Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способы получения нитрата никеля

    Соосаждение компонентов из водных растворов и суспензий— это наиболее старый способ приготовления катализаторов для процессов гидрообессеривания, гидрокрекинга и деароматизации. При получении катализаторов гидрообессеривания молибдаты кобальта или никеля осаждают из водных растворов солей (нитрата кобальта или никеля и парамолибдата аммония) в присутствии суспензии гидроксида алюминия или алюмосиликата [11, 222]. Полученную катализаторную массу отжимают затем на фильтре, промывают водой, упаривают в смесителе (при необходимости ее пластифицируют), формуют, сушат и прокаливают. Схема производства катализаторов методом соосаждения приведена ниже  [c.98]


    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Показано [12], что адсорбционные и каталитические свойства никелевых катализаторов на одном и том же носителе в значительной мере зависят от способа приготовления и от температуры восстановления при высокой температуре восстановление приводит к очень активным, но чувствительным к ядам катализаторам, при низкой температуре — дает менее активный, ио более устойчивый контакт. При изменении температуры получается катализатор с разной степенью восстановления никеля до металла, и это влияет на активность [13]. А1 тивность никелевых катализаторов на кизельгуре падает при получении никелевого катализатора из исходных солей формиат>ацетат>оксалат>нитрат. При получении адсорбционных никелевых катализаторов на синтетическом алюмосиликате их активность в реакции гидрирования зависит от pH раствора никелевой соли [13]. [c.30]

    Известно несколько способов промотирования сложных оксидных катализаторов. Керамический метод предусматривает многократное измельчение и длительное высокотемпературное прокаливание простых оксидов. Это делает его непригодным для промотирования углеродных материалов. Второй способ получения сложных оксидов заключается в термическом разложении солей соответствующих металлов. Использование этого метода позволяет снизить по сравнению с первым температуру прокаливания. Особенностью третьего способа является предварительное совместное осаждение гидроксидов, сульфатов или оксалатов соответствующих металлов с последующим термическим разложением. Преимущество этого метода заключается в том, что при соосаждении оксидов, сульфатов или оксалатов они смешиваются молекулярно. Шпинели, синтезированные из со-осажденных смесей, получаются более однородными по составу и структуре. Как правило, чистая шпинельная структура (например, в случае кобальтитов никеля, цинка, магния, меди) при использовании нитратов или гидроксидов получается при температуре прокаливания 300—400° С [101]. [c.190]

    В. Прочие способы получения нитрата никеля [c.129]

    Способы получения нитрата никеля [c.125]

    Выше описаны два способа получения нитрата никеля без очистки от примеси кобальта. Разработаны и применяются несколько способов получения нитрата никеля, содержащего незначительное количество кобальта. [c.129]

    Имеются также способы получения нитрата кобальта чистого без никеля . Эги способы основаны на легкой окисляемости кобальта и образовании трудно растворимых комплексных соединений с аммиаком. [c.135]

    Определение с иодидом калия. Малые количества висмута, от 0,05 до 0,5 мг, лучше всего определять- колориметрическим методом, сравнивая желтую или коричневую окраску, полученную в результате обработки разбавленного азотнокислого раствора соли висмута иодидом калия, с окраской стандартного раствора. Определению мешают медь и железо (III), которые реагируют с иодидом калия, выделяя иод, некоторые члены мышьяковой группы, также даюш ие окрашенные растворы с иодидом калия, и, наконец, соли, которые сами сильно окрашены (как, например, нитрат никеля), если они присутствуют в достаточном количестве. Эти веш ества должны быть удалены обш ими, или специальными способами отделения соответственно каждому отдельному случаю Свинец не создает затруднений, если не присутствует в очень больших количествах, потому что желтый иодид свинца можно отфильтровать перед определением висмута. Большие же количества иодида свинца могут увлечь в осадок висмут. [c.277]

    Приведенные способы применяются только для получения небольших количеств высококачественного нитрата никеля (без кобальта). Для получения же технического нитрата никеля применяют изложенные выше два способа. [c.129]

    Все примененные Ы1-кварц-катализаторы могут быть разделены натри группы, в зависимости от толщины слоя металла на поверхности кварца. Катализаторы каждой группы мало различались как по способу приготовления, так и по толщине слоя. Металл наносился на кварц путем разложения нитрата или катодным распылением. В 1-ю группу входили катализаторы, полученные разложением нитрата никеля они содержали 40—160 атомарных слоев, или 0.17—0.58 вес.% никеля. Во 2-ю группу — катализаторы с содержанием 1.6—0.8 атомарного слоя, или 0.0026—0.0058 вес.% никеля. В 3-ю группу — катализаторы,. полученные катодным распылением, с содержанием 1.6 атомарного слоя, или 0.003 вес. % никеля. [c.1599]

    Второй метод получения стабилизированных пористых металлов — соосаждение он применим к железу, кобальту и никелю. Гидроокиси этих металлов и стабилизатор осаждают одновременно из водного раствора, осадок промывают, фильтруют, сушат и восстанавливают водородом. Если химическим промотором служит растворимая в воде соль калия, ее добавляют пропиткой катализатора перед восстановлением. Стабилизированный катализатор часто распределяют на носителе с низкой или средней удельной поверхностью, например на кизельгуре или низкопористых гранулированных образцах двуокиси кремния или окиси алюминия, чтобы повысить его доступность для реактантов. Носитель вводят путем суспендирования перед или в процессе соосаждения. Окислы можно также получать термическим разложением нитратов, однако этот способ применяется редко. [c.232]


    Первые указания, касающиеся подбора катализаторов, смогла дать теория промежуточных соединений. Она считала, что, например, при гидрогенизации этилена над никелем сначала образуется гидрид никеля, который, взаимодействуя с этиленом, образует продукт гидрогенизации этан. Аналогично при дегидратации спирта над окисью алюминия сначала с выделением воды образуется алкоголят алюминия, который далее распадается, образуя продукт реакции — этилен. Однако исследования, проведенные в нашей лаборатории совместно с Б. В. Ерофеевым [2], показали, что гидрид никеля, который был получен и свойства которого были исследованы, совсем не обладает свойствами, постулируемыми теорией промежуточных соединений. Мы также изучили совместно с В. В. Щекиным [3] кинетику распада этилата алюминия, который получили по методу В. Е. Тищенко, и нашли, что он совсем не дает продуктов реакции, требуемых теорией промежуточных соединений именно, вместо этилена из него образуется этиловый эфир, причем алкоголят разлагается при более высокой температуре, чем происходит каталитическая реакция образования этилена из спирта. Недавно совместно с Г. В. Исагулянцем и другими соавторами [4] мы, пользуясь радиохимическим методом, сравнили скорость образования этилена 1) непосредственно из этилового спирта и 2) через этилен. При этом оказалось, что идут обе реакции, причем при высокой температуре преобладает первая из них. Значительным недостатком теории промежуточных соединений является предполагаемое образование промежуточного соединения только с одним реагирующим веществом, например при гидрогенизации — только с водородом. Главным же недостатком теории промежуточных соединений является то, что она рассматривает фазовые промежуточные соединения и совершенно неспособна объяснить чрезвычайной чувствительности активности и избирательности катализаторов от их способа приготовления, от их генезиса. Так, например, окись тория, если ее, как обычно, получать прокаливанием нитрата, служит типичным катализатором дегидратации спиртов, однако если окись тория осадить аммиаком, то она является катализатором дегидрогенизации. Этот вопрос был недавно подробно изучен в нашей лаборатории (А. А. Толстопятова [5]). [c.7]

Рис. 95. Схема получения нитрата никеля непрерывным способом с автоматическим регулированием /—цистерна азотной кислоты 2, 3—расходные цистерны азотной кислоты —напорный бак деминерализованной воды 5—1-й конусный смеситель 5—2-й конусный смеситель 7—циркуляционный бак 8—бак для промывки никеля кислотой —противень 10, 20, 25—центробежные насосы //—напорный бак для оборотного раствора /2—электро. тельфер /5—захват листов никеля реактор-растворитель 15—щелевой разделитель потока 16—сборник раствора /7—ловушка конденсата 13, 2/—скрубберы 19, 22—сборники 21 —щит управления 25—датчик рН-метра 25—регулирующий рН-метр 27, 52—клапаны, регулирующие УКН 25—моторный клапан 29—термометр сопротивления 50—регулирующий мост 5/—байпасная панель 55—4-ходовой кран , 5<—сигнализатор уровня 35, 36, 57—световое табло 38, 55—кнопки /Управления клапанами и насосами 0—звуковой сигнал контроля работы насоса 41, 42, 44—диафраг-менные регуляторы 43, 45, 46—краны р( зервного питания раствором. Рис. 95. Схема получения нитрата никеля <a href="/info/266921">непрерывным способом</a> с <a href="/info/51002">автоматическим регулированием</a> /—цистерна <a href="/info/1755">азотной кислоты</a> 2, 3—расходные цистерны <a href="/info/1755">азотной кислоты</a> —напорный бак <a href="/info/885790">деминерализованной воды</a> 5—1-й <a href="/info/647090">конусный смеситель</a> 5—2-й <a href="/info/647090">конусный смеситель</a> 7—циркуляционный бак 8—бак для промывки <a href="/info/555065">никеля кислотой</a> —противень 10, 20, 25—<a href="/info/21803">центробежные насосы</a> //—напорный бак для оборотного раствора /2—электро. тельфер /5—<a href="/info/1726370">захват листов</a> никеля реактор-растворитель 15—щелевой <a href="/info/675303">разделитель потока</a> 16—<a href="/info/639821">сборник раствора</a> /7—ловушка конденсата 13, 2/—скрубберы 19, 22—сборники 21 —щит управления 25—датчик рН-метра 25—регулирующий рН-метр 27, 52—клапаны, регулирующие УКН 25—моторный клапан 29—<a href="/info/14283">термометр сопротивления</a> 50—регулирующий мост 5/—байпасная панель 55—4-ходовой кран , 5<—сигнализатор уровня 35, 36, 57—световое табло 38, 55—кнопки /<a href="/info/568131">Управления клапанами</a> и насосами 0—<a href="/info/1062598">звуковой сигнал</a> <a href="/info/1471931">контроля работы насоса</a> 41, 42, 44—диафраг-менные регуляторы 43, 45, 46—краны р( зервного питания раствором.
    Особенно подходящими для окисления окиси углерода в двуокись углерода являются катализаторы [387], получаемые хлорированием водного раствора солей кобальта или железа с последующим подщелачиванием. Полученный осадок промывают водой и активируют нагреванием до 300°. Кобальтовый катализатор для окисления аммиака получается путем осаждения соли кобальта таким количеством щелочного осадителя, например, углекислого аммония, что осаждается лишь часть кобальта. Осадок отделяют и раствор используют для приготовления катализатора путем превращения кобальта в нитрат и разложения последнего нагревом [26]. Для окисления аммиака предложена в качестве катализатора смесь, состоящая из 85% окиси кобальта и 15% окиси алюминия, полученных путем нагревания в токе водорода, что Ведет к соединению реагирующих веществ, из которых получается гранулированный катализатор [27]. Указывалось, что окисление окиси углерода кислородом в виде сухой газовой смеси, при температуре ниже 20°, успешно проходит в течение длительного времени на катализаторе, полученном Фразером [162]. По этому способу соединения кобальта или никеля окисляют в присутствии воздуха или водяного пара при температуре несколько ниже 250°. Например, 211 г азотистого кобальта растворяют в 200 см холодной воды и обрабатывают при 10° 100 г едкого натра, к которому добавлено 34,5 г хлорноватистокислого натрия полученный осадок отфильтровывают, промывают, высушивают и нагревают. [c.278]

    Многообразие свойств твердого реагента заставляет предпринимать ряд дополнительных предосторожностей нри кинетических исследованиях. Совокупность свойств твердого образца зависит от способа его приготовления. Например, если образец получен путем разложения, то его реакционная способность может изменяться в зависимости от природы исходной соли. Это явление наблюдается для окиси никеля, полученной из нитрата, гидроокиси, карбоната или ацетата (табл. 2.1). Механическая или термическая обработка, бомбардировка ионизирующими частицами могут изменить число атомных дефектов и дислокаций, а следовательно, и реакционную способность. Иногда значительные отклонения в условиях приготовления приводят к существенным изменениям в свойствах образца. Таким образом, приготовление серии образцов с идентичными свойствами всегда можно рассматривать как удачу, но для этого во всех случаях необходимы значительные усилия. Однако, как об этом уже говорилось выше, для кинетического исследования нужно иметь образцы с хорошей воспроизводимостью свойств. Поэтому следует использовать большое количество твердого вещества, полученного один раз, из которого затем можно приготовить все образцы, необходимые для проведения экспериментов. [c.26]

    Схема получения нитрата никеля непрерывным способом с автоматическим регулитованием [c.361]

    Механически прочный при истирании алюмогелевый носитель готовится путем быстрой коагуляции гидрозоля алюминия. В последнее время [137] разработан рациональный способ получения водорастворимой алюминиевой соли — основного хлорида алюминия А12(0Н)аС1. Весьма важным свойством его является способность образовывать при определенных условиях гидролиза студни при низкой концентрации А12О3 в растворе. Студни образуются при смешении водных растворов А12(0Н)8С1 с аммиаком. После сушки и прокалки гранулы А12О3 приобретают механическую прочность и мелкопористую структуру. Изменение пористой структуры достигается путем введения добавок в основной хлорид алюминия или путем обработки сформировавшихся гранул А1аОз растворами кислот. Пропитывая гранулы такого носителя нитратом никеля, можно получить активный никелевый катализатор для конверсии метана. [c.186]

    В практике, особенно в промышленности, никелевые катализаторы имеют гораздо больнгее значенне, чем пла тнновые и палладиевые Хотя они менее активны, но зато более доступны Их получают из нитрата, сульфата, реже из хлорида никеля [89]. Один нч наиболее давно известных способов получения основан на при бавлении по каплям раствора нитрата никеля н глюкозы в нагретый до красного каления кварцевый тигель и [c.309]

    Метод приготовления катализатора. Чанетта и Хантер [38] при изучении реакции изомеризации к-гексана (см. табл. 51) пользовались никелевым катализатором (на алюмосиликатном носителе), приготовленным разными способами. Стандартный катализатор приготовляли смешением свежеприготовленного алюмосиликата с раствором нитрата никеля и последующим осаждением никеля путем добавления водного раствора карбоната аммония. При приготовлении катализатора SA-5N(XVI) вначале получают осадок карбоната никеля взаимодействием нитрата никеля и карбоната аммония. Суспензию промытого карбоната никеля смешивают затем с водной суспензией алюмосиликата. Полученный катализатор затем подвергают сушке и активации. Активация проводится так же, как при приготовлении стандартного катализатора. В процессе приготовления катализатора SA-5N(X) первоначально получают карбонат никеля взаимодействием водных растворов нитрата никеля и карбоната натрия. Полученный в виде осадка карбонат никеля отмывают от ионов натрия, суспендируют в воде и смешивают с водной суспензией алюмосиликата. Катализатор SA-5N (VIII) приготовляют пропитыванием алюмосиликата раствором нитрата никеля, последующим разложением нитрата, сопровождающимся образованием соответствующего [c.570]

    Условия формирования активной поверхности и физико-химические свойства никель-хромовых катализаторов, получаемых совместным осаждением содой из смеси растворов нитратов никеля и хрома, изучены достаточно нолно [1—9]. В частности, показано [2], что наиболее развитая поверхность катализаторов формируется в условиях, способствующих низкотемпературному образованию никель-хромитной шпинели, то есть при наиболее тщательном смешении компонентов катализатора и проведении термообработки в инертной среде в изотермических условиях. Исходя из этого положения, можно добиться большего развития удельной поверхности за счет изменения способа получения катализатора, а именно проводить осаждение компонентов катализатора не в виде смешанных кристаллов состава х[Н1СОз-2Ы1(ОН)2] г/Сг(0Н)з-2Н20, а в виде никель-хромовых соединений, в кото рых осуществляется атомное диспергирование никеля и хрома, на пример гидроксихромата никеля или аммиачного хромата никеля Причем при термообработке последнего будет создаваться слабо [c.5]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]


Смотреть страницы где упоминается термин Способы получения нитрата никеля: [c.365]    [c.488]    [c.316]    [c.264]   
Смотреть главы в:

Соли азотной кислоты -> Способы получения нитрата никеля




ПОИСК





Смотрите так же термины и статьи:

Нитрат никеля

Прочие способы получения нитрата никеля

Схема получения нитрата никеля непрерывным способом с автоматическим регулированием



© 2024 chem21.info Реклама на сайте