Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Содержание вах с большим содержанием меди и свинца

    Железо и свинец понижают результаты, так как медь в их присутствии соосаждается аммиаком. Несколько повышает результаты цинк, если его содержание больше содержания меди. Никель почти не влияет на определение меди. [c.519]

    Аноды имеют решающее значение для показателей процесса рафинирования. Рафинировать можно медь любого состава черновую, конверторную, после огневого рафинирования (табл. У1П-1), сплавы меди с никелем, цинком, кобальтом, оловом и другими металлами, а также штейны с меньшим и большим содержанием серы, однако показатели процесса будут различными. Б тех случаях, когда пирометаллургическое рафинирование неэкономично (например, при отсутствии соответствующего топлива), электролитическому рафинированию подвергают медь, из которой неполностью удалены такие примеси, как цинк, железо, свинец, олово и висмут, а также кислород и сера. На какой стадии пирометаллургического процесса медь будет в достаточной мере очищена — в конверторах или только при огневом рафинировании в отражательных печах — определяется уровнем данного производства. [c.312]


    По содержанию в земной коре (0,6%) титан относится к довольно распространенным металлам. Он более распространен, чем медь, свинец, цинк. Большая рассеянность титана в земной коре и значительные трудности выделения из титановых руд обусловили малое его использование в качестве металла. Однако за последние 15—25 лет производство титана выросло до нескольких десятков тысяч тонн в год, главным образом в США и Англии, и продолжает расти. [c.326]

    Различные примеси, обычно сопутствующие таллию, например цинк, кадмий, медь, свинец в количествах, значительно превышающих содержание таллия, не сказываются на результатах титрования. Впрочем, ожидать присутствия больших количеств свинца в титруемом растворе не приходится, поскольку растворы применяются сернокислые. [c.311]

    Мешающие вещества. Висмут, кадмий, медь, свинец, ртуть, никель, кобальт, серебро, золото, олово(И), если присутствуют в не слишком больших количествах (меньше 5 мг/л), при этом значении pH связываются в тиосульфатные комплексы и не мешают определению цинка. Если содержание этих элементов превышает указанное, то пробу рекомендуется разбавить так, чтобы концентрация мешающего элемента стала ниже 5 мг/л. Лишь тогда, когда отношение концентраций мешающий элемент цинк превышает 5 0,05, приходится вводить в анализируемый раствор еще небольшое количество цианида калия. [c.161]

    В земной коре содержится 0 ,02 вес. % циркония. Он более р ас-пространен, чем никель, медь, свинец, цинк и некоторые другие металлы. В природе цирконий встречается главным образом в виде минералов циркона и бадделеита, всего же известно до 20 циркониевых минералов. Он входит также в количествах до нескольких процентов в состав ряда минералов, большей частью содержащих редкоземельные элементы. Ассоциация циркония с ними объясняется близостью атомных радиусов. Цирконий изоморфно замещает титан, торий и двухвалентное железо. Для циркония характерна также большая рассеянность — он содержится в подавляющем большинстве горных пород, причем в некоторых из них (щелочных сиенитах) содержание его в несколько раз превышает величину кларка. [c.204]

    При электролизе кислых растворов на ртутном катоде выделяются висмут, кобальт, хром, медь, железо, молибден, никель, осмий, свинец, палладий, платина и многие другие, всего более 20 элементов, но не выделяются алюминий, ванадий, уран, титан и некоторые другие. Таким образом, электролиз на ртутном катоде позволяет отделить большие содержания железа, хрома, меди от ванадия, титана и других, что часто существенно упрощает и ускоряет анализ сложных объектов — минералов, руд, концентратов, сплавов и т. д. [c.250]


    На этой диаграмме отражены самые важные из полученных ими данных. Все обнаруженные элементы показаны диагональными штрихами. Сначала сравнивается относительное химическое содержание металлов в нефтях с относительным содержанием металлов в земной коре это показано дополнительным штрихованием в нижней половине некоторых квадратов двойное поперечное штрихование указывает на то, что эти металлы присутствуют в количествах, гораздо больше средних, по сравнению с обнаруженными в земной коре. Это относится к ванадию и никелю. Молибден, показанный горизонтальной штриховкой, по-видимому, тоже присутствует в количествах выше средних а вертикальная штриховка свидетельствует, что хром, кобальт, медь, цинк и свинец содержатся приблизительно в таких же средних количествах, как и в земной коре. Другие обнаруженные элементы обычно бывают в меньших количествах, чем их находят в земной коре. [c.77]

    Определению меди этим методом не мешают ни цинк, ни свинец, ни серебро, ни другие элементы, сопутствующие меди в различных природных объектах или промышленных продуктах, так как все эти элементы либо вообще не реагируют с иодидом калия, либо образуют малорастворимые иодиды, и, поскольку иодид калия добавляют в избытке, они выпадают в осадок и не мешают дальнейшему ходу анализа. Как и при обычном визуальном титрометрическом методе, определению меди мешает железо(III), которое необходимо перед титрованием связать в достаточно прочное комплексное соединение [64] с фторидом натрия к исследуемому раствору добавляют сначала раствор ацетата натрия (насыщенный) до тех пор, пока не появится красная окраска ацетата железа, после чего вводят 30%-ный раствор фторида натрия до исчезновения этой окраски и дополнительно еще 4—5 мл этого же раствора фторида. При больших содержаниях железа обычно выпадает осадок фторида железа, который не мешает титрованию. [c.212]

    Ход анализа. Навеску сплава 1 г при содержании мышьяка 0,1% или 0,1 г при его содержании больше 0,1% растворяют в 10 мл азотной кислоты (пл. 1,33). Если сплав содержит олово, то навеску пробы растворяют в смеси 10 мл азотной кислоты (пл. 1,33), 10 мя 4%-ной борной кислоты, 1,5 мл фтористоводородной кислоты, разбавленной (1 1) и 5 мл раствора сульфата железа (111). В том и другом случае раствор после полного растворения пробы разбавляют водой до - 200 мл и выделяют медь электролитически, с вращающимся анодом при силе тока 5 А. Затем электроды обмывают вод-ой. Если в пробе присутствует свинец, то он выделяется на аноде. Этот осадок растворяют в растворе, из которого проводили выделение меди, и разбавляют раствор до 250 или 500 мл. К аликвотной части раствора, содержащей до 100 мкг мышьяка, прибавляют 2 мл серной кислоты, разбавленной (1 1), и выпаривают до появления ее паров. Остаток растворяют при нагревании в 10 мл хлористоводородной кислоты, разбавленной (1 1), охлаждают, вводят 2 мл 35%-ного раствора хлорида титана (III) и 2 мл раствора иодида калия, раствор перемешивают и выдерживают в течение 5—10 мин. Затем его переводят в делительную воронку, обмывая стакан 35 мл концентрированной хлористоводородной кислоты, и дважды экстрагируют иодид мышьяка хлороформом. Первый раз берут 25 мл, а второй раз — 10 мл хлороформа. Объединенные экстракты помещают в делительную воронку и реэкстрагируют мышьяк 15 мл воды. Далее ведут определение, как указано в разделах IV. 3.1 или IV. 3.2. [c.150]

    Б земной коре также в больших количествах находятся соединения натрия, калия, кальция, марганца и др. Многие металлы в земной коре содержатся в небольших количествах. Так, содержание меди, магния, хрома, ванадия, циркония не превышает сотых долей процента. В тысячных долях процента исчисляется содержание таких металлов, как цинк, олово, свинец, никель, кобальт, церий, ниобий. Со ржание в земле таких необходимых для современной техники металлов, как уран, вольфрам, молибден, передается всего десятитысячными долями процента. Особенно мало в земной коре так называемых драгоценных (или благородных) металлов — платины, золота их содержание определяется величиной 5 -10 %. [c.315]

    Было установлено, что исследованные нефти по количественному содержанию в них микроэлементов значительно превосходят все аналогичные третичные нефти Советского Союза. Особенно это отчетливо видно на примере таких характерных элементов, как ванадий, хром, молибден, железо, никель, медь, свинец. Весьма примечательно и то, что в них отношение ванадий никель больше единицы, в то время как во всех нефтях этого возраста эта величина меньше единицы. [c.151]

    Если свинца содержится около 0,1 г, переосаждения висмутового осадка с целью его очистки не требуется. При больших содержаниях свинца рекомендуется производить переосаждение отфильтрованный и промытый осадок растворить в горячей разбавленной азотной кислоте и вновь повторить осаждение . Из фильтрата от висмута выделяют медь, свинец и кадмий при нагревании с сероводородом и в дальнейшем разделяют их, как обычно. [c.64]


    Полярографическому определению висмута мешают многие элементы (железо, медь, свинец, олово, мышьяк, сурьма и др.), особенно в том случае, если их содержание больше содержания висмута, как это обычно бывает при анализе полиметаллических руд или других природных материалов. [c.19]

    Нужно сказать, что при большем исходном содержании примесей, когда они находятся в расплаве также и в виде взвеси твердых частиц, эти частицы служат центрами кристаллизации галлия. Поэтому содержание примесей железа, никеля, марганца, кальция и других в первых выпавших кристаллах в этом случае будет больше, чем в оставшемся расплаве. Соответственно при дробной кристаллизации такого металла первую фракцию кристаллов надо выводить из цикла. Кроме того, некоторые примеси, как цинк, свинец, медь, накапливаются в окисной пленке, которая всегда покрывает поверхность галлия. Для ее удаления кристаллизацию ведут под слоем соляной кислоты [112]. Этими обстоятельствами объясняются некоторые противоречия в литературных данных о поведении примесей при кристаллизации. [c.265]

    Как правило, основные источники природного сырья кроме необходимого компонента содержат и другие ценные вещества. К примеру, в железной руде часто присутствуют медь, титан, ванадий, кобальт, цинк, фосфор, сера, свинец и другие редкие элементы. В полиметаллических рудах содержится более 50 ценных элементов, в том числе олово, медь, кобальт, вольфрам, молибден, серебро, золото, металлы платиновой группы. Часто сопутствующие элементы обладают большей ценностью, чем основные, ради которых организовано производство. В природном газе находятся азот, гелий, сера, а в составе газового конденсата — гомологи метана. В нефтях содержатся различные соединения серы и им сопутствуют попутные газы, в состав которых входят ценные углеводороды, а также пластовые воды с содержанием йода, брома и бора. Полное использование вещественного потенциала сырья выходит за рамки одной ХТС и становится возможным только при комплексной переработке сырьевых ресурсов, обеспечиваемой многими отраслями промышленности. [c.307]

    Методика основана на отделении железа от примесей экстракцией диэтиловым эфиром [1] с последующим определением меди, свинца, кадмия, висмута и цинка методом амальгамной полярографии с накоплением (АПН) на ртутном пленочном электроде. При содержании больших количеств меди ее отделяют после определения с помощью диэтилдитнотикар-бамината натрия в хлороформной среде [2]. Железо и медь экстрагируются практически полностые цинк, кадмий, свинец и висмут — в количествах менее 1% с учетом реэкстракции кадмия, после применения диэтилдитиокарбамината натрия из органической фазы, и использованием 9—10 М соляной кислоты. [c.73]

    В таких же количествах допустимо и содержание свинца. Определение возможно при наличии в растворе до 2 мг мышьяка. Большие количества этих элементов затрудняют установление точки эквивалентности вследствие того, что медь, свинец и мьппь-як дают диффузионный ток. Следует отметить, что присутствие мышьяка, меди и свинца в анализируемых продуктах пе должно вызывать затруднений, так как эти элементы легко могут быть отделены от индия в ходе анализа мышьяк и свинец — нри разложении смесью соляной и серной кислот и упаривании раствора до появления паров серной кислоты, медь — при осаждении гидроокисей избытком аммиака. [c.109]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    Спектральный анализ характеризуется большой чувствительностью и позволяет определять содержание многих элементов, одновременно нахойящихся в масле. Такие элементы могут содержаться в компонентах присадок (кальций, барий, фосфор, цинк, магний и др.)., а в работавших, маслах - в продуктах износа трущихся деталей (железо, медь, свинец, алюминий, хром и, др.). [c.99]

    На реакцию циркония с тороном не влияют кобальт, алюмийий, медь, свинец, кадмий и титан. Хлорная кислота (70%-ная) не мешает в количествах 0,1—0,5 мл на 10 мл раствора при условии, если измерение проводится не позднее чем через 1 ч после нагревания раствора. При содержании больших количеств хлорной кислоты соединение циркония с тороном вскоре выделяется в осадок. [c.649]

    При. мер 2. Концентрационные профили ряда рудных элементов Ломавской группы медноколчеданных месторождений приводятся А. М. Перцелем [1964]. Рудные тела примерно линзовидной фор.мы представлены массивными и вкрапленными рудами. Основные рудные элементы — медь, цинк и свинец. Длина ореола 50— 70 м. от мест выклинивания рудных тел. Р1зучепный интервал зоны медно-цинковых руд с выдержанной концентрацией цинка ( 7= 0,3%) составляет 30 м. Данные по содержанию меди, цинка, свинца в водных ореолах медноколчеданных месторождений приведены в табл. 7. Действительное значение L больше 30 м, что несколько увеличит время рудообразования по сравнению с найденным. [c.172]

    При нечистых рудах, особенно с содержанием меди, сурьмы и олова, свинцовый королек необходимо ошлаковать с добавкой небольшого количества буры. Загрязненный свинцовый королек помещают в хороша прогретый шербер, добавляют немного буры и сперва дают хорошо прогреться при закрытом муфеле, затем открывают доступ воздуху и следят за тем, чтобы температура шербера была по крайней мере 900°. Когда шлак покроет свинцовый королек, шерберу дают остыть, разбивают его и освобождают свинцовый королек от шлака ударами молотка, щеткой или же растворением в горячей воде. Дальнейшая обработка свинцового королька производится описанным выше образом. Для материалов, содержащих сурьму и олово, всегда достаточно однократного ошлакования. При веществах богатых медью может понадобиться двукратное ошлакование, потому что слишком высокое содержание в свинце меди затрудняет трейбование. В таких случаях необходимо обдумать, не следует ли применить определение серебра по комбинированному мокро-сухому методу. При этом методе к 25 г материала (медного штейна, никкелевой шпейзы и т. д.) прибавляют 100 мл концентрированной серной кислоты. Сперва нагревают слабо, а когда главная реакция закончится, — доводят до кипения. Затем, в зависимости от содержания свинца в материале, прибавляют 5—10 г уксуснокислого свинца. После этого раствором бромистого натрия осаждают серебро. Сильным взбалтыванием добиваются, чтобы сернокислый свинец увлек с собою все бромистое серебро, и проверяют находящийся над осадком светлый раствор на полноту осаждения серебра, добавляя снова бромистого натрия. Когда все серебро осядет, фильтруют через большой фильтр средней плотности. Если вначале фильтрат проходит мутным, переносят на фильтр некоторое количество осадка и первый фильтрат снова пропускают через фильтр. Фильтр вместе с осадком подсушивают, кладут на него немного глета и флюса и все сплавляют в железном тигле. Дальнейшая обработка производится по вышеописанному. [c.305]

    При осаждении сплава медь—свинец [170] из цианисто-тар-тратных растворов применение реверсивного тока уменьшает содержание в сплаве свинца (мене е благородного компонента) и тем в большей степени, чем больше доля анодного тока. Наложение переменного тока на постоянный при осаждении сплава никель—цинк снижает содержание цинка ( менее благородного компонента), причем чем больи/е доля плотности переменного тока, тем выше содержание никеля в осадке. [c.48]

    Формирование высокодисперсных железа, меди и свинца при термораспаде соответствующих формиатов металлов [42] в среде ПЭ высокого давления [содержание металлов 2 0% (масс.)] приводит к образованию пространственных полимерных структур с участием в этом процессе частиц металла [191]. Такие металлополимерные системы обладают более высокой термической стабильностью, чем ненаполненные ПЭ. Вместе с тем отмечаются определенные особенности в термодеструкции ме-таллонолимерной системы. Так, изменение содержания меди в полимере в широких пределах практически не сказывается на скорости его термодеструкции. Свинец ингибирует этот процесс лишь при температурах выше 830 К, притом тем больше, чем выше содержание металла. Железо в низкотемпературной области деструкции ПЭ ускоряет процесс, а при дальнейшем повышении температуры (выше 700 К) наблюдается уменьшение скорости его деструкции. Полагают [191], что повышение термической стабильности этих систем связано не только с изменением структуры полимера (образование химических связей металл-полимер, структурирование полимера), но и с деградацией тепловой энергии, локализованной на макромолекуле. [c.131]

    Если рассматривать обе эти таблицы вместе, то тоже получается одна цельная картина. Различия в найденных количествах металлов особенно ясно бросаются в глаза при изучении результатов выстрела в висок. Убывание содержания свинца, наличие сурьмы только в месте влета пули, убывание содержания меди, наличие ртути тоже только в месте влета пули тоже весьма показательны. Несколько своеобразна, наоборот, таблица, характеризующая выстрел в лоб. Но поэтому она и должна быть рассмотрена отдельно. Свинцовая пуля от места влета ее проходила все время сквозь кость и, следовательно, встречала необычайно сильное сопротивление. Влет пули у основания носа, пролет ее сквозь лобовые кости в лобовую полость, сквозь клетки решетчатой кости, сквозь тело всей клиновидной кости—поэтому неудивительно, что мы находим вдоль всего этого канала в изобилии отложенные свинец и сурьму. Тем не менее и здесь влет характеризуется особенно богатыми количествами свинца в подкожной клетчатке и наличием ртути, которая естественно и могла оказаться только в месте ялетя 1ули. Произведенные в этой области исследования тоже совершенно определенно свидетельствуют о том, что спектрографическим методом можно локально качественно доказать наличие самых различных элементов, как в ткани раны, так и в пуле, вследствие чего он получает очень большое значение для судебной медицины. [c.126]

    Но ва влажная Концентрированная (уд. вес 1,4) Железные трубы, защищенные асфальтом, медь, латунь, бронза, цемент с большим содержанием глинозема. Непригодны цинк, свинец (особенно при наличии блуждакяцих токов), олово, алюминий Железо, сталь Х18Н9, алюминий, кислотоупорные плитки [c.35]

    Алюминий нашел широкое применение в народном хозяйстве как в чистом виде, так и в виде сплавов, что объясняется его ценными и разнообразными свойствами. Его используют в электротехнике для изготовления различной аппаратуры и электрических проводов. Хотя электропроводность алюминия и составляет только 62—65% от электропроводности меди, но он в 3,3 раза легче ее (плотность 2,7 г/сж ). Если сравнить медный и алюминиевый провода одинаковой длины и с одинаковой электропроводностью, то окажется, что диаметр алюминиевого провода будет в 1,3 раза больше медного, но его масса окажется в 1,96 раза меньше. При окислении алюминия выделяется большое количество теплоты, что позволяет применять его для алю-минотермического получения металлов (см. главу VIII). Смесь алюминия с оксидами железа (термит) применяют для сварки рельсов и балок расплавленное железо выпускают из тигля в зазор между свариваемыми изделиями при охлаждении оно прочно их соединяет. Серебристым порошком алюминия окрашивают фонарные столбы, хранилища нефтепродуктов, газгольдеры и т. д., а также добавляют этот порошок к взрывчатым веществам (аммоналы). Чистый алюминий обладает большой стойкостью к коррозии, и поэтому он находит применение в химической (аппараты в производстве азотной и органических кислот), в пищевой промышленности, для изготовления фольги и предметов бытового назначения. Алюминием высокой степени чистоты (с содержанием примесей не более 0,01%) заменяют свинец при изготовлении оболочек электрических кабелей. При электролизе разбавленной серной кислоты с анодами в виде пластин алюминия на его поверхности в результате окисления образуется тонкий слой оксида алюминия. Такие пластины из анодированного алюминия прочно окрашиваются в различные цвета красителями (которые адсорбируются этим слоем) и служат матералом декоративным и для художественных изделий. [c.138]

    Метод определения ксантогенатов предложен Ю. Ю. Лурье и 3. В. Николаевой [И] и основан на образовании окрашенного раствора ксантогената никеля, который экстрагируется четыреххлористым углеродом или толуолом и окрашивает слой растворителя в желто-зеленый цвет при соблюдении определенной реакции среды (pH в пределах 4,8—5,2), что достигается добавкой ацетатного буферного раствора. Колориметрическое определение проводится путем сравнения со стандартной шкалой визуально или с помощью фотоколориметра с синими светофильтрами. Выявлено, что в присутствии меди получаются результаты, пониженные прямо пропорционально количеству меди (1 мг меди соответствует 5,9 мг ксантогената). Поэтому, зная содержание меди в испытуемой пробе, вводят соответствующую поправку. Так же поступают в присутствии комплексных цианидов меди. Определению не мешают тиофос-фаты даже в количестве 1 г/л, цинк, простые цианиды (в 40-кратном избытке), комплексные цианиды цинка. Присутствие цианидов в очень большом количестве может связать в комплекс добавляемый сульфат никеля в этих случаях количество прибавленной соли никеля увеличивают. Свинец образует с ксантогена-том бесцветное соединение и в его присутствии результаты определения получаются пониженные. Чтобы избежать этого, свинец предварительно связывают добавлением небольшого количества карбоната кальция. После добавления карбоната кальция жидкость фильтруют и в фильтрате определяют ксантогенат. Результа- [c.281]

    Методика анализа пылей [20] предусматривает применение того же ингибитора — никаля, но и в его присутствии все же не удается полностью разделить окисленные соединения и металл при большом содержании металлического цинка. Предложенная методика позволяет определять формы свинца и цинка в одной навеске в одних и тех же растворах, так как обработка навески раствором ЭДТА и никалем переводит в раствор окисленные соединения свинца и цинка. Обработкой остатка раствором нитрата меди переводят в раствор металлические цинк и свинец сульфиды этих металлов остаются в нерастворимом остатке. Методика анализа пылей с применением ингибитора показана в схеме 12. [c.93]

    Определени-е малых количеств кобальта, железа, меди, цинка, свинца, олова и висмута -в жаропрочных сплавах на никелевой основе представляет собой весьма трудную аналитическую задачу, так как связано с предварительным отделением их от больших содержаний хрома, никеля, молибдена, алюминия и некоторых других компонентов. Например, медь, цинк, свинец, висмут и другие элементы осаждают в виде сульфидо1В, применяя главным образом сероводород, а затем обрабатывают их кислотами и далее в зависимости от определяемого элемента применяют осадители — аммиак, метиловый фиолетовый, тиосульфат натрия и др. [c.275]

    Установлено, например, что очень малые количества H lg или Sj ускоряют дегидрирование метанола над медью. Коллоидальная платина при разложении перекиси водорода активируется следами СО, которая в больших концентрациях действует токсически. Никелевые катализаторы для синтеза жидких углеводородов из СО+Н, заметно повышают выход при действии малых количеств Sj или H2S при содержании в газе 12,5 S2 на 1 г Ni выход углеводородов повышается с 155 до 179 мм1м газа, но введение 70 мг Sj снижает выход до 147 мм м . Аналогично, но слабее действует и добавка 2 мг HjS. Свинец, который в количестве 0,09% (вес.) отравляет uAl-катализатор для гидрирования, при концентрациях [c.76]

    На долю восьми элементов (О, 81, А1, N3, Ре, Са, Mg и К) приходится 99% от массы земной коры, и лишь 1% остается на долю всех остальных (81) элементов. Однако содержание элементов на Земле еще не определяет их распространенность в сфере человеческой деятельности. Поэтому, пользуясь жизненным опытом, мы часто допускаем ошибку в оценке распространенности того или иного элемента. Казалось бы, например, что по сравнению с титаном таких давно известных элементов, как медь, цинк, олово и свинец, в земной коре должно быть гораздо больше. В действительности их суммарное содержание в сотни раз меньше содержания титана. Подобное расхождение кажущейся распространенности с действительной объясняется, с одной стороны, трудностью выделения некоторых высококларковых элементов из-за образования ими прочных соединений или их распыленности и, с другой стороны, способностью некоторых низкокларковых элементов накапливаться на небольших участках. Если малораспространенный элемент концентрируется в каком-то месте, то это приводит к образованию залежей его минералов, пригодных для промышленной разработки. Так, сульфидов тяжелых металлов (типа РЬ8) в виде минералов существует столько же, [c.267]

    Современная техника предъявляет большие требования к чистоте материалов, в частности металлов. В цветной металлургии для очистки металлов от примесей широко применяют электролиз с растворимым анодом. Электролитическому рафинированию подвергают железо, медь, серебро, золото, свинец, олово, никель и другие металлы. Например, медь рафинируют следующим образом. В электролизер, заполненный раствором сернокислой меди, подкисленной серной кислотой, помещаются аноды из черновой меди (предварительно подвергнутой горячему рафинированию, при котором окисляется большая часть примесей). Между ними подвешивают катоды из тонких листов тщательно очищенной меди. Напряжение на ванне поддерживают в пределах 0,20—0,40 в, так чтобы при прохождении тока медь, а также примеси с более низким потенциалом, чем у меди (N1, Ре, 2п и др.), окислялись на аноде и переходили в раствор. Остальные примеси с более высокими потенциалами по сравнению с потенциалом меди не окисляются и ыпадают в виде осадка на дно ванны. Это анодный шлам. Он идет на переработку для извлечения золота, серебра, селена, теллура, что в значительной степени оправдывает большие затраты электроэнергии на рафинирование меди. На катоде восстанавливаются только ионы Сц2. Содержание Си в катодной меди достигает 99,98%, а в особых условиях—99,995%. [c.214]


Смотреть страницы где упоминается термин Содержание вах с большим содержанием меди и свинца: [c.156]    [c.156]    [c.114]    [c.756]    [c.110]    [c.131]    [c.593]    [c.493]    [c.205]    [c.202]   
Смотреть главы в:

Химико-технические методы исследования -> Содержание вах с большим содержанием меди и свинца




ПОИСК





Смотрите так же термины и статьи:

Содержание меди



© 2024 chem21.info Реклама на сайте