Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства симметрии молекулярных орбиталей

    V. 2. СВОЙСТВА СИММЕТРИИ МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ [c.113]

    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]


    III. 2. Свойства симметрии молекулярных орбиталей........ [c.310]

    Так, например, зная лишь свойства симметрии молекулярных орбиталей реагентов и продуктов, а также их относительные энергии, можно, построив корреляционную диаграмму энергетических уровней, сделать вывод об условиях, необходимых для осуществления данной реакции. [c.42]

    Многоцентровые молекулярные орбитали многоатомных молекул классифицируются по свойствам симметрии. Для линейных молекул классификация на о-, л- и б-орбитали та же, что и для двухатомных. Для нелинейных молекул классификация МО ведется по отношению к операциям симметрии, характерным для данной равновесной конфигурации молекулы а — симметричные типы орбиталей, Ь — антисимметричные, е — дважды вырожденные, I — трижды вырожденные. Симметричные орбитали не изменяют знака при данной операции [c.94]

    Симметрия. Важнейшей характеристикой МО является ее симметрия. В конечном счете связывающие свойства также определяются симметрией молекулярной орбитали. В то время как атомная орбиталь имеет один центр — ядро атома, мо.пекулярная орбиталь в двухатомной молекуле имеет два центра, ядра А и В. Здесь в отличие от атома уже не все направления в пространстве равноценны. Между ядрами возникает сильное электрическое поле. Таким образом, направление межъядерной оси — особое направление в пространстве для молекулярного электрона, направление электрического поля ядер. Симметрия МО относительно этой оси определяет ее главные свойства. Вектор орбитального момента импульса электрона I прецессирует вокруг межъядерной оси, так что его проекция на ось равна  [c.105]

    Идея и принципы построения корреляционных диаграмм непосредственно вытекают из атомных корреляционных диаграмм Хунда и Малликена [19]. Они оказались очень удобными для оценки разрешенности той или иной согласованной реакции. При построении корреляционных диаграмм нужно принимать во внимание как энергию, так и симметрию системы. На диаграмме с одной стороны приближенно изображаются уровни энергии реагентов, а с другой-то же самое, но для продуктов. Следует так же учитывать, как происходит сближение молекул. Далее необходимо рассмотреть свойства симметрии молекулярных орбиталей с точки зрения точечной группы активированного комплекса. В отличие от метода граничных орбиталей нет необходимости рассматривать ВЗМО и НСМО. Вместо этого все внимание концентрируется на тех молекулярных орбиталях, которые соответствуют химическим связям, разрывающимся или образующимся в ходе химической реакции. Нам известно, что любая приемлемая молекулярная орбиталь должна принадлежать к одному из неприводимых представлений точечной группы избранной системы. Эта МО, по крайней мере для невырожденных точечных групп, должна быть либо [c.322]


    При адиабатическом приближении, которое используется в теории активного комплекса, не рассматривается движение электронов. В ходе химической реакции учитывается лишь движение ядер-атомов, а электронное состояние системы в целом принимается неизменным. Это предположение в настоящее время уточняется с позиций квантовой механики. Считается, что в адиабатической реакции должно быть определенное соответствие, корреляция электронных состояний молекул исходных веществ и продуктов. В частности, это относится к свойствам симметрии молекулярно-электронных орбиталей. [c.293]

    Правильное решение дает теория молекулярных орбиталей МО координационной связи образуется путем комбинации наличных з-, р-или -орбиталей лиганда и металла, обладающих подходящими энергиями и симметрией, а особые свойства переходных элементов возни- [c.19]

    Ясно, что в силу простых свойств симметрии молекулярных орбиталей эти спиновые собственные функции уже являются g- или и-функциями (в противоположность тому, что имелось в методе [c.81]

    Свойством, которое объединяет переходные металлы в отдельную группу, является существование незавершенной оболочки d-электропов. Влияние этих электронов на валентность, оптические и магнитные свойства переходных металлов. может быть рассмотрено на основе модифицированного варианта теории молекулярных орбиталей, известного пол названием теории поля лигандов. В этом подходе нет каких-либо новых принципов, но его главная особенность состоит в том. что внимание в основном обращается иа высокую симметрию окружения центрального иона металла. [c.544]

    Форма, узловые свойства и симметрия молекулярных орбиталей. СГ- и 71-Связи. Рассмотренное выше образование МО про-исходило за счет линейной комбинации АО 8-типа. Образующиеся при этом орбитали Ч и Ч оказываются симметричными относительно поворота вокруг оси, соединяющей ядра (см. рис. 7 и 8). Поэтому МО такого типа обозначаются как ст-орбитали связывающая — просто ст, а разрыхляющая — ст (со звездочкой). Отнесение МО к типу ст означает только, что МО симметрична относительно оси связи. [c.602]

    В настоящее время электронную волновую функцию молекулы принято представлять в виде произведения одноэлектронных волновых функций (молекулярных орбиталей), каждая из которых определяет свойства одного электрона в поле ядерного остова молекулы. Тип симметрии молекулярных орбиталей обозначается строчной буквой, соответствующей обозначению типа симметрии (например, орбиталь, относящаяся к типу Аи обозначается 01). Состояние молекулы в целом определяется занятыми молекулярными орбиталями. Так, для основного состояния молекулы воды можно записать  [c.17]

    Пространственная форма молекул в конечном счете определяется гамильтонианом системы и проявляется в симметрии ее волновой функции. Если при построении волновой функции пользоваться молекулярными орбиталями, явно выражающими указанную симметрию, то уже из рассмотрения одной только симметрии молекулярных орбиталей можно сделать многие важные заключения о химических свойствах молекул. [c.55]

    Волновая функция % называется связывающей МО. Рассмотрим ее подробнее. На рис. 35, а пунктиром нанесены исходные атомные орбитали и сплошной линией — молекулярная орбиталь, те и другие как функции расстояния от ядер А и В,, а также диаграмма плотности электронного облака. В нижней части рис. 35, а дана условная контурная диаграмма электронной плотности, напоминающая топографическую карту. Орбиталь и электронная плотность ец/ обладают осевой симметрией (цилиндрической), определяемой симметрией равновесной конфигурации (Г) ). По свойствам симметрии орбиталь называют а-орбиталью. В пространстве между ядрами значения. и выше, чем было бы оно для изолированной атомной орбитали. Соответственно выше здесь и плотность электронного облака. Это означает, что для связывающей молекулярной орбитали вероятность пребывания электрона в межъядерной области велика. Отрицательный заряд между ядрами притягивает к себе положительные заряды обоих [c.100]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]


    С момента своего возникновения квантовая химия была связана главным образом с изучением электронного строения молекул, т.е. электронного распределения в стационарных состояниях, а также состава входящих в волновую функцию молекулярных орбиталей, взаимного расположения уровней энергии занятых и виртуальных орбиталей и т.п. Были предприняты многочисленные попытки интерпретировать такие понятия классической теории, как валентность, химическая связь, кратность химической связи и др. Одновременно были введены и многие новые понятия, такие как гибридизация, а- и л-связи, трехцентровые связи и т.д., часть из которых прочно вошла в язык современной химической науки, тогда как другие оказались менее удачными и сейчас уже хорошо забыты. К тому же и содержание большинства понятий, возникающих внутри квантовой химии, заметно трансформировалось с течением времени. В квантовой химии было введено большое число различных корреляций между экспериментально наблюдаемыми для вещества и вычисляемыми для отдельных молекул величинами. Сама по себе химия является в существенной степени корреляционной наукой, базирующейся прежде всего на установлении соответствия между свойствами соединений и их строением и последующем предсказании требуемой информации для других соединений. По этой причине богатейший набор информации о строении, в том числе электронном строении соединений, предоставляемый квантовой химией, оказался как нельзя кстати для дальнейшего активного развития химической науки. Так, на основе квантовохимических представлений была развита качественная теория реакционной способности молекул, были сформулированы правила сохранения орбитальной симметрии, сыгравшие важную роль при исследовании и интерпретации реакций химических соединений. [c.4]

    Анализ свойств симметрии молекулярных орбиталей гексатриена проаодктся аналогнчно ч приводит к совершенно другому выводу, кото- [c.382]

    Природа К. с. определяется типом атомных орбиталей, из к-рых строятся молекулярные орбнтали свя ш, и симметрией электронного распредс.гсипя и ]Ю<-. 1елппх, )В И,ящсй от характера перекрывания атомных орбиталей. По свойствам симметрии молекулярных орбиталей связи относитель- [c.281]

    Для нее = 390—180 = 210 кДж/моль. Этот барьер все еще очень высок. Так же, как прямая реакция, разложение N0 протекает с заметной скоростью лишь при очень высок1гх температурах. Рассмотренные примеры показывают, какую важную роль в механизме химического превращения играют свойства симметрии молекул, в частности симметрия молекулярных орбиталей. [c.147]

    Имеется строгая математическая теория, рассматриваюш,ая свойства симметрии она использует понятия и методы раздела высшей алгебры, называемого теорией групп. С помощью теории групп находят выражения для волновых функций молекулярных орбиталей в комплексных соединениях. В данной книге невозожно привести это математическое рассмотрение. Мы изложим лишь его результаты для случая октаэдрического расположения лигандов вокруг центрального атома, которое характерно для многих комплексных соединений. [c.227]

    Следует, указать на два обстоятельства, позволяющие применять для ориентировки правило сохранения орбитальной симметрии. Во-первых, точные волновые функции неизвестны, и приходится использовать вместо них приближенные функции МО ЛКАО. Однако последние правильно отражают наиболее важное здесь свойство точных волновых функций — их симметрию. Во-вторых, для ориентировочных оценок можно в волновой функции (217.1) вместо бесконечной суммы возбужденных состояний ограничиться лишь первым из них, вклад которого наиболее существен. Таким образом, при качественных оценках можно исходить из волновых функций основного и первого возбужденного состояний реагирующей системы. Чтобы энергетический барьер реакции был невысок, первое возбужденное состояние системы должно иметь ту же симметрию, что и основное, н не очень сильно, отличаться от него по энергии. Возбуждение молекулы из основного в первое возбуаденное состояние представляет собой переход электрона с высшей занятой молекулярной орбитали (ВЗМО) на низшую свободную молекулярную орбиталь (НСМО). Поэтому симметрия и разность энергий именно этих двух орбиталей, НСМО и ВЗМО, играют первостепенную роль при качественных оценках возможности протекания реакции через то или иное переходное состояние. ВЗМО и НСМО должны в благоприятном случае иметь одинаковую си (метрию и мало отличаться по энергии. На это впервые указал в 1952 г. Фукуи [43]. [c.143]

    Подход метода молекулярных орбиталей к приближенному описанию свойств молекул нам уже знаком все электроны находятся на многоцентровых молекулярных орбиталях, охватывающих всю молекулу. Такие орбитали называют делокализованными. Многоцентровые молекулярные орбитали классифицируются по свойствам симметрии. Последняя же определяется симметрией равновесной геометрической жонфигурации молекул. [c.190]

    Для нелинейных многоатомиык молекул классификация МО ведется по отношению к операциям симметрии, характерным для данной равновесной конфигурации молекулы а — симметричные типы орбита-лей, Ь — антисимметричные, е -— дважды вырожденные (от немецкого слова entartet), t — трижды вырожденные. Эти многоцентровые МО приближенно описываются как линейные комбинации атомных орбиталей всех атомов. В этой картине нет места, казалось бы, для локализованных двухцентровых связей, хорощо описывающих для многих молекул и направленность орбиталей, и целочисленность валентности, и аддитивность свойств. Однако, как показал Леннард-Джонс, для многоатомной молекулы волновая функция, построенная из делокали-зованных многоцентровых молекулярных орбиталей, в определенных случаях может быть математически преобразована в функцию, построенную из двухцентровых, локализованных молекулярных орбиталей. А это значит, что хотя электроны в такой молекуле делокализованы, общее распределение электронной плотности такое или почти такое, как если бы в ней существовали локализованные двухцентровые связи. Поэтому для таких молекул можно использовать наглядное представление о локализованных связях, вводя для них двухцентровые МО. Это очень удобно, так как позволяет рассматривать молекулы в привычных химику образах отдельных двухцентровых связей. [c.190]

    Характерная особенностть этих схем состоит в том, что число молекулярных орбиталей равно числу атомных, причем имеется определенное соответствие между ними. При построении МО из АО следует учитывать их симметрию, прежде всего свойства четности или нечетности относительно центра симметрии, что указывается [c.97]

    Из отзыва чл.-корр. АН СССР Зефирова Н. С. Теория молекулярных орбиталей... глубоко вошла в сознание хими-ков-органиков как необходимое звено в общем химическом образовании. Нужен, одпако, такой язык, который понимает и принимает любой органик. Это, конечно, ие язык матема тики. Поэтому ведущие ученые — квантовые химики посто янно ищут способы переложения своих идей с математиче ского на другие языки. Особенно привлекательна идея изо бражения МО с помощью картинок, рисующих пространст венную протяженность, симметрию и узловые свойства МО поскольку такие картинки легко воспринимаются любым химиком и в то же время несут в себе суть способа мышления квантовой химии . [c.384]

    Как было отмечено в гл. 4, при образовании МО комбинируются лишь те орбитали, которые обладают одинаковыми свойствами симметрии. Для линейной молекулы АНг, как и в случае двухатомных молекул Аг, важно рассмотреть симметрию относительно центра инверсии к молекулярной оси. Орбитали ру и Рг антисимметричны по отношению к оси Н—А—Н, поэтому они не комбинируются с Стд - и ац 15-орбиталями водородных атомов. Следовательно, в линейной молекуле АНг они являются несвязываюшими. [c.160]

    Вполне возможно повышение электронной плотности на лигандах в том случае, когда уровень орбиталей лигандов ниже уровня орбиталей иона металла — это происходит у связывающих орбиталей (у разрыхляющих, наоборот, электронная плотность повышается у металла). Теория молекулярных орбиталей позволяет также учесть и возможность образования л-связей за счет 4 -орбиталей иона металла (т. е. орбиталей, которые теория кристаллического поля относит к несвязывающим) и л-орбиталей лигандов. Молекулярные орбитали системы лигандов и атомная орбиталь центрального иона должны обладать одинаковыми свойствами симметрии. В качестве примера рассмотрим октаэдрический комплекс с шестью лигандами. [c.225]

    Качественное рассмотрение симметрии я геометрических свойств атомных орбиталей, входящих в более сложные молекулы, может пояснеть, как описывают молекулы с помощью молекулярных орбиталей. В качестпе примера можно использовать метан. Расчет молекулярных орбиталей ма уроане ССП приводит к энергиям, которые показаны на рис. 1.10 (26j. [c.28]

    Симметрия и узловые свойства орбиталей определяются очень просто, исходя из симметрии расположения ядер. Для того чтобы определить вклады атомных орбиталей каждого атома в данную молекулярную орбиталь, необходимо провести расчеты, которые осуществляются с помощью ЭВМ. В простых случаях, например при расчете 71-орбиталей сопряженных углеводородов по методу Хюк-келя, достаточно микрокалькулятора. Однако для небольших молекул вклады атомных орбиталей в молекулярные орбитали можно оценить качественно (с помощью терминов большой , средний , небольшой , малый ) без расчетов на основе принципа квантования. Согласно этому принципу, не может быть так, чтобы в одной орбитали вклады от всех атомов были большими, а в другой все вклады-небольшими или чтобы вклады одного из атомов во все орбитали были большими, а вклады другого-небольшими. Величины вкладов от атомов должны определенным образом меняться как внутри одной орбитали, так и при переходе от одной орбитали к другой. После некоторой тренировки можно научиться помимо симметрии и узловых свойств качественно оценивать и вклады атомов в молекулярные орбитали простых молекул, чего вполне достаточно для предсказания регионаправленности реакции. [c.6]


Смотреть страницы где упоминается термин Свойства симметрии молекулярных орбиталей: [c.9]    [c.522]    [c.94]    [c.94]    [c.142]    [c.188]    [c.104]    [c.108]    [c.191]    [c.197]    [c.122]    [c.90]    [c.382]    [c.352]   
Смотреть главы в:

Электронное строение и свойства координационных соединений Издание 2 -> Свойства симметрии молекулярных орбиталей




ПОИСК





Смотрите так же термины и статьи:

ДНК молекулярные свойства

Молекулярные орбитали орбитали

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте