Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитратов определение в серной кислоте

    Поэто.чу для правильного определения поправки на кислотообразование в смыве бомбы должно быть определено не то.лько количество серной и азотной кислот, но также и количество сульфатов и нитратов. В части определения серной кислоты и сульфатов задача разрешается следующим образом  [c.206]

    В соответствии с ГОСТ 5936—59 содержание азота определяют в нитрометре по методу Лунге. Метод заключается в разложении нитрата целлюлозы серной кислотой плотностью 1,84 г/см , последующем восстановлении выделившейся азотной кислоты металлической ртутью в присутствии серной кислоты и измерении объема образовавшейся окиси азота. Метод Лунге трудоемок и сложен. Он употребляется только при арбитражных определениях. На практике рекомендуется определять содержание азота модифицированным методом Кьельдаля (см. стр. 201). [c.267]


    Нитратов определение в серной кислоте. Азотную кислоту добавляют к серной кислоте, чтобы понизить температуру затвердения последней, кроме того, смеси азотной и серной кислот используют при производстве взрывчатых веществ. Чтобы установить концентрацию нитратов в серной кислоте, используют нитратный электрод 93-07 и электрод сравнения 90-02. [c.81]

    С целью повышения селективности и чувствительности определения примеси нитратов в серной кислоте предложен в качестве реагента хинализарин [173]. [c.39]

    Для определения нитрат-ионов в разбавленных растворах измеряют поглощение в области 200—230 нм [1365]. В присутствии СОз , NOj измерения проводят при 220 нм и pH 1—3. В некоторых случаях поглощение измеряют при 275 нм, чтобы избежать влияния органических компонентов. Добавление к раствору, содержащему нитрат, концентрированной серной кислоты, так же как и присутствие хлорида, вызывает смещение максимума до 230 нм. [c.130]

    Выполнение определения. 1. К аликвотной час и испытуемого раствора в стакане вместимостью 250 мл прибавляют 20 мл 2М раствора серной кислоты, 5 мл фосфорной кислоты, 2 мл 1%-ного раствора нитрата серебра и 10 мл 10%-ного раствора персульфата аммония. Стакан накрывают стеклом и смесь нагревают до полного разрушения избытка персульфата аммония (до полного прекращения выделения на поверхности раствора пузырьков газа). Нагревание продолжают еще 5 мин, снимают часовое стекло и осторожно обмывают его дистиллированной водой в стакан. Раствор охлаждают до комнатной температуры (в холодной водяной бане). [c.132]

    Различают весовой и объемный химический анализ. Весовой, нли гравиметрический, анализ основан на полном (количественном) выделении какого-либо компонента из анализируемого образца в виде строго определенного вещества и последующем точном взвешивании его. Пусть, например, требуется проанализировать образец нитрата бария на содержание основного вещества. Точную навеску образца растворяют в воде и осаждают ионы бария в виде сульфата бария, добавляя к раствору серную кислоту в избытке. Осадок отфильтровывают, промывают, сушат и взвешивают. По количеству полученного сульфата бария рассчитывают содержание нитрата бария в исходном образце. Весовой анализ дает очень точные результаты, но он очень трудоемок и длителен, поэтому все более вытесняется другими методами анализа. [c.75]


    Для определения газообразного продукта реакции взаимодействия серной кислоты с активными металлами можно воспользоваться фильтровальной бумагой, смоченной раствором нитрата или ацетата свинца. Газ может быть обнаружен и по характерному запаху. [c.135]

    Объясните способ определения иона NO3- путем нагрева-ния нитрата с концентрированной серной кислотой и медью. Приведите уравнения реакций. [c.59]

    При электро-гравиметрическом анализе в осадок выделяют металл из раствора его соли. Чаще же искомое вещество выделяют из раствора в виде какого-либо соединения определенного химического состава, которое образуется в результате ионной реакции. Например, серную кислоту определяют, осаждая из ее раствора сульфат бария добавлением раствора хлорида или нитрата бария. Соединение определенного состава образуется при взаимодействии в растворе ионов, содержащих искомое вещество, с ионами реактива-осадителя. Получаемый осадок должен иметь постоянный химический состав и обладать физическими свойствами, позволяющими производить его дальнейшую обработку с целью практически полного выделения из раствора промывание, сушку и прокаливание для получения из осажденной формы анализируемого вещества его весовой формы. [c.291]

    Количественное определение производят титрованием высушенного до постоянного веса в эксикаторе над серной кислотой препарата 0,1 н. раствором нитрата серебра в присутствии индикатора хромата калия. [c.48]

    Для определения примеси марганца 1,25 г препарата растворяют в 5 MJ воды, добавляют 0,5 мл концентрированной серной кислоты, 5 капель 0,1 п. раствора нитрата серебра и нагревают до кипения. Затем прибавляют 5 ял 20% ного раствора персульфата аммония и снова нагревают до кипения. Параллельно ставят контрольный опыт с 5 мл воды и теми же реактивами. По охлаждении обоих растворов их переносят в две одинаковые пробирки, причем в пробирку с контрольным раствором добавляют из микробюретки 0,01 н. раствор перманганата калия до сравнения с окраской испытуемого раствора, которую наблюдают на листе белой бумаги по оси пробирок. [c.74]

    Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата I 48, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [62] и бихромата калия [63]. [c.13]

    Практически в любом биохимическом исследовании очень важно уметь обнаруживать и точно определять ничтожные количества специфических соединений. Чаще всего для этого используют особые реагенты— индикаторы, которые при взаимодействии со специфическими соединениями определенным образом окрашиваются. Например, для выявления на хроматограмме аминокислот или пептидов, присутствующих в очень малых количествах (доли микромоля), хроматограмму опрыскивают нингидрином (дополнение 8-Е). Если выявляемое соединение находится в растворе, то по интенсивности окрашивания можно определить его количество. Фенолы и концентрированная серная кислота окрашивают сахара (в растворе или на хроматографической бумаге) в красный цвет. Эта реакция лежит в основе колориметрического анализа углеводов. Восстанавливающие сахара выявляют на хроматограммах, опрыскивая последние раствором нитрата серебра. [c.179]

    Для определения урана (VI) в этих случаях анализируемый раствор нейтрализуют раствором аммиака, образующийся осадок гидроокисей металлов растворяют добавлением серной кислоты. Затем прибавляют около 10 г хлорида, нитрата или сульфата аммония и по каплям 3% -ный раствор 8-оксихинолина в 3% -ной уксусной кислоте. После этого раствор слабо подщелачивают 6 N раствором аммиака и сверх этого добавляют еще 20 мл раствора аммиака, нагревают до 60—65° и при этой температуре выдерживают в течение 30 мин. Выделившийся осадок отфильтровывают и далее поступают так же, как и при осаждении из уксуснокислого раствора. [c.69]

    Аналитическая химия как научная дисциплина начинает развиваться с середины XVII века. Основателем качественного анализа является английский ученый Роберт Бойль (1627—1691). Бойль вводит термин химический анализ . В своей книге Химик-скептик он доказывает нереальность элементов древнегреческого философа Аристотеля (земля, воздух, огонь, вода) и основных начал всех металлов швейцарского ученого Парацельса ( 493—1541), т. е. ртути, серы и соли. Бойль определяет понятие элемент как простое тело, которое входит в состав смешанных тел, и на которые последние могут быть разложены. Сам Бойль не назвал ни одного конкретного элемента, так как для этого еш,е не было убедительных доводов и экспериментальных данных. Но в дальнейшем, поиски новых химических элементов стали одним из главных занятий химиков во всем мире, Бойль признавал значение огня (нагревания) в качестве анализатора сложных тел. Он применял различные реактивы при проведении качественного анализа известковые соли для определения серной кислоты, нитрат серебра для определения хлороводородной кислоты, соли меди определял по добавлению избытка аммиака, соли железа — по добавлению настоя дубовой коры. Для определения кислот и щелочей он использовал настойки лакмуса, фиалок и васильков. Бойль открыл фосфорную кислоту и фосфористый водород. [c.13]


    Исследование реактива [284], изготовляемого из фенола и серной кислоты и применяемого при колориметрическом определении нитратов, показало, что наблюдающиеся иногда отклонения от нормальной окраски вызваны колебаниями в составе фенольносернокислотной смеси. [c.44]

    С современной точки зрения этот вывод представляется отчасти верным, но, несомненно, наблюдается также дополнительный эффект, связанный с нейтрализацией NaH Oj серной кислотой. При этом предотвращается накопление в котлах NaOH в результате реакций гидролиза, аналогичных (2). В принципе сульфаты должны обладать определенным ингибирующим действием ввиду предполагаемой способности сдвигать критические потенциалы коррозионного растрескивания под напряжением в область значений, которая удалена от потенциалов коррозии. Однако действие сульфатов в этом плане, видимо, менее эффективно, чем нитратов. [c.292]

    Ацетальдегид представляет собой легкоподвижную жидкость с резким опьяняющим запахом (т. кип. 2Г), хорошо растворим в воде, весьма склонен к полимеризации. При прибавлении одной капли концентрированной серной кислоты к безводному ацетальдегиду он превращается в тримерный паральдегид (СНзСНО)з. Реакция протекает настолько бурно, что при этом может происходить вскипание жидкости. При 0° из ацетальдегида под влиянием небольпшх количеств серной кислоты или НВг + Са(N03)2,получается другая полимерная форма — метальдегид. Паральдегид представляет собой жидкость (т. кип. 124°), метальдегид — твердое вещество. Оба полимера не восстанавливают аммиачного раствора нитрата серебра, не осмоляются при действии щелочей и, следовательно, не содержат альдегидных групп. Одиако они довольно легко, например при перегонке с разбавленной серной кислотой и даже при нагревании с водой, постепенно превращаются снова в мономолекулярный ацетальдегид. На основании этих свойств, а также криоскопического определения молекулярного веса строение обоих альдегидов лучше всего может быть выражено циклическими формулами для паральдегида — (1), для метальде-гида — (II)  [c.213]

    Методика определения. Берут навеску руды или минерала, рассчитанную таким образом, чтобы получить 100 мл приблизительно 0,002М раствора Сг . Навеску образца, содержащего много кремневой кислоты, обрабатывают серной и фтористоводородной кислотами и нерастворимый остаток сплавляют с пиросульфатом калия. При малых содержаниях кремневой кис.тоты достаточно только сплавления с пиросульфатом калия. Сплав растворяют в воде, добавляют серную кислоту до концентрации 0,1 н., несколько капель 5%-ного раствора нитрата серебра и 0,2—0,5 г персульфата аммония, избыток которого разрушают кипячением. В присутствии марганца прибавляют по каплям 0,2%-пый раствор нитрита натрия до обесцвечивания раствора н тотчас же 0,5 г мочевины. [c.189]

    Для определения марганца и хрома в сталях три параллельные навески стали по 0,1 г растворяют в конической колбе объемом 50 мл в 10 мл смеси азотной, форсфорной и серной кислот, нагревая на песчаной бане. После полного растворения образца, растворы упаривают до появления лых паров SO3. Затем растворы охлаждают, добавляют по 10 мл смеси серной и фосфорной кислот, 2 мл раствора нитрата серебра, 10 мл персульфата аммония и нагревают растворы до прекращения выделения пузырьков. Если окисление марганца произощ-ло не полностью (разные оттенки растворов), то добавляют по 0,1 г перйодата калия и нагревают до тех пор, пока интенсивность окраски растворов не станет одинаковой. Затем растворы охлаждают и количественно переносят в мерные колбы емкостью 50 мл. Доводят объем растворов до метки водой, перемешивают и измеряют оптическую плотность их на спектрофотометре типа СФ-4А в кюветах с / = 1 см при Х 440 и 545 нм. [c.174]

    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    Определение хлора, брома и иода. Подкисляют 10 %-ной серной кислотой 10 мл фильтрата после разложения натрием и кипятят несколько минут. После охлаждения отбирают 1 мл раствора, прибавляют 0,5 мл тетрахлорида углерода и несколько капель раствора нитрита натрия. Если присутствует иодид, то слой тетрахлорида углерода окрашивается в пурпурный цвет. В этом случае в другой пробе оставшегося раствора определяют наличие бромида и хлорида. Для этого 5 мл раствора обрабатывают нитритом нагрия и экстрагируют иод тетрахлоридом углерода. Затем раствор кипятят 1 мин и охлаждают. Отбирают 1 мл холодного раствора, прибавляют 0,5 мл тетрахлорида углерода н 2 капли хлорной воды. Коричневая окраска слоя тетрахлорида углерода указывает на наличие брома. Раствор, оставшийся после определения иода и брома (после экстракции иода и брома), разбавляют до 30 мл, добавляют 1 мл концентрированной серной кислоты и 0,3 г персульфата калия (К ЗгОе). Смесь нагревают, кипятят 5 мин и охлаждают. К холодному раствору прибавляют раствор нитрата серебра. Появление белого творожистого осадка указывает на наличие хлорида. [c.810]

    Разработана методика кинетических измерений, исключающая возможность термического и гидролитического разложения нитратов и нитритов в процессе подготовки проб и проведения анализа. Определение порядка реакции по субстрату показало переход значения от нулевого к дробному и далее к первому при увеличении концентрации азотной кислоты. Изучение влияния добавок позволило установить, что скорость сильно зависит от факторов, влияющих на равновесие автопротолиза азотной кислоты. В присутствии серной кислоты скорость резко увеличивается, тогда как добавление в реакционную смесь воды и нитрата калия приводит к резкому снижению начальной скорости. При этом происходит переход порядка реакции по субстрату т дробного к нулевому. Добавка нитрита калия вызьшает снижение скорости процесса. Реакция имеет первьт порядок по субстрату в области концентраций азотной кислоты 3.5-24.0 моль/л. Из-за значительного избытка азотной кислоты реализуется процесс псевдопервого порядка. Порядок по азотной кислоте определен по тангенсу угла наклона в координатах lgk ,фф- 1й[НКОз]. Константа скорости пропорциональна пятой степени концентрации азотной кислоты. Линейный характер зависимостей сохраняется для всего диапазона концентраций азотной кислоты, т е. высокий порядок по азотной кислоте не связан с влиянием растюрителя, а присущ собственно реакции нитроксилирования. [c.13]

    Этот метод применяют в тех случаях, когда нитрующ.ая смесь действует слишком слабо. Смесь нитратов щелочных металлов [КМОд, ЫаЫОд, иногда Ва(М0д)2] и серной кислоты содержит оба реагента обычной нитрующей смеси (НМОд и НзЗО ), отличаясь от нее, однако, тем, что в этом случае смесь не содержит воды, вводимой вместе с азотной кислотой, и вместе с тем содержит кислые сульфаты щелочных металлов, которые определенным образом влияют на реакцию нитрования. Этим методом нитруются, например, бензидин, оксииндол и анилин (до 2,3,4,6-тетранитроанилина). [c.212]

    Количественное определение производят титрованием навески препарата, высушенной над серной кислотой в эксикаторе до постоянно10 веса, 0,1 н. раствором нитрата серебра в присутствии индикатора хромата калня до буровато-желтоватого окрашивания. [c.40]

    Хлор в левомицетине может быть определен по Фольгарду после восстановления цинковой пылью в присутствии разбавленной серной кислоты (1 1). 1 мл 0,1 и. раствора нитрата серебра соответствует 0,01616 г лево-мицетина. [c.704]

    Для определения нитратов применяют фенолдисульфоновый метод. Фенолдисульфоновый реактив готовят следующим образом растворяют 25 г чистого белого фенола в 150 мл концентрированной серной кислоты, прибавляют 75 мл олеума (13% SO3), тщательно перемешивают и выдерживают при 100° С в течение 2 час. 2 мл этого реактива достаточно для обнаружения нитрат-иона при концентрации его 50 мг л. [c.266]

    Определение путем окисления нитрокобальтиата калия до нитрата. Нитрокобальтиат калия окисляют до нитрата при помощи хлората натрия в дымящей серной кислоте. Полученный нитрат нитрует фенолдисульфокислоту затем желтую окраску аммиачного раствора образовавшейся нитрофенолдисульфокислоты сравнивают со стандартом [1158] Этот метод более сложен и не имеет преимуществ перед другими фотометрическими способами определения калия. [c.98]

    Применяют при определении нитратов в некоторых реак-- тивах и нитратного азота в почве. Для приготовления фе-нолсерной кислоты помещают 40 г чистого бесцветного фенола в плоскодонную узкогорлую колбу из термостойкого стекла вместимостью 2 л и приливают 1 л концентрированной серной кислоты. Колбу закрывают корковой пробкой с обратным холодильником (стеклянной трубкой длиной не менее 50 см) и нагревают на водяной бане до полного растворения фенола. Смесь охлаждают и хранят в темной банке с притертой пробкой. Кислоту отбирают из колбы автоматической пипеткой. Этот реактив называют иногда дисульфофеноловой кислотой. [c.220]

    Титрование Мп(УП) раствором нитрита натрия ня фоне азотной кислоты проходит лучше и быстрее, чем на фоне серной [2361. Однако в дрцсутствиц нитрата железа титрование на фоне серной кислоты также проходит быстро [202]. Определению марганца не мешают ионы Сг ОГ, УОз, МоОГ, WOГ, РОГ, Ре(1П), №(П), Со(П) на фоне 2,57У [2804 при + 1,16 в [201]. Возможно определение Мп и Сг, Мп, Сг и Се при совместном присутствии [200—2031. Метод применяют при анализе сталей. [c.52]

    Смесь 1 имоля сухого порошкообразного карбоната-С бария, 1,0 г цинковой пыли и 0,200 г металлического натрия (кусочки размером с горошину) помещают в фарфоровую лодочку для сожжения и погружают в трубку Викора для сожжения (длина 600 мм, диаметр 19 мм) в атмосфере безводного аммиака. Вслед за лодочкой в центр трубки помещают тампон из железной проволоки (5,0 г, примечание 6). Дальний конец трубки соединяют с прибором для подсчета пузырьков и цилиндром с безводным аммиаком. Пропуская через трубку аммиак со скоростью 3 пузырька в 1 сек., часть трубки с железом и реакционной смесью нагревают до температуры 650° н поддерживают при этой температуре в течение 4 час. Выделение газа продолжается до тех пор, пока трубка не охладится. Содержимое трубки, за исключением железа, вымывают в колбу емкостью 250 мл, снабженную насадкой Кьельдаля для перегонки. Раствор подкисляют 2 н. серной кислотой и собирают 20—30 мл дистиллата в колбу с 20%-ным избытком 1 н. раствора едкого натра илн едкого кали. Полученный раствор можно использовать или непосредственно, или после испарения досуха в вакууме. Выход цианистого-С натрия, определенный обычным титрованием нитратом серебра, количественный, и молярная удельная активность не отличается от активности исходного соединения (примечание 7). [c.648]

    Метод применяют для определения тория в траванкарском монаците. Монацитовый песок разлагают серной кислотой, торий и р. 3. э. переводят в нитраты после удаления фосфорной кислоты, раствор нейтрализуют по конго красному и осаждают торий одной из трех кислот по методике, приводящейся ниже. Результаты совпадают с данными, полученными с ж-нитробензойной кислотой. [c.101]

    Для определения урана этим методом к 20 мл анализируемого раствора прибавляют небольшой избыток 10%-ного раствора едкого натра, не содержаш,его карбонатов, выпавший осадок центрифугируют в течение 5 мин. на центрифуге с 2000 оборотов в минуту, затем растворяют в минимальном объеме 10%-ной азотной кислоты, полученный раствор нейтрализуют 3%-ныь1 раствор(5м едкого натра, устанавливают pH в пределах 2—3, прибавляют 0,5 мл 30%-ного раствора перекиси водорода и выдерживают в течение 30 мин. После этого выделившийся осадок ураниловой соли перурановой кислоты центрифугируют, промывают 3 раза 3%-ным раствором нитрата аммония, подкисле кного азотной кислотой до pH 2—3, растворяют в 20 мл разбавленной серной кислоты (1 2) и титруют 0,05 N раствором перманганата калия. [c.101]

    Количественное определение. Растворяют 2,5 г (точная навеска) нитрата церия-аммония, предварительно высушенного при 85 °С в течение 24 ч, в 10 мл серной кислоты ( — 190 г/л) ИР и прибавляют 40 мл воды. Прибавляют несколько капель раствора о-фенантролина ИР и титруют раствором сульфата железа (II) (0,1 моль/л) ТР. Каждый миллилитр раствора сульфата железа (II) (0,1 моль/л) ТР соответствует 54,8 мг Се(КОз)4-2КН4КОз. [c.241]

    Количественное определение. (А) Растворяют около 1 г аце-тилхлорида (точная навеска) в 50 мл раствора гидроокиси натрия (1 моль/л), не содержащего карбонатов, ТР и титруют серной кислотой (0,5 моль/л)ТР, используя в качестве индикатора раствор фенолфталеина в этаноле ИР. Каждый миллилитр раствора гидроокиси натрия (1 моль/л) не содержащего кар(бонатов, ТР соответствует 7,850 мг 2H3 IO. (Б) Разводят нейтрализованную жидкость, полученную при определении методом А, до 250 мл водой, перемешивают и титруют 50 мл раствора нитрата серебра (0,1 моль/л)ТР, используя в качестве индикатора раствор хромата калия (100 г/л) ИР. Каждый миллилитр раствора нитрата серебра (0,1 моль/л)ТР соответствует 7,850 мг 2H3 IO. [c.311]


Смотреть страницы где упоминается термин Нитратов определение в серной кислоте: [c.447]    [c.163]    [c.306]    [c.503]    [c.506]    [c.168]    [c.551]    [c.207]    [c.245]    [c.244]    [c.371]    [c.186]   
Смотреть главы в:

Справочное руководство по применению ионоселективных электродов -> Нитратов определение в серной кислоте




ПОИСК





Смотрите так же термины и статьи:

Нитраты, определение



© 2024 chem21.info Реклама на сайте