Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Программирование температуры и потока

    Поддержанием постоянства производительности насоса облегчается программирование скорости потока и состава подвижной фазы. С помощью мембранного насоса (1) с двумя головками с максимальным рабочим давлением в 500 кгс/см2 растворитель одновременно забирается из двух сосудов 2 и соединенный поток подается в печь 4, в которой поддерживается постоянная надкритическая температура флюида — подвижной фазы. Пульсация давления выравнивается с помощью буферной спирали большого объема. Имеется и другой мембранный насос 5, работающий при более высоких давлениях (до 3000 кгс/см ). [c.95]


    Единый подход к решению широкого класса задач па разыскание экстремума функции большого конечного числа переменных дает теория динамического программирования Веллмана [7]. Сущность этой теории покажем на примере типичной задачи оптимизации, возникающей в химической технологии. Требуется найти оптимальный режим для последовательности N реакторов (или Л -стадийного аппарата), причем на каждой стадии варьируется М независимых переменных. Пронумеруем реакторы в обратном порядке, так что первый номер присваивается последнему, а N-й — первому по ходу потока реактору. Состояние потока на выходе п-го реактора обозначим индексом 71 в соответствии с этим исходное состояние потока обозначается индексом -/V 1 (рис. 1Х.З). Состояние реагирующего потока в общем случае описывается некоторым вектором X. Вектор X часто совпадает с вектором состава С в более сложных случаях, однако, компонентами вектора X могут быть, помимо концентраций ключевых веществ, также и температура потока, давление и пр. [c.381]

    В такой формулировке задача синтеза — это задача нелинейного программирования с параметрами оптимизации Р к Т, критерием оптимизации 3 с Л т ограничениями типа равенств, которые решаются относительно зависимых температур потоков. Поэтому для решения задачи синтеза могут быть применены методы нелинейного программирования, которые позволяют найти т1п 3 по целочисленным параметрам Му, Р к по непрерывным параметрам Т. Назовем такой подход к решению задачи синтеза прямым подходом. [c.146]

    Программирование температуры следует предпочесть изотермическому процессу, когда область температур кипения компонентов смеси превышает 50—100° С. Начальную и конечную температуры программы следует выбирать исходя из температур кипения самого летучего и наименее летучего компонентов пробы. Температура удерживания определяется отношением скорости нагрева к скорости потока. [c.90]

    Термохимический детектор не термостатируется в связи с тем, что нагревательные элементы имеют относительно высокую температуру накала. Низкая чувствительность к скорости потока термохимического детектора позволяет применять его в режиме программирования температуры. Однако термохимически детектор не нашел широкого применения из-за следующих недостатков 1) применим только для анализа горючих веществ, следовательно, не позволяет использовать его в препаративных хроматографах, где требуется сохранить вещество 2) дает возможность определять концентрацию вещества в ограниченном интервале — от 0,1 до 5% 3) для горения [c.247]


    Конструкции и применения других деталей и узлов газового хроматографа. Измерители скорости потока газа-носителя. Разделительная колонка с термостатом и программированием температуры. Способы заполнения колонок, определение параметров колонки (поперечного сечения, газового пространства, коэффициента проницаемости, средней толщины пленки жидкой фазы и доли свободного поперечного сечения, занимаемого пленкой жидкой фазы). Капиллярные колонки. Характерные отличительные особенности с точки зрения теории и возможностей практического применения. Аппаратурное оформление. Воздушные [c.298]

    Программирование температуры — вариант элюентного способа, при котором разделение проводится не при постоянной температуре (как при классическом элюентном способе), а при постепенном или скачкообразном нарастании температуры по всей длине колонки. В отличие от хроматермографического варианта градиент температуры вдоль колонки и движущаяся электропечь отсутствуют, что намного упрощает конструктивно систему нагревания колонки и создает преимущества в развитии и применении этого варианта перед хроматермографией. Однако как показали Жуховицкий и Туркельтауб, отсутствие движущегося градиента температуры по слою сорбента не позволяет получить столь большое обогащение концентрации компонентов на выходе из колонки, как при наличии градиента температуры. Тем не менее постепенный рост температуры при постоянной скорости потока газа-носителя ускоряет вымывание из колонки сильно удерживаемых компонентов и создает благоприятные условия для разделения многокомпонентных смесей. Программирование температуры означает, что повышение температуры в ходе разделения производится с некоторой выбранной постоянной или переменной скоростью, т. е. по заданной программе. Колонку нагревают электрическим нагревателем, питаемым от автотрансформатора, соединенного с автоматическим регулятором, который задает скорость изменения температуры. [c.18]

    Термохимический детектор не термостатируется, так как нагревательные элементы имеют относительно высокую температуру накала. Низкая чувствительность к скорости потока термохимического детектора позволяет применять его в режиме программирования температуры. Однако термохимический детектор не нашел широкого применения из-за следующих недостатков  [c.54]

    Снизить рабочую температуру и уменьшить содержание жидкой фазы использовать различные колонки некоторые наполнители колонок отличаются большой летучестью, поэтому применение их при программировании температуры вызывает большие затруднения это наблюдается даже для предварительно кондиционированных колонок, в которых скорости потока газа были тщательно подогнаны [c.321]

    В настоящее время известен метод с программированием газового потока , в котором в ходе элюирования непрерывно повышается скорость газа-носителя. Этот метод, так же как и программирование температуры, ведет к сокращению времени анализа. Комбинированием данных методов можно получить оптимальные условия проведения анализа. Для работы с программированием газового потока целесообразно применять капиллярные колонки. [c.370]

    БПГ-1Б формирует два независимых потока газа-носителя с раздельной установкой расхода в диапазоне от 16 до 100 мл/мин, два идентичных потока водорода с общей установкой расхода в диапазоне от 10 до 70 мл/мин и два одинаковых потока воздуха с диапазоном расходов от 100 до 400 мл/мин. В одной из линий газа-носителя расход азота может перестраиваться на диапазон от 160 до 500 мл/мин для обеспечения работы с капиллярными колонками в режиме деления потока при введении пробы. Стабильность расходов газа-носителя находится на высоком уровне и вполне достаточна для работы как в изотермическом режиме, так и при программировании температуры колонок. Изменение входного давления на + 10 % вызывает изменение расходов во всех линиях не более 1 % от номинального, а при изменении давления газа-носителя на входе в колонку от 0,5-10 до 2 10 Па (например, вследствие программирования температуры колонки) изменение расхода через колонку не превышает 0,5 %. Расходы газа-носителя и водорода, формируемые блоком, мало подвержены влиянию изменения окружающей температуры 2% на 10 °С в рабочем диапазоне температур от 10 до 35 °С. Столь же мало влияние изменения барометрического (атмосферного) давления. Максимальное различие расходов в линиях водорода не выходит за пределы 5 %. Эти характеристики достигаются при строгом выполнении предписанных условий питания блока от внешних источников входные давления газа-носителя, водорода и воздуха должны быть 4 10 10 и 1,4-10 Па соответственно, а допустимое отклонение входных давлений — не более 10%. [c.134]


    Хроматография может быть использована для идентификации любого вещества, имеющего достаточное давление пара (от 1 до 1000 мм) при температуре эксперимента от —100° до +400° С. Твердые вещества анализируют по характерным продуктам пиролиза. Возможности хроматографии расщиряются при использовании капиллярных колонок, а также при проведении анализа в режиме программирования температуры колонки или потока газа-носителя. [c.327]

    В табл. 4 приведены сравнительные данные по определению критерия разделения и времени анализа нормальных алканов на капиллярной колонке длиной 143 м с полиэтиленгликолем (Штруппе, 1966) при различных рабочих условиях. Значения критериев разделения 22 и 3 (критерий разделения, отнесенный к времени), соответствующие программированию давления, больше таких же величин, полученных в изотермических условиях при постоянной скорости потока и в условиях программирования температуры. Это доказывает целесообразность применения программирования давления газа-посителя. Правда, программирование газа-носителя ограничено техническими возможностями аппаратуры. Едва ли возможно изменять давление на входе в колонку больше 10 ат. Так как между временем удерживания и обратной величиной средней скорости газа-носителя существует лишь линейная, а не логарифмическая зависимость, программирование газа-носителя меньше влияет на вид хроматограммы. Для получения постоянной разницы в величинах удерживания для членов гомологического ряда необходимо экспоненциальное увеличение давления. Однако, когда задача разделения требует применения полярной и специфически селективной неподвижной фазы, не выдерживающей высокой рабочей температуры, или анализируемая проба термически не стабильна, анализ с программированием газа-носителя более предпочтителен. [c.352]

    Ранее, при обсуждении теории метода, указывалось, что в газовой хроматографии с программированием температуры линейная скорость газа-носителя в процессе опыта падает вследствие увеличения вязкости газов при увеличении температуры. Поэтому наиболее пригодными для этого метода являются такие типы ионизационных детекторов, показания которых практически не зависят от скорости потока газа-носителя. В случае их применения [c.409]

    Все исследуемые образцы анализировали на хроматографе ЛХМ-8МД (5 модель) в следующих условиях расход газа-носителя гелия 1,5 см /мин начальная температура колонки 80° С скорость программирования температуры 2 град/мин, температура испарителя около 400° С, соотношение потоков в колонку и на сброс 1 50, количество вводимого образца 0,4—0,6 мкл. [c.173]

Рис. 3—3. Анализ сесквитерпеновой фракции бальзама пачули, проведенный с использованием двухканальной системы. Условия эксперимента программирование температуры от 60 до 180° со скоростью подъема температуры 20 град/мин, газ-носитель водород (207 кПа), деление потока 1 800. а— кварцевая колонка 10м х 0,1 мм, НФ ПЭГ 20 М, Рис. 3—3. Анализ сесквитерпеновой фракции бальзама пачули, проведенный с использованием <a href="/info/870357">двухканальной системы</a>. <a href="/info/142855">Условия эксперимента</a> <a href="/info/19367">программирование температуры</a> от 60 до 180° со скоростью подъема температуры 20 град/мин, газ-<a href="/info/39435">носитель водород</a> (207 кПа), <a href="/info/393253">деление потока</a> 1 800. а— <a href="/info/913608">кварцевая колонка</a> 10м х 0,1 мм, НФ ПЭГ 20 М, <//= 0,2 мкм б — кварцевая колонка 10м х 0,1 мм, НФ ОУ-1, <1/ =0,2 мкм.
Рис. 3—23. Определение полихлорированных дифенилов в отработанном масле при вводе пробы без деления потока. Колонка 25 м X 0,25 мм, НФ ОУ-1, мкм температурный режим 60°С (1 мин), затем программирование температуры Рис. 3—23. Определение полихлорированных <a href="/info/167211">дифенилов</a> в отработанном масле при <a href="/info/39420">вводе пробы</a> без <a href="/info/393253">деления потока</a>. Колонка 25 м X 0,25 мм, НФ ОУ-1, мкм <a href="/info/26795">температурный режим</a> 60°С (1 мин), затем программирование температуры
Рис. 3—40. Хроматограмма окисленной фракции эфирного масла на узкой (а) и широкой (6) капиллярной колонке. Условия эксперимента а — колонка 25 м х 0,25 мм, НФ НЭГ-НМ У программирование температуры от 70 до 190°С со скоростью 2 град/мин делитель потока со стеклянным вкладышем, коэффициент деления потока 1 20 б— колонка 50м х Рис. 3—40. Хроматограмма окисленной <a href="/info/1071642">фракции эфирного масла</a> на узкой (а) и широкой (6) <a href="/info/39331">капиллярной колонке</a>. <a href="/info/142855">Условия эксперимента</a> а — колонка 25 м х 0,25 мм, НФ НЭГ-НМ У <a href="/info/19367">программирование температуры</a> от 70 до 190°С со скоростью 2 град/мин <a href="/info/39602">делитель потока</a> со <a href="/info/758828">стеклянным вкладышем</a>, <a href="/info/91544">коэффициент деления</a> потока 1 20 б— колонка 50м х
    Рекомендуется ввод проб небольшого объема при сравнительно высоком Коэффициенте деления потока. Если растворитель начинает испаряться до начала нагрева испарителя, можно вводить большие пробы. Это достигается подбором низкокипящих растворителей, высоких коэффициентов деления потока и/или вводом пробы при температуре, близкой к точке кипения растворителя. О другой стороны, испарение низкокипящих компонентов происходит довольно медленно. Чтобы избежать размывания зоны, часто необходимо проводить термическое фокусирование путем программирования температуры термостата. [c.62]

    Анализ нестойких соединений при вводе пробы с программированием температуры испарителя может сталкиваться с проблемами. В работе [62] сообщалось о разложении триметилсилильных эфиров жирных кислот при холодном вводе пробы без деления потока. [c.65]

    Иа рис. 5-12 представлена схема открытого ввода с делением потока [21] и показаны направления газовых потоков. Дополнительный поток газа-носителя проходит коаксиально выходу из колонки и создает гидравлическое соединение. Поток газа на продувку способствует тому, что вспомогательный газ компенсирует любые отклонения в потоке, выходящем из колонки. Отклонения возникают из-за изменения вязкости гелия при программировании температуры термостата. [c.85]

    В табл. 6-1 приведены данные о воспроизводимости времен удерживания, полученные с исиользованием таких совершенных хроматографов. Экспресс-анализ растворителя лака проводили на колонках длиной 10 м и внутренним диаметром 0,1 мм [I]. Объем пробы составлял 0,2 мкл, коэффициент деления потока 1200 1. Проводили программирование температуры термостата от 40 до 80° С со скоростью подъема температуры 30 град/мин. В этих условиях стандартное отклонение времен удерживания составило примерно 30 мс. [c.92]

Рис. 8—5. Характерная хроматограмма лигроиновой фракции нефти. Условия анализа кварцевая капиллярная колонка 50м ж 0,2 мм, НФ иммобилизованная метилсиликоновая фаза, df i,5 мкм, газ-носитель Не (20 см/с), объем пробы 1 мкл, коэффициент деления потока 400 1, температура узла ввода 250"С, температура детектора 300"С. Программирование температуры 35°С (15 мин), подъем температуры до 70 С со скоростью 1,5 град/мин, далее повышение температуры до 130°С со скоростью 3 град/мин. Рис. 8—5. <a href="/info/1622226">Характерная хроматограмма</a> <a href="/info/1020963">лигроиновой фракции нефти</a>. <a href="/info/40380">Условия анализа</a> <a href="/info/1020938">кварцевая капиллярная колонка</a> 50м ж 0,2 мм, НФ иммобилизованная метилсиликоновая фаза, df i,5 мкм, газ-носитель Не (20 см/с), <a href="/info/426654">объем пробы</a> 1 мкл, <a href="/info/91544">коэффициент деления</a> потока 400 1, температура узла ввода 250"С, <a href="/info/39652">температура детектора</a> 300"С. <a href="/info/19367">Программирование температуры</a> 35°С (15 мин), <a href="/info/1020959">подъем температуры</a> до 70 С со скоростью 1,5 град/мин, далее <a href="/info/17200">повышение температуры</a> до 130°С со скоростью 3 град/мин.
    Большую роль в повышении эффективности фракционирования слоншых смесей сыграло создание жидкостной хроматографии высокого давления (ЖХВД). Высокая скорость разделения, возмож ность реализации любого из отмеченных выше механизмов сорбции, применимость для разделения любых растворимых в элюенте соединений, независимо от их молекулярной массы, возможность непрерывного контроля элюирования с помош ью высокочувствительных детекторов, управления процессом разделения путем программирования температуры, скорости потока и состава элю-ента, автоматическая регистрация результатов обеспетали широчайшее распространение ШХВД для решения препаративных задач, количественного анализа и идентификации компонентов анализируемых смесей [109, 111, 122 и др.]. [c.17]

    Этот метод не слишком строгий, так как имеются некоторые расхождения между TZAt и Т, найденными в изотермическом режиме по графику (рис. 60) и АТ1М и Г, полученными в режиме программирования эмпирическим подбором. Расхождения объясняются изменениями скорости потока газа-носителя в режиме программирования температуры. Однако расхождение между опытом и теорией небольшое, поэтому таким способом расчета скорости программирования можно пользоваться для обеспечения наиболее равномерного расположения пиков на хроматограмме. [c.153]

    В изотермических условиях, несмотря на отсутствие компенсационного устройства, нулевая линия более стабильна (рис. 37), чем в случае программирования температуры (рис. 34). Это позволяет ожидать большей продолжительности жизни хроматографической колонки. Во время анализа не пзменяется также и селективность неподвижной фазы. Большее разделительное действие хроматографической колонки при программировании температуры по отношению к низкокипящим компонентам вновь становится сравнимым с разделительным действием для высококипящ их компонентов при программировании скорости потока. [c.352]

    Для разделения смеси соединений, характеризующихся широким интервалом т-р кипения, применяют газовую хроматографию с программированием температуры, когда в процессе хроматографирования в заданные промежутки времени повышают т-ру колонки со скоростью от неск. °С/мин до неск. десятков С/мин. Это создает дополнит, возможности расширения области применения ГХ (сравни хроматограммы иа рис.). Для улучшения разделения таких смесей используют также программирование скорости газового потока. При давл. 0,1-2,5 МПа роль газа-носителя сводится в осн. к перемещению исследуемых соед. вдоль колонки. Повышение давления приводит к изменению распределения в-в между подвижной и неподвижной фазами хроматографич. подвижность многих в-в увеличивается. ГХ при давлениях газа 10-50 МПа обладает рядом преимуществ по сравнению с жидкостной хроматографией 1) возможностью целенаправленного изменения объемов удерживания разделяемых соед. путем изменения давления в ширюких пределах 2) экспрессностью анализа вследствие меиьшей вязкости подвижной фазы и большего значения коэф. диффузии 3) возможностью использования универсальных высокочувствит. детекторов. Однако сложность аппаратуры и техники работы при повыш. давлении ограничивает широкое распространение этого метода. [c.468]

Рис. 3-5. Влияние загрязнений в устройстве ввода пробы (из работы [15], с разрешения издательства Dr. А. Huethig). Условия эксперимента колонка 20 х 0,31 мм, НФ SE-52, rf/0,14 мкм. Температура испарителя 30°С. Ввод пробы при 40°С, программирование температуры от 40 до 80" С со скоростью 2,5 град/мин. Газ-носитель водород (2,4 мл/мин), коэффициент деления потока 1 30. Рис. 3-5. <a href="/info/3199">Влияние загрязнений</a> в <a href="/info/426227">устройстве ввода пробы</a> (из работы [15], с разрешения издательства Dr. А. Huethig). <a href="/info/142855">Условия эксперимента</a> колонка 20 х 0,31 мм, НФ SE-52, rf/0,14 мкм. <a href="/info/775605">Температура испарителя</a> 30°С. <a href="/info/39420">Ввод пробы</a> при 40°С, <a href="/info/19367">программирование температуры</a> от 40 до 80" С со скоростью 2,5 град/мин. Газ-<a href="/info/39435">носитель водород</a> (2,4 мл/мин), <a href="/info/91544">коэффициент деления</a> потока 1 30.
Рис. 3—9. Анализ мономера стирола (с разрешения Р. Миллера, корпорация Huntsman hemi al). Условия эксперимента кварцевая капиллярная колонка 20 м х 0,25 мм, НФ DB Wax, df мкм программирование температуры от 40 до 150°С со скоростью 2 град/мин Газ-носитель водород (35 см/с) объем пробы 1 мкм, коэффициент Коэффициент деления потока 1 170. Рис. 3—9. <a href="/info/461961">Анализ мономера</a> стирола (с разрешения Р. Миллера, корпорация Huntsman hemi al). <a href="/info/142855">Условия эксперимента</a> <a href="/info/1020938">кварцевая капиллярная колонка</a> 20 м х 0,25 мм, НФ DB Wax, df мкм <a href="/info/19367">программирование температуры</a> от 40 до 150°С со скоростью 2 град/мин Газ-<a href="/info/39435">носитель водород</a> (35 см/с) <a href="/info/426654">объем пробы</a> 1 мкм, <a href="/info/91544">коэффициент Коэффициент деления</a> потока 1 170.
Рис. 3—10. Анализ ириродного газа. Условия экснеримента колонка 25м ж 0,32 мм, А120з/КС1 программирование температуры от 75 до 200 С со скоростью 3 град/мин газ-носитель азот (0,32 кг/см ), коэффициент деления потока 1 5, объем пробы 1 мл. Рис. 3—10. Анализ ириродного газа. Условия экснеримента колонка 25м ж 0,32 мм, А120з/КС1 <a href="/info/19367">программирование температуры</a> от 75 до 200 С со скоростью 3 град/мин газ-<a href="/info/522275">носитель азот</a> (0,32 кг/см ), <a href="/info/91544">коэффициент деления</a> потока 1 5, объем пробы 1 мл.
    Рис 3-11. Анализ дизельного топлива на колонках со сверхвысокой разрешающей способностью (п = 10 ). Условия эксперимента колонка 100м х 100 мкм, НФ ОУ-1, 4/ 0,2 мкм программирование температуры от 60 до 185"С со скоростью 0,1 град/мин газ-носитель водород (10 атм) объем пробы 0,1 мкл, коэффициент деления потока 1 30. [c.40]

    Вверху — определение стирола нутем неносредственного ввода пробы в колонку. Внизу (3 хроматограммы) — онределение стирола нри вводе нро бы без деления потока и различной температурой узла ввода (эти хроматограммы представлены Р. Миллером, Huntsman hemi al orporation. Условия экснеримента а — кварцевая колонка 50 м X 0,31 мм, НФ SE-2100 на дезактивированном носителе карбовакс программирование температуры от 120 до 290°С со скоростью ( град/мин газ-носитель водород (55 см/с) 6 — г — кварцевая капиллярная колонка 50 м х 0,2 мм, НФ SE-54 (дезактивированный силоксан) программирование температуры от 120°С (2 мин) до 280 С со скоростью б град/мин газ-носитель водород (41 см/с). [c.43]

    В опытах с программированием температуры холодное улавливание происходит автоматически. Это иллюстрирует рис. 3-19, где приведены хроматограммы пробы дизельного топлива, растворенного в н-пентане, в режиме ввода пробы с делением (а) и без [деления потока (б). При вводе пробы с делением потока пики углеводородов С9—С22 имеют ирекрасную форму. При вводе пробы без деления потока (температура 50°С, растворитель нентан) первые пики на хроматограмме размыты, поскольку эффект растворителя не проявляется. [c.44]

Рис. 3—43. Пример многократного ввода пробы (из работы [63] с разрешения издательства Dr. А. Huethig Publishers). Многократный ввод пробы позволяет концентрировать компоненты пробы выше i без каких-либо искажений. Условия эксперимента кварцевая капиллярная колонка длиной 25 м (Ultra 2) давление газа-носителя (Не) 7 кНа температурный режим термостата 40°С (0,5 мин), подъем температуры от 40 до 250 С со скоростью 50 град/мин, затем до 330°С со скоростью 15 град/мин, 330°С (15 мин) количество вводов пробы до нагрева камеры испарения 8, нагрев испарителя после 8-го ввода программирование температуры испарителя от 10 до 330°С со скоростью 13 град/мин продолжительность удаления растворителя 30 с, пламенно-ионизационный детектор (300°С) коэффициент деления потока Х 30 (30 с), затем резким без деления потока. Рис. 3—43. Пример многократного <a href="/info/39420">ввода пробы</a> (из работы [63] с разрешения издательства Dr. А. Huethig Publishers). Многократный <a href="/info/39420">ввод пробы</a> позволяет концентрировать <a href="/info/142129">компоненты пробы</a> выше i без каких-либо искажений. <a href="/info/142855">Условия эксперимента</a> <a href="/info/1020938">кварцевая капиллярная колонка</a> длиной 25 м (Ultra 2) <a href="/info/39786">давление газа-носителя</a> (Не) 7 кНа <a href="/info/26795">температурный режим</a> термостата 40°С (0,5 мин), <a href="/info/1020959">подъем температуры</a> от 40 до 250 С со скоростью 50 град/мин, затем до 330°С со скоростью 15 град/мин, 330°С (15 мин) <a href="/info/1676030">количество вводов пробы</a> до нагрева <a href="/info/804400">камеры испарения</a> 8, <a href="/info/862553">нагрев испарителя</a> после 8-го ввода <a href="/info/19367">программирование температуры</a> испарителя от 10 до 330°С со скоростью 13 град/мин продолжительность <a href="/info/43375">удаления растворителя</a> 30 с, <a href="/info/39485">пламенно-ионизационный детектор</a> (300°С) <a href="/info/91544">коэффициент деления</a> потока Х 30 (30 с), затем резким без деления потока.
Рис. 3-44. Анализ каменноугольной смолы, осуществляемый при вводе пробы с программированием температуры испарителя в режиме без деления (а) и с делением (б) потока (из работы [66] с разрешения издательства Elsevier), а — холодный ввод пробы без деления поток . Анализ веществ с очень низкой летучестью — полициклических ароматических углеводородов в бензоле (раствор содержит низкие концентрации определяемых веществ). Объем пробы 0,4 мкл кварцевая капиллярная колонка длиной 20 м, НФ метилполисилоксаи, OV-1. Температура колонки 25°С (1 мин), резкий подъем до 80 С, затем программирование температуры до 320 С со скоростью 8 град/мин температура узла ввода резкий подъем с 35 до 280°С. Газ-носитель водород (4 кНа) продолжительность анализа 35 мин Рис. 3-44. <a href="/info/522329">Анализ каменноугольной смолы</a>, осуществляемый при <a href="/info/39420">вводе пробы</a> с <a href="/info/19367">программированием температуры</a> испарителя в режиме без деления (а) и с делением (б) потока (из работы [66] с разрешения издательства Elsevier), а — <a href="/info/125494">холодный ввод</a> пробы без <a href="/info/393253">деления поток</a> . <a href="/info/5088">Анализ веществ</a> с <a href="/info/484117">очень низкой</a> летучестью — <a href="/info/845724">полициклических ароматических углеводородов</a> в бензоле (раствор содержит <a href="/info/334174">низкие концентрации</a> определяемых веществ). <a href="/info/426654">Объем пробы</a> 0,4 мкл <a href="/info/1020938">кварцевая капиллярная колонка</a> длиной 20 м, НФ метилполисилоксаи, OV-1. <a href="/info/39447">Температура колонки</a> 25°С (1 мин), резкий подъем до 80 С, затем <a href="/info/19367">программирование температуры</a> до 320 С со скоростью 8 град/мин температура узла ввода резкий подъем с 35 до 280°С. Газ-<a href="/info/39435">носитель водород</a> (4 кНа) продолжительность анализа 35 мин
Таблица 3—3. Оценка количественного онределения нри холодном вводе пробы непосредственно в колонку (А) и холодном вводе пробы с делением потока в программированием температуры испарителя (Б). Определение относительных (нормализованных) площадей пиков алканов Сю — С92 (из работы [17] с разрешения издательства Elsevier, Амстердам) Таблица 3—3. <a href="/info/55664">Оценка количественного</a> онределения нри холодном <a href="/info/1074972">вводе пробы непосредственно</a> в колонку (А) и <a href="/info/125494">холодном вводе</a> пробы с <a href="/info/393253">делением потока</a> в <a href="/info/19367">программированием температуры</a> испарителя (Б). <a href="/info/13940">Определение относительных</a> (нормализованных) <a href="/info/139352">площадей пиков</a> алканов Сю — С92 (из работы [17] с разрешения издательства Elsevier, Амстердам)

Смотреть страницы где упоминается термин Программирование температуры и потока: [c.185]    [c.88]    [c.153]    [c.16]    [c.27]    [c.248]    [c.60]    [c.64]   
Смотреть главы в:

Современное состояние жидкостной хроматографии -> Программирование температуры и потока

Современное состояние жидкостной хроматографии -> Программирование температуры и потока




ПОИСК





Смотрите так же термины и статьи:

Программирование

Температура потока



© 2024 chem21.info Реклама на сайте