Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства важнейших неорганических соединений

Таблица 4.2. Свойства важнейших неорганических соединений Таблица 4.2. Свойства важнейших неорганических соединений

    Пособие содержит описания лабораторных работ по общей химии (определение эквивалентов и молекулярных масс, кинетика реакций, электролитическая диссоциация, гидролиз и др.), а также опытов по изучению свойств элементов н их важнейших неорганических соединений. Особое внимание уделено описанию синтезов соединений, не требующих сложной аппаратуры. Каждый раздел заканчивается перечнем контрольных вопросов, упражнений и задач. В практикум по неорганической химии впервые включен ряд инструментальных работ (определение частного порядка и константы скорости реакции, определение коэффициента распределения, спектрофотометрическое определение состава комплексов и др.) и опытов по химии элементов (химии галлия и лантаноидов, химические свойства фосфорной кислоты и ее солей и др.). [c.2]

    Рассматриваются свойства элементов, лабораторные и промышленные способы получения и свойства важнейших неорганических и органических соединений. Специальные разделы посвящены вопросам физической химии (строение атомов и молекул, агрегатное состояние, химическая термодинамика и кинетика), электрохимии, коллоидной химии, а также процессам и аппаратам химической технологии. [c.240]

    Учитывая эти обстоятельства, представлялось целесообразным включить в книгу учение об элементах и атомах, периодический закон и периодическую систему химических элементов Д. И. Менделеева, классификацию неорганических соединений, рассмотрение наиболее важных классов неорганических соединений, редокс-реакции, теорию кислот и оснований. В разделе об атомах и элементах содержатся сведения по ядерной химии и о радиоактивных элементах (в частности, приведены уравнения ядерных реакций синтеза трансурановых элементов, рассмотрены пози-тронный распад и электронный захват при радиоактивных превращениях, дана характеристика наиболее стабильных изотопов). Кроме того, в книгу включена глава, в которой излагается материал о природе химической связи в той мере, в какой это необходимо для понимания свойств рассматриваемых неорганических соединений. [c.3]

    Прогресс науки и техники постоянно поддерживает разрыв между потребностью в физико-химических данных о веществах и их наличием. Накопление и систематизация таких данных имеет важное значение как для решения научных задач, так и для бурно развивающейся технологии. В последние годы возникла необходимость в справочном издании, содержащем информацию по основным физико-химическим свойствам молекулярных неорганических соединений. Эти соединения нашли широкое применение в самых разных областях науки и техники, в том числе при газофазном синтезе и переработке сырья, в технологии сверхчистых, тугоплавких и полупроводниковых материалов, в атомной энергетике, ракетной технике, при плазмохимической обработке материалов и др. [c.3]


    Настоящий справочник является первой работой, в которой собраны, обобщены и систематизированы литературные данные по важнейшим физико-химическим свойствам молекулярных неорганических соединений. В нем приводятся данные по широкому спектру свойств более чем 500 веществ. [c.3]

    Сведения об антифрикционных свойствах ламеллярных твердых веществ, если исходить из структурной теории, можно получить при изучении деформации сдвига. Подобный подход использовал Бриджмен. Исследованные им ламеллярные твердые тела, как правило, обладали низким сопротивлением сдвигу [7]. Эта работа на примере большого числа объектов, представляющих собой перспективные твердые смазки, была продолжена Бойдом и Робертсоном [8]. Антифрикционные свойства многих неорганических соединений, обладающих разнообразным строением кристаллов, оценены Петерсоном и Джонсоном [9]. Они показали, что некоторые соединения со слоистой структурой обладают положительными антифрикционными характеристиками, другие же не выдерживают испытания в сухом воздухе. Эти авторы пришли к выводу, что наряду со структурой не менее важное значение имеет способность твердых смазок к достаточно сильному адгезионному взаимодействию с поверхностями трения (в данном случае со сталями 1095 и 1020). В работе изучалось трение стального полусферического ползуна по плоской стальной поверхности, на [c.203]

    Наиболее полной по числу рассмотренных соединений различных классов является монография [2], переведенная на русский язык [3]. В ней приведены таблицы свойств для 731 соединения, в том числе 48 простых веществ и некоторых важнейших неорганических соединений, 376 углеводородов, 69 кислород-, 33 азот-, 86 галоген-и 119 серусодержащих органических соединений. В таблицах в интервале температур от 298 до 1000 К описаны важнейшие термодинамические свойства веществ в состоянии идеального газа, а в кратких обзорах, сопровождающих каждую таблицу, приведены также иногда некоторые свойства веществ в конденсированном состоянии (энтропия, энтальпия образования, энтальпия испарения). Обширные систематизированные данные о термодинамических свойствах углеводородов и серусодержащих веществ имеются в справочнике [4] и его последующих изданиях, а также в дочерних справочниках, содержащих узкоспециализированную информацию (например, [5, 6]). Термодинамические свойства как неорганических, так и органических химических соединений, за исключением тех, что рассмотрены в справочниках [4, 5], можно найти в фундаментальном издании [7]. Хотя круг веществ, представленных в этом справочнике, весьма обширен, таблицы термодинамических свойств веществ содержат гораздо больше пробелов, чем численных данных. Следует также сказать, что справочники [4—7] почти недоступны даже специалистам, особенно их последние издания. [c.3]

    В данной главе обсуждается важный класс соединений, включающих переходные металлы. Помимо описания свойств координационных комплексных соединений и их роли в биологических системах в учебнике содержится материал по номенклатуре, типам изомерии, теории химической связи и равновесиям комплексообразования. Усвоение правил систематической номенклатуры и возможных проявлений изомерии в этих, по существу, неорганических соединениях должно помочь студентам в их последующем изучении органической химии. Материал по химической связи в координационных соединениях и равновесиям комплексообразования может рассматриваться как повторение, иллюстрация и расширение предшествующего прохождения этих тем. [c.581]

    Первый том содержит сведения о строении вещества, физико-химических свойствах простых веществ и важнейших неорганических и органических соединений, таблицы линий для спектрального и рентгеноспектрального анализа, а также единицы измерений, физические константы и математические таблицы. Приведены краткие сведения о периодических изданиях и справочной литературе (русской и иностранной) по химии. [c.484]

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Атом водорода в полученном димере связан с двумя атомами фтора одной ковалентной связью и одной водородной связью. Энергия водородной связи составляет 8—40 кДж/моль, т. е. обычно больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Водородная связь обусловливает отклонение свойств некоторых соединений от свойств их атомов. Примером полимерных ассоциатов может служить фторид водорода  [c.68]

    Одним из важнейших свойств металлов является их способность к образованию сплавов. Расплавленные металлы взаимно растворяются друг в друге, образуя при затвердевании твердые смеси — сплавы. В настоящее время металлическим сплавом называется фаза или комплекс фаз, образующихся при сплавлении металлов (иногда неметаллов), при условии сохранения металлических свойств, блеска, тепло- и электропроводности. Сплав железа и серы не есть металлический сплав, но таковым является сплав железа с углеродом. В металлических сплавах сохраняются металлические связи, т. е. наличие полусвободных электронов, образующих электронный газ. Если в результате сплавления возникают гетеро- или гомеополярные связи и полностью отсутствуют полусвободные электроны, то образуется неорганическое соединение. [c.220]

    Оксиды. Соединения кислорода многочисленны и хорошо изучены. Л. Полинг заметил, что они составляют приблизительно 49% общего числа неорганических соединений, упоминаемых в справочниках. Распространенность оксидов, ряд общих черт, связанных с проявлением в их химическом характере электроноакцепторных свойств кислорода, дают основание рассмотреть этот важнейший класс соединений отдельно. [c.286]

    До 1860-х годов химики долго и упорно изучали состав веществ, занимались их классификацией, установлением эмпирических и рациональных формул многочисленных органических и неорганических соединений. С накоплением сведений о веществе все яснее становилось понимание того, что определение свойств химических соединений и их состава — это не предел химического знания, есть более важная задача науки — она состоит в отыскании зависимости свойств веществ от их состава и строения. [c.188]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дерева электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических соединений — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других органических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]

    Классификация веществ облегчает их изучение. Зная особенности классов соединений, можно охарактеризовать свойства отдельных их представителей.. Важнейшими классами неорганических соединений являются оксиды, кислоты, основания, соли. [c.123]

    Все способы получения солей основаны на химических свойствах важнейших классов неорганических соединений. [c.246]

    Справочник содержит важнейшие свед ия о свойствах 3000 про- стых веществ и неорганических соединений, наиболее распространенных и важных для практического использования. [c.280]

    При подготовке пятого издания в него внесены дополнения и изменения и сделаны некоторые сокращения. Введены два новых раздела "Классы неорганических соединений" и "Периодический закон и свойства соединений". Раздел 5 назван "Термохимия и химическое равновесие", в нем собраны задачи и упражнения по расчету изменения энтальпии, энтропии, свободной энергии Гиббса, по их применению для описания химических реакций и по расчету концентраций в равновесных системах. Главы "Равновесие в растворах электролитов" и "Направление обменных химических реакций в растворах электролитов" объединены в один раздел "Ионные реакции в растворах". Этот раздел существенно переработан. В раздел, посвященный химии отдельных элементов, включены упражнения по составлению уравнений реакций, отражающих важнейшие свойства их соединений. Несколько сокращена глава "Физико-химические свойства разбавленных растворов" и ей дано другое, более конкретное, название "Коллигативные свойства растворов", отражающее то, что в данном разделе рассматриваются свойства растворов, зависящие от концентрации частиц. Исключена глава "Радиоактивность. Ядерные реакции", так как обсуждаемые в ней вопросы фактически являются содержанием физики. Все изменения имели своей целью приблизить содержание задач и упражнений к химической практике. При переработке пособия мы стремились сохранить содержание, поэтому задачи и упражнения, имевшиеся в четвертом [c.3]

    Вторая часть книги содержит разнообразный материал описательной химии. Основной упор здесь сделан на изложение неорганической химии, которое сопровождается последовательным выявлением периодических закономерностей в свойствах различных типов соединений. Более подробно, чем обычно, рассматривается химия простых анионов и катионов, а также оксианионов различных элементов и их кислородсодержащих кислот на современном уровне изложены основы химии координационных соединений, в том числе вопросы их строения, устойчивости и стереоизомерии. Сравнительно более лаконично подана органическая химия, хотя по существу затронуты все важнейшие стороны этой обширной области химии, включая механизмы органических реакций, химию полимеров и биохимию. В конце книги помещена не совсем обычная для учебных пособий глава, посвященная актуальной теме—связи химии с загрязнением окружающей среды. Во второй части книги постоянно применяются структурные представления, законы химического равновесия и подходы, использующие теоретические воззрения на природу кислотно-основных и окислительно-восстановительных процессов. Благодаря этому описательная химия превращается из несколько монотонного перечисления свойств веществ и наблюдаемых закономерностей их поведения в увлекательное объяснение научных, практических, а нередко и известных из повседневного опыта фактов на базе химических представлений. [c.5]

    Хорошо известно, что наши сведения об атомно-пространственном строении вещества мы получаем главным образом в результате дифракционных и прежде всего рентгеноструктурных исследований кристаллов. Систематизация этих данных, установление общих и частных закономерностей в строении кристаллов, анализ зависимости строения кристаллов от их химического состава и далее физико-химических свойств кристаллов от их строения — это область кристаллохимии. Книгу А. Уэллса, однако, нельзя рассматривать просто как фундаментальный труд по кристаллохимии неорганических соединений. Термин структурная химия значительно лучше передает его специфику. Дело не только и, пожалуй, не столько в том, что помимо результатов рентгеноструктурных исследований автор привлекает данные электронографии газов, микроволновой и ИК-сиектроскопии, а эпизодически также и других физико-химических методов, позволяющих делать предположительные заключения о строении структурных единиц в группах соединений по аналогии . Важнее то обстоятельство, что монография А. Уэллса написана в расчете на химика широкого профиля, не имеющего специальной кристаллохимической подготовки. [c.5]

    Взаимное влияние атомов в молекулах является важнейшим свойством органических соединений, отличающих их от простых неорганических соединений. Взаимное влияние, как результат взаимодействия соседних атомов, в органических молекулах передается по цепи ст-связей С-С и особенно [c.79]

    Например, правило фаз, используемое для предсказания равновесия во многих технологически важных системах, для процессов экстракции неорганических соединений применимо только в исключительных случаях. Хотя в экстракционном равновесии газовой фазой обычно пренебрегают, а давление и температура поддерживаются постоянными, на практике исследователь имеет дело с неорганическими системами, включающими множество компонентов. Расчет таких систем и получаемые диаграммы очень сложны. Закономерности, полученные из законов, основанных на коллигативных свойствах разбавленных растворов, ограничены простейшими системами. Опыт показывает, что равновесие в экстракционной химии лучше всего описывается законом распределения Нернста и законом действующих масс. [c.25]

    Абсолютные значения энергии Гиббса системы определить невозможно, поскольку в энергию Гиббса входит величина энтальпии. Величину энергии Гиббса можно лишь выразить в виде разности энергий Гиббса двух различных состояний, одно из которых принято за стандартное. В гл. VIII приведены термодинамические величины для стандартного состояния каждого из элементов, входящих в органические соединения, а также данные для некоторых важных неорганических соединений. Аналогичные величины для стандартных состояний органических веществ представлены в виде таблиц в последующих главах. Эти таблицы содержат величины энергии Гиббса, отвечающие образованию соединения в его стандартном состоянии из элементов, находящихся в своих стандартных состояниях. Для соединений в качестве стандартного желательно выбирать такое состояние, которое отвечало бы наибольшему удобству при использовании, поэтому для большинства приведенных соединений в качестве стандартного используется состояние гипотетического идеального газа при давлении 1 атм. Для некоторых соединений, обладающих очень низким давлением пара, термодинамические данные указаны для твердого или жидкого состояния. В принципе стандартное состояние идеального газа можно использовать непосредственно в расчетах при малых давлениях газовой фазы при расчете термодинамических свойств веществ при более высоких давлениях нетрудно внести соответствующие поправки к свойствам вещества в состоянии идеального газа, обусловленные его неидеальным поведением при высоком давлении. Энергия Гиббса, связанная с образованием соединения в стандартном состоянии идеального газа, чистой жидкости или в твердом состоянии при давлении 1 атм из элементов, взятых в их стандартных состояниях, называется стандартной энергией образования Гиббсаи обозначается надстрочным индексом градус AGf. [c.135]

    Проблема установления взаимосвязи энтропии и свойств веществ важна с точки зрения получения обобщенных уравнений состояния для гомологических рядов органических и неорганических соединений В гомологических рядах каждый последующий член получается добавлением определенной функциональной группы к предыдущему. Например, в ряду парафинов С Н ь+з таким структурообразующим элементом является СН группа. Иными словами в гомологических рядах существует геометрическое, топологическое и масштабное подобие структур, и как следствие, подобие химических свойств. Ниже описан вывод уравнения связи критической энтропии с молекулярной массой в го.мологическом ряду молекул, полученный совместно с С.А. Ахметовым.  [c.29]

    КИ, периодический закон и основанная па нем периодическая система элементов Д. И. Менделеева. Главной задачей Н. х. является установление строения химических элементов, изучение состава и свойств соединений в связи со строением, установление строения молекул. Другая важнейшая задача Н. х.— разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами. Одним из основных направлений Н. х. в XX в. явилось изучение химии комплексных соединений, а также изучение соединений, в которых атомы проявляют [ алентность, не подчиняющуюся классическим представлениям,— гидридов, карбидов, нитридов, боридов, карбонилов и др. В Н. X. широко применяются два основных метода химического исследования — синтез и анализ. Всего к середине XX в. было изучено около 00 тыс. неорганических соединений. Новый этап в развитии И. х. наметился в последние годы в связи с развитием ядерных исследований, новой техники, требующей новых материалов с нужными для современной техники свойствами. [c.173]

    Обычно же энергия водородЪой связи лежит в пределах 5— 25 кДж/моль, т. е. она больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Примером полимерных ассоциатов может служить фторид водорода  [c.59]

    Соли, их свойства и получение. Генетическая связь между важнейшими класса1У и неорганических соединений [c.242]

    Из всех известных химических элементов более 80 являются металлами. Большинство неорганических соединений — это соединения металлов. В данном разх.еле рассматриваются обш,ая характеристика металлов, а ак-же свойства некоторых наиболее важных металлов и образуемых ими соединений. [c.260]

    Изучив сЕ ойства неорганических и органически ве ществ, а такж е вопросы общей химии, можно дать полный комплексный ответ на вопрос о свойствах одноп) из важнейших химических соединений — воды — в том объеме, в каком это требуется от абитуриента на вступительных экзаменах по химии. [c.676]

    Таким образом, вопреки довольно распространенному мнению чисто ионных соединений с идеальной ионной связью на самом деле не существует . Между тем принято считать, что химическая связь у подавляющего большинства неорганических соединений имеет ионный характер. Объясняется это двумя исторически сложившимися причинами. Во-первых, почти все химические реакции исследовались в водной среде и представляли, по существу, ионные реакции. В то же время поведение вещества в водных растворах коренным образом отличает ся от его свойств в отсутствие воды. Так, соляная кислота относится к числу сильнейших электролитов растворенный в воде хлорид водорода полностью диссоциирует на ионы водорода и хлора. Основываясь на этом факте, можно было бы допустить ионную связь в молекуле НС1. Однако безводный хлорид водорода представляет собой почти неионное соединение, в котором эффективные заряды водорода и хлора соответственно равны +0,17 и -0,17. Во-вторых, в свете учения об ионной связи в неорганической химии укоренились представления о положительной и отрицательной валентности (электровалентности). Даже если невозможны отдача и присоединение электронов, нередко подразумевали электровалентность, т.е. ионную связь. Это усугублялось еще и тем, что в неорганической химии исключительно важную роль играет электронная теория окислительно-восстановительных реакций, постулирующая переход электронов от восстановителей к окислителям. При этом степень окисления полностью отождествлялась с элект-ровалентностью и для удобства подсчета числа отдаваемых и присоединяемых электронов заведомо неионные соединения рассматривались как вещества с ионной связью. Между тем понятие степени окисления не имеет ничего общего [c.64]

    Из 2468 неорганических соединений, которые считаются достаточно важными для включения в справочники с указанием их физических свойств, 1220 соединений (т. е. более 49%) представляют собой соединения неметаллических элементов с кислородом. Большинство кислородсодержащих соединений неметаллических элементов имеют трансаргоноидную структуру, и разнообразие этих структур более, чем какая-нибудь другая структурная особенность, предопределяет все богатство неорганической химии. [c.206]

    В монографии, являющейся очередным томом серии Аналитическая химия алементов приведены общие сведения о кадмии, его распростраяениости в природе, формах нахождения, применения, физических, химических и физико-химических свойствах. Дается характеристика важнейших неорганических и органических соединений кадмия, используемых в аналитической химии. Приведены методы отделения и определения кадмия (химические, физические и физико-химические), а также методы определения примесей в нем. Наиболее современные и надежные,методы представлены в виде [c.255]


Смотреть страницы где упоминается термин Свойства важнейших неорганических соединений: [c.177]    [c.196]    [c.2]    [c.153]    [c.73]    [c.4]    [c.121]    [c.135]    [c.153]    [c.85]    [c.137]    [c.12]    [c.184]   
Смотреть главы в:

Справочник молодого аппаратчика химика -> Свойства важнейших неорганических соединений




ПОИСК







© 2025 chem21.info Реклама на сайте