова Феррониобий. Метод определения содержания мышьяка Феррониобий. Метод определения содержания сурьмы Феррониобий. Метод определения содержания цинка Феррониобий. Метод определения содержания свинца Ферросиликомарганец. Методы определения марганца [c.567]

    Метод дуги постоянного тока использован для определения галлия в различных породах и минералах [81, 87, 174, 429, 666, 823, 873, 883, 974, 977, 1113, 1114, 1151, 1183, 1192, 1319, 1418], глинах [907, 1183], в почвах [1013], в бокситах [989, 1183], в рудах и продуктах их обогащения [56, 429, 1113, 1114, 1151, 1418], в отходах цветной металлургии [56], в ZnS [885], в золах и сланцах [1184], в огнеупорах [1183], в водах i[1325], в органичесиих соединениях [400], в HF, HNO3 и НС1 [105], в цинк-селенидных электролюминофорах [515], в сплаве In—Ga [1147], в боре (борный ангидрид, борная кислота) [75], графите [850, 929], кремнии [106, 107, 427, 1134] и его соединениях [106, 107, 397, 1134], в германии (108, 336, 336а] и его соединениях [108], в индии [88, 381], цинке [555], олове [557, 559, 560], сурьме [466], бериллии и его окиси [242], селене [506], щелочных металлах [542] и уране [730]. [c.158]

    В неорганическом анализе дистилляционными методами отделяют мышьяк, сурьму и олово в виде галогенидов, хром — в виде Сг02СЬ, осмий и рутений — в виде тетраоксидов. При определении кремния в силикатах его отделяют в виде 51р4. Серу в форме сульфитных и сульфидных ионов обычно выделяют в виде ЗО2 и Н2З после подкисления анализируемого раствора. Галогены можно отогнать из водного раствора в виде свободных элементов (часто после селективного окисления) и галогеноводородов. Из трудно-плавящихся веществ примеси металлов можно выделить в элементарном виде нагреванием при высокой температуре. Наоборот, в легколетучих веществах, (например, кислотах) содержание металлов определяют после полного или частичного отделения основного вещества дистилляцией. Примером использования рассматриваемых методов для очистки веществ служит дистилляция воды — стандартная операция в практике аналитических лабораторий. Методом сублимации можно хорошо очистить иод или некоторые органические соединения (например, 8-гидроксихинолин). [c.80]

    Для фторирования смеси восьми окислов, взятых в равных весовых количествах, к пробе добавляют удвоенное количество измельченного фторопласта-4, смесь тщательно растирают и испаряют из канала угольного электрода при дуговом возбуждении. В результате повышается чувствительность определения кремния, магния, алюминия и титана, фториды которых более летучи чем их окислы. Чувствительность определения висмута, сурьмы, кальция и железа не изменяется. Это объясняется тем, что первые два элемента и их соединения и так достаточно легколетучи, а фториды кальция и железа обладают низкой летучестью. Для повышения чувствительности анализа используют [251] реакцию фторирования фторопластом-4 в камерном электроде с независимым электронагревом [252]. Независимый нагрев электрода позволяет сравнительно просто контролировать температуру пробы и управлять ею. Можно и более рационально использовать фракционную разгонку компонентов пробы. [c.93]

    При дегидратации кремневой кислоты выпариванием с хлорной кислотой практически полностью выделяются сурьма, ниобий, тантал, олово и вольфрам. Если присутствуют висмут, германий, молибден и ванадий в больших количествах, то они могут частично попадать в осадок. Так как эти элементы мешают определению кремния большинством фотометрических методов, то их необходимо удалять, что осуществляют следующим образом. Помешают бумажный фильтр с дегидратированной кремневой кг слотой в платиновую лодочку для сожжения и осторожно сжигают бумагу. Затем помещают лодочку в трубку печи для сожжения, нагретой примерно до 700°, и медленно пропускают [c.38]

    В стадии лабораторных исследований [512] находился и другой метод низкотемпературного расщепления воды с использованием света в термоэлектрической батарее. Такая батарея состоит из трех частей. В первой, верхней части солнечная энергия собирается светопоглощающим материалом (оксид магния или кремния) и тепло стабилизируется на определенном уровне (520 К) расплавом, циркулирующим под светопоглощающей пленкой (металлический калий, натрий). Этот расплав предотвращает внезапные температурные скачки и сохраняет накопленное тепло на стабильном уровне. Вторая часть конструкции представляет полупроводящий сплав с р — -переходом типа висмут — теллур — сурьма, цинк — сурьма — константан. Третьей частью устройства является платиновый элемент, который служит и для [c.340]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]


Смотреть страницы где упоминается термин Кремния определение в сурьме: [c.40]    [c.44]    [c.44]    [c.80]    [c.563]    [c.17]    [c.184]   
Аналитическая химия сурьмы (1978) -- [ c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение



© 2025 chem21.info Реклама на сайте