Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощение излучения (абсорбционная спектроскопия)

    Применение метода абсорбционной спектроскопии не ограничивается только определением концентраций веществ. В результате поглощения излучения энергия систем з1 меняется настолько незначительно, что это не приводит обычно к нарушению целостности молекул поглощающего вещества. Однако в результате смещения химического равновесия в растворе под влиянием различных факторов его поглощающие свойства могут изменяться весьма значительно. На этом основано применение метода абсорбционной спектроскопии для изучения равновесий в растворах, реакций гидролиза и полимеризации, определения состава комплексных соединений, их констант устойчивости и т. п. . В данной главе рассматривается только метод абсорбционной спектроскопии как один из методов количественного анализа. [c.458]


    Фотометрический метод анализа основан на избирательном поглощении электромагнитных излучений различных участков спектра однородной системой . Поэтому данный метод при условии использования монохроматических излучений называют методом абсорбционной спектроскопии или спектрофотометрии. [c.458]

    ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ (ФА), совокупность методов мол.-абсорбционного спектрального анализа, основанных на избират. поглощении электромагн. излучения в видимой, ИК и УФ областях молекулами определяемого компонента или его соед. с подходящим реагентом. Концентрацию определяемого компонента устанавливают по закону Бугера -Ламберта - Бера (см. Абсорбционная спектроскопия). ФА включает визуальную фотометрию (см. Колориметрический анализ), спектрофотометрию и фотоколориметрию. Последняя отличается от спектрофотометрии тем, что поглощение света измеряют гл. обр. в видимой области спектра, реже - в ближних УФ и ИК областях (т. е. в интервале длин волн от 315 до 980 нм), а также тем, что для выделения нужного участка спектра (шириной 10-100 нм) используют не монохроматоры, а узкополосные светофильтры. [c.171]

    В то же время изменение в поглощении растворов под влиянием указанных факторов говорит о сдвиге реакции комплексообразования. Изучая поглощающие свойства растворов комплексов в варьируемых условиях, можно по уравнениям закона действующих масс и закона поглощения электромагнитных излучений найти связь константы равновесия с поглощающими свойствами данной системы и рассчитать эту константу. Следовательно, метод абсорбционной спектроскопии может быть использован также для изучения гидролиза и полимеризации в растворах, определения состава комплексных соединений и их констант устойчивости, так как в результате смещения равновесия изменяются спектральные свойства изучаемой системы. [c.46]

    Весь спектр электромагнитного излучения охватывает широкий диапазон частот — от длинных радиоволн до жесткого уизлучения. Однако спектроскопия, изучающая спектры поглощения (молекулярная, или абсорбционная, спектроскопия), использует лишь сравнительно небольшую его часть. В зависимости от того, в какой области изучается спектр, его называют ультрафиолетовым (УФ), видимым или инфракрасным (ИК). [c.124]

    Физическую основу атомно-абсорбционной спектроскопии составляет поглощение резонансной частоты газообразными атомами. Если на невозбужденные атомы направить излучение света с резонансной частотой поглощения атомов, то излучение будет поглощаться атомами, а его интенсивность уменьшится. Таким образом, если в эмиссионной спектроскопии концентрация вещества связывалась с интенсивностью излучения, которое [c.207]


    Метод абсорбционной спектроскопии (спектрофотометрии) относится к оптическим методам анализа и основан на взаимодействии вещества с излучениями ультрафиолетовой (УФ), видимой и инфракрасной (ИК) областей электромагнитного спектра, а именно на избирательном поглощении электромагнитного излучения однородными нерассеивающими системами. [c.5]

    ПОГЛОЩЕНИЕ ИЗЛУЧЕНИЯ (АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ) [c.170]

    Спектроскопия поглощения или абсорбционная спектроскопия. Экспериментатор наблюдает, какие частоты поглощаются при прохождении излучения через образец. Если поглощается свет с частотой V, то молекула может быть возбуждена фотоном с энергией Ьу. [c.458]

    Спектрографы служат, главным образом, для работы с эмиссионными спектрами. В абсорбционной спектроскопии фотографические методы регистрации применяют в настоящее время сравнительно редко. Тем не менее любой спектрограф может быть легко использован для получения спектров поглощения, если только имеются источник сплошного излучения и кюветы для работы в соответствующей области спектра. Обычно все спектрографы снабжаются комплектом приспособлений, которые рассчитаны для работы со спектрами испускания, однако для некоторых из них выпускают и абсорбционные комплекты. [c.125]

    АТОМНАЯ ЭНЕРГИЯ, то же, что ядерная энергия. АТОМНО-АБСОРБЦИОННЫЙ АНАЛИЗ (атомно-абсорбц. спектрометрия), метод количеств, элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора (см. ниже), пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетич состояния. Этим переходам в атомных спектрах соответствуют т. наз. резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера (см. Абсорбционная спектроскопия), мерой концентрации элемента служит оптич. плотность A = g(l jl), где /ц и /-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой. [c.216]

    Прп поглощении электромагнитных излучений УФ, видимого и ИК диапазонов не нарушается цельность поглощающих соединений, т. е. не происходит разрыва химической связи. Это позволяет использовать метод абсорбционной спектроскопии для определения состава соединений и изучения равновесий в растворах. [c.90]

    В описанном выше абсорбционном методе частота лазерного излучения перестраивалась так, чтобы совпасть с центром линии поглощения регистрируемой частицы. Если частота лазерного излучения фиксирована и близка к частоте линии поглощения, то для получения резонанса можно перестраивать линию поглощения, воздействуя на регистрируемые частицы электрическим или магнитным полем. Вариант абсорбционной спектроскопии с электрическим полем называют лазерной штарковской спектроскопией, а вариант с использованием магнитного поля - лазерным магнитным резонансом. Лазерную штарковскую спектроскопию можно применять для регистрации стабильных молекул. Регистрацию таких парамагнитных частиц, как атомы и радикалы, удобно осуществлять с использованием лазерного магнитного резонанса. [c.116]

    Спектральные методы связаны с воздействием на вещество электромагнитного излучения. Важнейшими из них являются электронная (ультрафиолетовая, УФ), колебательная (инфракрасная, ИК) спектроскопия и спектроскопия ядерио-го магнитного резонанса (ЯМР). Механизм взаимодействия электромагнитного излучения с веществом в разных областях электромагнитного спектра (табл. 15.1) различен, но в любом случае происходит поглощение молекулой определенного количества энергии (абсорбционная спектроскопия). При этом молекула переходит из одного энергетического состояния в другое. [c.501]

    Аналогичные эффекты наблюдаются в абсорбционной спектроскопии. Диапазон частот или полоса излучения, которые характеристически поглощаются данным образцом, обычно достаточно узкие. Однако из-за общей конструкции щелей и диспергирующего устройства прибора на образец обычно попадает излучение с более широким диапазоном частот, чем те, которые действительно необходимы для селективного поглощения. Это приводит к искажению сигнала, снижению чувствительности прибора и к нелинейности калибровочных кривых. [c.52]

    Химический анализ методом атомно-абсорбционной спектроскопии основан на переводе части образца в атомный пар и измерении поглощения этим паром излучения, характеристического для определенного элемента. [c.132]

    Абсорбционная спектроскопия основана на избирательном поглощении веществом электромагнитного излучения прошедшее через вещество немонохроматическое излучение в спектральном приборе разлагают по длинам волн [c.96]

    В отличие от других оптических методов (эмиссионной спектроскопии, люминесценции и др.), в которых измеряется интенсивность излучения, испускаемого предварительно возбужденной системой, спектрофотометрический метод анализа основан на избирательном поглощении однородной нерассеивающей системой электромагнитных излучений различных участков спектра. Поэтому при использовании монохроматических излучений его называют методом абсорбционной спектроскопии. [c.104]


    Абсорбционная спектроскопия исследует поглощательную способность веществ. Абсорбционный спектр (спектр поглощения) получают следующим образом вещество (пробу) помещают между спектрометром и источником электромагнитного излучения с определенным диапазоном частот. Спектрометр измеряет интенсивность света, прошедшего через пробу, по сравнению с интенсивностью первоначального излучения при данной длине волны. В этом случае состояние с высокой энергией также имеет короткий период жизни. В инфракрасной области поглощенная энергия обычно переходит в тепло, т. е. температура образца (или раствора) растет в процессе снятия спектра. В ультрафиолетовой же области поглощенная энергия обычно вновь переходит в свет в некоторых случаях она может индуцировать фотохимические реакции. [c.9]

    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]

    Атомно-абсорбционная спектроскопия (ААС, атомно-абсорб-ционный анализ) — метод элементного анализа вещества по атомным спектрам поглощения. Для наблюдения этих спектров через атомный пар пробы пропускают видимое или УФ-излуче-ние. В результате поглощения квантов излучения электроны атомов переходят с нижних энергетических уровней на возбужденные (см. рис. П1.1 и III.2). Этим переходам в атомном спектре соответствуют так называемые резонансные линии, характерные для данного элемента [1, 2]. [c.233]

    Современные способы генерации импульсного электронного излучения позволяют создавать за импульс длительностью 10" —10" сек. токи порядка десятых долей ампера. Произведем небольшой расчет-5 Допустим, что ток в импульсе продолжительностью 10" сек. и при энергии электронов 2 Мдв равен 0,2 а. При условии полного поглощения электронов в растворе объемом 2 мл это соответствует дозе за импульс, равной примерно 10 эв л. Пусть выход какого-либо продукта радиолиза, например, гидратированного электрона, составляет 2,5. Тогда мгновенная концентрация этого продукта в растворе после подачи лишь одного импульса будет равна —4-10 М. Такие концентрации (конечно, при условии, что коэффициент экстинкции данного продукта достаточно высок) сравнительно легко измеряются, например, современными методами оптической спектроскопии. Очевидно, при этом необходимо использовать весьма быстрые методы анализа, поскольку радикальные продукты радиолиза воды очень реакционноспособны. Идентификацию продуктов здесь можно производить, фотографируя их спектры с помощью синхронизированной флеш-абсорбционной спектроскопии, а кинетику реакций с их участием — путем быстрых спектрофотометрических измерений в той области спектра, где поглощает данный продукт. [c.7]

    Фотометрическим методом определяют поглощение веществом света не строго монохроматического излучения. Для измерения используют фотоколориметры. К абсорбционной спектроскопии относят также колориметрию. [c.456]

    Поскольку молекулярные и атомно-абсорбционные методы спектрофотометрии имеют общую аппаратуру и методологию, целесообразной является разработка новых конструкций спектрофотометров, на которых можно было бы проводить анализ как по молекулярным, так и по атомным спектрам поглощения. Монохроматоры спектрофотометров для молекулярного абсорбционного анализа (СФ-4, У5и-1 и другие) не могут быть в полной мере использованы для работы по атомным спектрам поглощения с источниками непрерывного спектра (вследствие их низкой разрешающей силы), поэтому желательна разработка новых конструкций на базе монохроматоров высокой разрешающей силы. Это способствовало бы развитию в нашей стране инструментальных методов химического анализа и сделало бы атомно-абсорбционную спектроскопию с применением источника сплошного излучения такой же популярной и широко распространенной, как и методы молекулярной спектрофотометрии. [c.298]

    Рассматривая спектроскопические методы определения и обнаружения суперэкотоксикантов в целом, можно видеть, что между ними существуют принципиальные различия Хотя для всех методов характерно взаимодействие вещества с потоком первичной энергии, в абсорбционной спектроскопии измеряется энергия, не поглощенная образцом, а в эмиссионной спектроскопии - энергия, вьщеляемая в процессах возбуждения исследуемых компонентов. Поскольку для абсорбционных методов характерно относительно слабое взаимодействие вещества с потоком первичной энергии, то измерить небольшое (особенно в случае следовых количеств) различие в энергиях падающего и проходящего излучений можно лишь с помощью достаточно чувствительной аппаратуры, В эмиссионных методах даже небольшие концентрации излучающего вещества обусловливают появление аналитического сигнала. По этой причине спектроскопические методы, основанные на эмиссии, обладают более низким пределом обнаружения, чем абсорбционные. Однако, как уже отмечалось выше, преимущества эмиссионных методов офаничиваются ря юм практических и экспериментальных факторов. [c.254]

    АБСОРБЦИОННАЯ спектроскопия (лат. аЬ8огр11о — поглощение) — физические методы исследования, основанные на измерении поглощения излучения определенной длины волны. К А. с. относят спектроскопию в УФ, видимой и ИК частях спектра и др. А. с. применяется для качественного и количественного анализа химических соединений, установления химического строения и степени чистоты веществ, изучения кинетики химических реакций и др. Метод [c.5]

    Абсорбционная спектроскопия основана на способности вещества к избирательному поглощению. Чтобы определить, какие именно кванты поглощаются веществом и ка-д см кова ве.чичина их поглощения, через ве- дд Радиобо ь щество пропускают электромагнитное излучение источника, имеющего непрерыв-Микровоты ный спект испускания, а затем прошед- ший поток раскладывают в спектральном -Ю —------------- приборе по длинам волн и исследуют его [c.158]

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают споктрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основаиньи на определении спектра поглощения или измерении светопоглощения в видимом участке спектра. [c.28]

    Спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия) представляет собой особый вид абсорбционной спектроскопии. Явление резоиаиса в спектре ЯМР наступает лри поглощении электромагнитного излучения парамагнитными ядрами, находящимися в однородном внешнем магнитном поле. Маг-иитиы.м моментом обладают ядра, в состав которых входнт нечетное число нен- ронов или протонов (табл. 13). [c.137]

    АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ, изучает спектры поглощения электромагн. излучения атомами и молекулами в-ва в разл. агрегатных состояниях. Интенсивность светового потока при его прохождении через исследуемую среду уменьшается вследствие превращения энергии излучения в разл. формы внутр. энергии в-ва и (илн) в энергию вторичного излучения. Поглощат. способность в-ва зависит гл. обр. от электронного строения атомов и молекул, а также от длины волны и поляризации падающего света, толщины слоя, концентрации в-ва, т-ры, наличия электрич. и магн. полей. Для измерения поглощат. способности используют спектрофотометры-оптич. приборы, состоящие из источника света, камеры для образцов, монохроматора (призма или дифракционная решетка) н детектора. Сигнал от детектора регистрируется в виде непрерывной кривой (спектра поглощения) или в виде таблиц, если спектрофотометр имеет встроенную ЭВМ. [c.14]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    Интенсивность полосы поглощения молекулы определяется вероятностью соответствующего электронного (или колебательного) перехода. Для характеристики интенсивности полосы служит молярный коэф. поглощения 6 (см. Абсорбционная спектроскопия), определяемый, согласно закону Бугера-Ламберта-Бера, как е = А1С1, где А = = — Ig Г= — lg(///o), Г-пропускание, и / -интенсивности соотв. падающего и прошедшего через в-во излучения, С-молярная концентрация в-ва, поглощающего излучение, /-толщина поглощающего слоя (кюветы), в см. Обычно е<10 , в ИК области е<210 (л/моль см). Закон Бугера-Ламберта-Бера лежит в основе количеств, анализа по спектрам поглощения. [c.397]

    Атомно-абсорбционная спектроскопия (ААС) основана на поглощении излучения опгического диапазона невозбужденными свободными атомами (см. рис. 11.14, б). Таким образом, в ААС, как и в АЭС, необходима предварительная атомизация пробы. Однако если в АЭС аналитический сигнал формируют возбужденные атомы, то в ААС — невозбужденные. Величина оптической плотности атомного пара (А) в соответствии с [c.241]

    В чем сутцность явлений излучения и поглощения фона в атомно-абсорбционной спектроскопии Как с этими явлениями борются  [c.359]

    Химический анализ, проводимый посредством измерения поглощения излучения, носит общее название абсорбционная спектроскопия. Термин колориметрия применим только к видимой части спектра. Спек-трофотометрия — разяел абсорбционной спектроокопии, связанный с использованием прибора, называемого спектрофотометром. Термин фото.нетрия является слишком общим он в равной степени применим к методам как абсорбционной, так и эмиссионной спектроскопии. [c.20]

    Различают абсорбционный и эмиссионный. С. а. Первый осуществляют по спектрам поглощения электромагн. излучения (см. Абсорбционная спектроскопия), второй — по спектрам испускания атомов, молекул, ионов (см. Эмиссионный спектральный анализ). В зависимости от объектов и целей анализа выделяют 1) элементный (атомный) С. а.— определение элементного состава по атомным спектрам испускания и поглощения 2) молекулярный С. а.— определение молекулярного состава в-в гл. обр. по молекулярным спектрам поглощения, люминесценций и комбинац. рассеяния иногда по молекулярным спектрам можно судить и об элементном составе в-в. [c.537]

    Спектроскопические исследования не ограничиваются резонансными линиями металлов и электронным возбуждением. В настоящее время широко изучено излучение электронно-возбужденных многоатомных молекул, например СиОН [41], а также ИК-излучение таких частиц и вращательно-колебательная структура в области электронного перехода. Атомные спектры поглощения использовались в фотометрии пламени для определения заселенности основного состояния в линейной области зависимости Ван-дер-Хельда. Сагден и Джеймс [38] применили наиболее удобный метод атомно-абсорбционной спектроскопии— метод двух пламен —в нелинейной области этой зависимости. В этой области интенсивность пропорциональна корню квадратному из N 1. Если измерить интенсивность двух пламен [c.227]

    Для измерения pH, рСОг и рОг при помощи электродов различных типов [16, 17] разработан ряд методик [18, 19, 20, 121]. Особенно большое значение в этом случае имеет метод отбора и хранения проб, поскольку парциальное давление кислорода и диоксида углерода в пробах цельной крови и плазмы, если не принять специальных мер предосторожности, сравняется с их парциальным давлением в воздухе. Кроме того, так как показания электродов зависят от правильности их градуировки и эксплуатации, их следует периодически (через каждые несколько часов) проверять, используя градуировочную смесь газов соответствующей концентрации. При помощи специальной компьютерной системы операцию градуировки можно автоматизировать. Физиологические жидкости удобно анализировать методом атомно-абсорбционной [22] и эмиссионной спектроскопии [23]. После соответствующей предварительной обработки исследуемый образец вводят в виде раствора в пламя, где происходит его атомизация. В эмиссионном спектральном анализе энергия пламени используется для возбуждения атомов. В результате перехода из возбужденного состояния в основное они испускают излучение с характеристическими длинами волн, интенсивность которого пропорциональна концентрации определяемых атомов в пламени. В атомно-абсорбционном анализе через атомный пар пробы пропускают излучение и регистрируют его. При этом интенсивность излучения снижается в соответствии с I) показателем поглощения элемента при той длине волны, при которой проводятся измерения, 2) длиной пути, пройденного излучением в образце, и 3) концентрацией определяемого элемента. Если первые две величины поддерживаются постоянными, то, измерив поглощение, можно установить концентрацию элемента. Эти два метода дополняют друг друга, и в каждом конкретном случае аналитик выбирает тот из них, который в данной ситуации более чувствителен и более точен. Эмиссионный спектральный анализ может быть менее селективен, чем атомно-абсорбцион-ный, и более подвержен спектральным помехам. Одни элементы можно определять и тем и другим методом (А1, Ва, Са), другие лучше анализировать методом атомно-абсорбционной спектроскопии (например, Ве, В1, Ли, 2п), третьи же целесообразнее определять атомно-эмиссионным методом (и, Ки, N. ТЬ и т. д.). [c.29]

    В этом разделе рассматриваются экспериментальные результаты измерений преломления видимого света, магнитооптическое вращение, поглощение колебаний с длиной волны от микроволновой до ультрафиолетовой области, рассеяние в видимом свете и дифракция рентгеновых лучей и электронов перекисью водорода и ее растворами. По указанным вопросам имеется значительное количество литературы и проведено много превосходных работ, однако можно надеяться на еще большие успехи в будущем, особенно в области абсорбционной спектроскопии, так как совершенствование техники позволяет улучшить разрешающую способность спектрографов. Материал, касающийся структуры, по возможности рассматривается в гл. 6. Экспериментальные методы, использованные при некоторых измерениях, нельзя описать кратко и четко, поэтому для ознакомления с такими подробностями, как описание источников излучения, типа пленки и измерительных приборов и т. д., необходимо обратиться к оригинальным работам. Обычная техника работы в этой области вполне удовлетворительно описана в монографии под редакцией Вайсбергера [138]. [c.227]

    АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ — методы анализа, основанные на измерении поглощения изл чения определенной длины волны (или длин волн). Законы поглощения излучения однородных прозрачных (ие рассеивающих) жидкостей (растворов), газов и твердых веществ установлены экспериментально (см. IIоглощение света), они показывают соотношение между величиной поглощения и количеством или, концентрацией поглощающего вещества. В А. с. измерения всегда производят относительно пек-рого стандарта. А. с. в видимой и Уф, а также в И К областях спектра применяется для 1 ачественного и колич. определения химич. соединений в различных природных и про.мышленных объектах, установления степени чистоты в-ва и решения других вопросов. Возможности а(>сорбционного спектрального анализа чрезвычайно велики, и этот метод получил значительно более широкое распространение, чем эмиссионный спектральный анализ. В аналитич. практике применяется А. с. в видимой, УФ и ИК областях спектра. [c.9]

    Атомно-эмиссионная спектроскопия основана на измерении ин-т енсивности излучения, испускаемого возбужденными атомами, в то время как в основе атомно-абсорбционной спектроскопии лежит. поглощение невозбужденными атомами. При температуре пламени доминируют невозбужденные атомы. Так, при 2500 К лищь около 0,02% атомов натрия в любой момент находится в Зр-со--стоянии атомов в более высоком энергетическом состоянии еще меньше. При 3000 К содержание атомов в Зр-состоянии равно примерно 0,09%. [c.175]


Смотреть страницы где упоминается термин Поглощение излучения (абсорбционная спектроскопия): [c.7]    [c.538]    [c.251]    [c.394]    [c.617]    [c.7]    [c.538]   
Смотреть главы в:

Инструментальные методы химического анализа -> Поглощение излучения (абсорбционная спектроскопия)

Инструментальные методы химического анализа -> Поглощение излучения (абсорбционная спектроскопия)




ПОИСК





Смотрите так же термины и статьи:

Абсорбционная спектроскопия

Спектроскопия поглощения



© 2025 chem21.info Реклама на сайте