Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода как растворитель. Кислоты и основания

    Таким образом, цели и задачи качественного неорганического и качественного органического анализов совершенно различны. Кроме того, часто применяются разные реакционные среды и реакции разного характера. При анализе неорганических веществ почти исключительно используются ионные реакции, протекающие в водных растворах иначе обстоит дело при анализе чисто органических веществ. Известны растворимые в воде органические кислоты, основания и соли, существующие в растворах в виде реакционноспособных ионов, но большинство органических соединений не способно к ионизации, они гидрофобны, и поэтому водная среда не играет той доминирующей роли в анализе органических соединений, как в анализе неорганических веществ. Многие органические соединения взаимодействуют только при растворении их в органических растворителях или в газовой фазе, в расплавах и негомогенных системах. Как правило, такие реакции протекают значительно медленнее, чем ионные реакции в водных растворах, они не доходят до конца и часто сопровождаются побочными реакциями. Несмотря на эти трудности, молекулярные реакции органических соединений в неводных средах заслуживают самого пристального внимания, так как при их помощи можно получить нужные сведения о соединениях, нереакционноспособных в водных растворах. [c.20]


    Электролиты, степень диссоциации которых в растворах меньше единицы и падает с ростом концентрации, называют слабыми электролитами. К ним относят воду, ряд кислот, основания р-, й- и /-элементов. Между этими двумя группами нет четкой границы, одно и то же вещество в одном растворителе проявляет свойства сильного, а в другом — слабого электролита. Например, хлорид лития и иодид натрия, имеющие ионную кристаллическую решетку, при растворении в воде ведут себя как типичные сильные электролиты, при растворении же в ацетоне или уксусной кислоте эти вещества являются слабыми электролитами со степенью диссоциации в растворах меньше единицы. [c.155]

    Термопласт в зависимости от степени полимеризации - вещество от белого до красно-бурого цвета без запаха и без вкуса не оказывает никакого физиологического воздействия. Устойчив к действию воды, слабых кислот и оснований, а также большинства органических растворителей. Обладает очень низкой электро- и теплопроводностью р = 1,38 г/см прочность на разрыв 550 кгс/см прочность на сжатие 700 кгс/ см2 Медленно разлагается под действием света Трудно воспламеняем температура размягчения 7 5-80° С. Свойства мо- [c.215]

    Термопласт бесцветное прозрачное вещество без запаха и вкуса, не проявляющее физиологического действия. Устойчив к действию воды, кислот, оснований и органических растворителей. Имеет низкую электро- и теплопроводность р = 1,08-1,09 г/см прочность на разрыв 300 кгс/см прочность на сжатие 1000 кгс/см . Хрупкий горючий температура размягчения 75°С. Свойства могут меняться при добавлении других полимеров, пенообразователей, пластификаторов и красителей. [c.216]

    При взаимодействии кислоты и щелочи в эквивалентных количествах получаемый раствор содержит растворитель (воду), катионы взятого основания и анионы кислоты. В случае реакции сильной кислоты с сильным основанием эти катионы и анионы практически не взаимодействуют с ионами воды НдО и ОН. Поэтому в растворе, получаемом после нейтрализации, ионы Н+ и ОН содержатся в такой же концентрации (в случае разбавленных растворов), как и в чистой воде [Н]+ = [ОН ] = 10 г-ион/л, и pH = 7. [c.94]

    Наиболее часто в роли растворителя кислот и оснований используется вода, и мы рассмотрим далее (в целях простоты и краткости) только водные растворы. [c.242]

    По влиянию на кислотно-основные свойства растворенного вещества растворители подразделяют на нивелирующие и дифференцирующие. В нивелирующих растворителях сила некоторых кислот, оснований и других электролитов становится примерно одинаковой, а в дифференцирующих — разной. Уравнивание силы электролитов в нивелирующих растворителях имеет не всеобщий характер нельзя считать, например, что в нивелирующих растворителях все кислоты становятся сильными или все слабыми. Многие минеральные кислоты — хлорная, хлороводородная, бромоводородная, азотная и др. в водном растворе Диссоциированы нацело с образованием Н3О+ как продукта взаимодействия кислоты с водой. Вода оказывает нивелирующее действие на силу сильных кислот. [c.35]


    В первой реакции вода выполняет роль основания, а во второй — роль кислоты. Растворители, обладающие и кислотными, и основными свойствами, называют амфипротными. [c.118]

    На рис. 52 графики построены в указанных координатах для таких жидкостей, как вода, водные растворы неорга-ганических солей, кислот, оснований, глюкозы, сахарозы, органические растворители (бензол, бензин, спирты и пр.). Их вязкость прямо пропорциональна котангенсу наклона прямой (рис. 52, а). Поскольку их вязкость постоянна, на рис. 52, б они характеризуются прямыми, параллельными оси абсцисс (нумерация линий дана в порядке повышения вязкости жидкостей). Такие жидкости называются ньютоновскими или идеально вязкими. [c.128]

    Физико-химический анализ, оптические и другие методы исследования растворов кислот, оснований и солей в воде, спиртах, кетонах и т. д. показывают, что недиссоциированные молекулы электролитов взаимодействуют с растворителем, образуя с ним одно или несколько непрочных продуктов присоединения определенного состава, находящихся в состоянии диссоциации. Характер взаимодействия между ними находится в точном соответствии с представлениями Менделеева. [c.247]

    Кроме такой классификации возможна классификация растворителей по признаку их влияния на относительную силу кислот и солей, по их способности изменять соотношение в силе электролитов. По этому признаку растворители можно подразделить на нивелирующие и дифференцирующие. К нивелирующим относят те растворители, в которых кислоты, основания и соли уравниваются по своей силе, или, более осторожно, — растворители, в которых соотношения в силе электролитов, свойственные их водным растворам, сохраняются. К ним относятся прежде всего все растворители, содержащие гидроксильную группу — спирты, фенолы. В дифференцирующих растворителях проявляется значительное различие в силе электролитов, и в частности в силе кислот и оснований. К ним относятся прежде всего растворители, не содержащие гидроксильных групп альдегиды, кетоны, нитрилы и т. д. В этих растворителях соотношение в силе электролитов иное, чем в воде. Обычно такие растворители не являются донорами протонов, но и пе являются хорошими их акцепторами. Дифференцирующим действием могут обладать в той или иной степени все неводные растворители. [c.274]

    Применение неводных растворителей значительно расширило возможности кислотноосновного титрования. В неводных растворителях возможно титрование очень слабых (в воде) кислот и оснований, раздельное титрование смеси кислот, а также смеси оснований с близкими (в воде) константами диссоциации, титрование солей сильных кислот (оснований) по вытеснению. Неводные растворители позволяют расширить возможности титрования по методу осаждения, распространив его па ряд новых веществ за счет уменьшения растворимости осаждаемой соли в неводных растворах. Различное изменение силы солей позволяет осуществить раздельное титрование смеси солей с одним анионом по осаждению этого аниона. [c.440]

    Кислоты, основания и амфотерные соединения. Кислотой называется водородсодержащее соединение, дающее при диссоциации в водном растворе ионы Н+. Основанием является вещество, содержащее группы ОН и диссоциирующее в воде с образованием гидроксид - ионов ОН". Различные вещества, содержащие ионы Н и ОН", не одинаково легко их отщепляют. Различная способность веществ к распаду на ионы характеризуется их степенью диссоциации в растворах. Степенью диссоциации а называется отношение числа молекул, распавшихся на ионы, к общему числу молекул. Она выражается в виде дроби (0,1 0,2 и т. д.) или в процентах (10%, 20% и т. д.) и зависит от концентрации растворенного вещества и от температуры эти зависимости рассматриваются в курсе неорганической химии. Степень диссоциации зависит также от природы растворителя. [c.86]

    В водном растворе НС1 вода действовала как основание, но это не всегда так бывает. Если растворенное вещество более основное, чем вода, то она сама отдает свой протон и будет кислотой. Поэтому можно сказать, что вода—амфотерный растворитель. Действительно, кислотность и основность определенного вещества [c.329]

    Это выражение дает относительную кислотность кислоты (1) по отношению к основанию (1). Обычно основание (1) — растворитель, такой, как вода, но не обязательно. Для воды сила кислоты НА может быть выражена через константу ионизации [c.330]

    Чаще всего в качестве В берут растворитель. Если растворитель — вода, то вспомогательная пара кислота-основание будет НдО —НдО, и, следовательно  [c.337]

    Для кислот, оснований и солей обычным растворителем является вода, кроме того, сжиженный аммиак. [c.149]

    По характеру взаимодействия с растворителем (водой, кислотой, основанием) солеобразные оксиды делятся на основные, кислотные и амфотерные. Свойства оксидов элементов рассматриваются в соответствующих группах. Некоторые характерные представители оксидов и их свойства приведены в табл. 17.9. [c.405]

    Приведенные реакции соответствуют образованию амфотерного соединения — кислоты, основания и соли, так как кислоты являются, например, в воде солями гидроксония, а основания — солями гидроксила. Хлорид аммония в жидком аммиаке является кислотой и одновременно солью аммония. Первый тип реакций показывает, что растворители, распадаясь при взаимодействии их молекул на катион и анион, проявляют амфотерные свойства например, вода дает ионы гидроксония и гидроксила. Эти реакции в классической теории электролитической диссоциации не учитывались. [c.48]


    Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием. Например, ацетат аммония в воде — соль, в аммиаке — кислота, в уксусной кислоте — основание. Хлорид аммония в воде вследствие гидролиза является слабой кислотой (и солью), в жидкой фтористоводородной кислоте — основанием, в жидком аммиаке — сильной кислотой. Амид калия в уксусной кислоте — слабое основание, в воде — сильное основание, в жидком аммиаке — очень сильное основание. Амид калия в жидком аммиаке — более сильное основание, чем гидроокись калия в воде. [c.444]

    Растворители. Бывают растворители, применяемые для разделения гидрофильных веществ, наиример вода, сиирт и др. Это обычно смеси органических жидкостей с 10—40% воды, содержащие добавки кислот, оснований или солей, главным образом буферирующие. Добавление воды повышает Умеренно гидрофильные веш ества разделяют, применяя растворители, более бедные водой, например, хлороформ, бензол, петролейный эфир, этилацетат их насыщают водой. [c.521]

    Дело заключалось в том, что выводы теории разбавленных растворов, полностью подтверждавшиеся на опыте, пока исследованию подвергались водные растворы органических веществ, а также растворы в других растворителях (бензоле и т. п.), оказывались неприменимыми к водным растворам кислот, оснований и солей. Например, для раствора, содержащего на 1000 г воды один моль молекул Na (массой 58,5 г), понижение температуры замерзания составляло 3,36 °С, т. е. было гораздо большим, чем требовала теория (1,86°С). То же самое наблюдалось и для других водных растворов солей, кислот и оснований — понижение температуры замерзания (и изменение других общих свойств растворов) получалось всегда больше теоретического. [c.131]

    При растворении в воде или других растворителях кислоты, основания и соли подвергаются электролитической диссоциации, полностью или частично распадаясь, на ионы. Отношение числа продиссоциированных молекул к числу растворенных называют стпепенъш диг- [c.152]

    Протолитические системы в водных растворах чрезвычайно важны, поскольку сам растворитель — вода —-является протолитом. Поэтому при растворении в воде различных кислот, оснований и солей возникают разнообразные протолитические процессы и в конце концов устанавливаются определенные химические равновесия. Рассмотрим некоторые наиболее важные с точки зрения аналитической химии протолитические процессы и равновесия. Точка зрения аналитической химии выражается в том, что аналитику необходимо знать, какие конкретные частицы (молекулы, ионы) находятся в данном растворе и каким образом можно на них химически воздействовать, чтобы получить в аналитически дифференцируемой форме. [c.73]

    Дуропласты в зависимости от степени поликонденсации - вещества от бесцветного до бурого и красно-бурого цвета. Не имеют запаха и вкуса, однако вследствие наличия следов свободного фенола физиологически не безвредны. Устойчивы по отношению к воде, слабым кислотам и основаниям, органическим растворителям. Обладают низкой электро- и теплопроводностью р = 1,25 г/см прочность на разрыв 500 кгс/ см , прочность на сжатие 3000 кгс/ см , не воспламеняются, при нагревании обугливаются. Свойства могут изменяться путем добавления красителей и наполнителей, t См. также Получение (стр. 259) Применение (стр. 266). [c.215]

    ШИФФОВЫ ОСНОВАНИЯ (азомети-иовые основания) — маслообразные или кристаллические соединения, общей формулы RR =ЫН", где Н и R — водород, алкил или арил. К" — алкил или арил. Ш. о. впервые получены Шиффом в 1864 г. Ш. о. нерастворимы в воде, хорошо растворимы в органических растворителях, слабые основания, в безводной среде образуют с кислотами соли. Ш. о. широко применяются в органическом синтезе, главным образом для получения вторичных аминов и гетероциклических соединений, а также для за- [c.287]

    Поверхностно-инактивными веществами по отношению к воде являются неорганические электролиты — кислоты, основания, соли. Повышение а, как правило, невелико и становится заметным при сравнительно высоких концентрациях. Поливалентные ионы сильнее повышают поверхностное натяясение. В неводных растворителях неорганические электролиты также повышают поверхностное натяжение. Величина этого эффекта зависит от природы растворителя и чаще всего снижается с уменьшением его полярности. [c.206]

    Выполнение работы. 1. Приготовить неводный раствор кислоты или нескольких кислот. Использовать муравьиную, уксусную, бензойную, /г-оксибензойную, пикриновую, хлористоводородную, азотную, серную или другие кислоты. Растворителем кислоты может служить смесь этилового спирта и воды в соотношении 1 1 (по объему) спирто-бензольная смесь (1 9) диметилформамид ацетонитрил или пиридин. 2. Приготовить раствор титранта гидроокиси калия, гидроокиси натрия или четвертичного аммонийного основания, например ( 2Hs)4NOH в соответствующем растворителе. Концентрация титранта (установить ее по водному раствору НС1, приготовленному из фиксанала) должна быть примерно в 10 раз больше концентрации раствора кислоты. 3. Составить гальванический элемент из индикаторного стеклянного электрода с водородной функцией и насыщенного каломельного электрода сравнения (см. работу 47). 4. Выполнить титрование (см. стр. 177) и провести все рас- [c.180]

    Степень взаимодействия растворенной кислоты (основания) с растворителем существенно зависит от его способности отдавать или принимать протон. Например, H IO4, НС1, НВг и др. в водных растворах являются сильными кислотами. Если вместо воды в качестве растворителя взять ледяную уксусную кислоту — более слабый акцептор протонов, то лишь хлорная кислота остается сильной. Кислоты НС1, НВг и т. д. в ледяной уксусной кислоте весьма слабые и реакции диссоциации (например, НС1- -СНзСООН [c.118]

    Линейный характер имеет зависимость рЯ слабой соли LaFe ( N)g от 1/ев растворителях, имеющих одинаковую природу, — в смесях спиртов и кетонов с водой. Для кислот и оснований, как мы видели в гл. VII, линейная зависимость наблюдается только для смешанных растворителей с большим содержанием воды. С увеличением содержания неводного растворителя эта линейная зависимость нарушается. [c.321]

    Классификация, основанная на представлениях Бренстеда — Льюиса о кислотах, различает протонные и непротонные растворители. Часто ее применяют к растворителям, которые путем автоионизации образуют сольватированный протон, таким, как вода, фтористоводородная кислота, аммиак, спирты с малым молекулярным весом. Однако лучшей разновидностью классификации того же направления служит разделение растворителей ио протофильному характеру. В этом случае различают четыре главных класса растворителей  [c.349]

    Влияние воды. Присутствие воды в неводных растворителях (в особенности высокошкальных), как правило, оказывает неблагоприятный эффект на процессе титрования. Это объясняется тем, что кислоты реагируют с водой как с основанием, а основания— как с кислотой (см. стр. 425). В результате многие реакции нейтрализации протекают не [c.427]

    Пластмассы на основе фенолоформальдегидных смол получили название фенопластов, на основе мочевино-формальдегидных смол — аминопластов. Наполнителями фенопластов и аминоплас-тов служат бумага или картон (гетинакс), ткань (текстолит), древесина, кварцевая и слюдяная мука и др. Фенопласты стойки к действию воды, растворов кислот, солей и оснований, органических растворителей, трудногорючи, атмосферостойки, являются хорошими диэлектриками. Используются в производстве печатных плат, корпусов электротехнических и радиотехнических изделий, фольгированных диэлектриков. Аминопласты характеризуются высокими диэлектрическими и физико-механическими свойствами, устойчивы к действию света и УФ-лучей, трудногорючи, стойки к действию слабых кислот и оснований и многих растворителей. Они могут быть окрашены в любые цвета. Применяются для изготовления электротехнических изделий (корпусов приборов и аппаратов, выключателей, плафонов, тепло- и звукоизоляционных материалов и др.). [c.369]

    Подготовка пробы к анализу. Как правило, главная операция этой стадии — растворение. Оно может осуществляться обработкой твердого вещества подходящим растворителем (вода, кислота, основание, органические растворители) или сплавлением с соответствующим плавнем и последующим переводом плава в раствор. Устранение мешающего влияния посторонних веществ, которые могут находиться в анализируемой пробе наряду с определяемым компонентом, достигается различными приемами а) маскированием, т. е. переведением мешающих компонентов в такую форму, В которой они не искажают сигнал определяемого компонента и не налагаются на него б) отделегнием определяемого компонента либо мешающих веществ с помощью методов разделения (см. гл. 5). [c.16]

    Вещества, через которые прохождение электрического тока вызывает их передвижение в виде ионов ионная проводимость) и химические превращения в местах входа и выхода тока (электрохимические реакции), называются электролитами. К ним относятся растворы кислот, оснований и солей в воде и некоторых других растворителях, расплавленные соли и некоторые твердые соли и оскиды (Ag l, Ba ls, Ag2S, ZnO). [c.281]

    Электролитическая ионизация. Степень ионизации. Константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества . Эта формулировка представляет собой обобщенный закон разбавленных растворов Рауля — Вант-Гоффа. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от состава раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо 1,86" ). Это свидетельствует о том, что число частиц в водных растворах кислот, оснований и солей не соответствует молярной концентрации раствора. [c.255]

    Протолитическая теория объясняет процесс гидролиза ( 13) как протолитическую реакцию между ионной кислотой или ионным основанием и молекулами растворителя — воды. Например, ионное основание — ацетат-ион СО2СН3 реагирует с Н2О как с кислотой  [c.65]

    Ароматические и гетероциклические вещества, например фенолы, органические красители, адсорбируются волокнами целлюлозы для них применяют органические растворители, содержащие 50% и более воды с добавками кислот, оснований, солей (в частности N82804). [c.521]


Смотреть страницы где упоминается термин Вода как растворитель. Кислоты и основания: [c.15]    [c.13]    [c.90]    [c.83]    [c.92]    [c.153]    [c.333]    [c.334]    [c.52]    [c.444]   
Смотреть главы в:

Теоретические основы неорганической химии -> Вода как растворитель. Кислоты и основания




ПОИСК





Смотрите так же термины и статьи:

Вода как растворитель для ГПХ

Общие соображения. 93. Закон разведения. 94. Сила электролитов. 95. Ступенчатая диссоциация. 96. Влияние растворителя на диссоциацию электролитов. 97. Диссоциация воды. 98. Действие индикаторов. 99. Титрование кислот и оснований

Основания и кислоты

Растворители оснований



© 2025 chem21.info Реклама на сайте