Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь в органических комплексах переходных металлов

    Свойства органических комплексов переходных металлов существеннейшим, часто решающим, образом зависят от электронного строения лигандов. Если учесть к тому же то место, которое занимают в кругу интересов химии металлоорганических соединений изменение свойств лигандов под влиянием комплексообразования и реакционная способность лигандов, то становится ясным, что теория кристаллического поля, т. е. теория, в которой лиганды рассматриваются только как точечные источники электростатического поля, теория, которая с самого начала отказывается от рассмотрения электронного строения лигандов, не отвечает основным потребностям металлооргаников. Химии органических комплексов переходных металлов необходима теория, детально учитывающая электронное строение как центрального иона, так и лигандов, т, е. теория химической связи в комплексах. [c.9]


    В последние годы, в связи с возрастающей потребностью нефтегазодобывающих предприятий в качественных и доступных по своей стоимости средствах защиты металлического оборудования от коррозионного разрушения, возникают предпосылки к активному поиску сырья, пригодного для создания на его основе не дорогих, но вместе с тем высокоэффективных ингибиторов коррозии. Диапазон органических соединений, используемых для этой цели, весьма широк. Особого внимания, с нашей точки зрения, заслуживают соединения, содержащие ацетальный фрагмент, соединения аминного типа (амины, имидазолины, амиды и их производные), кетосульфиды, синтетические жирные кислоты, а также комплексы на основе триазолов, содержащие соли переходных металлов. Эффективность всех этих соединений во многом п )едопределяется склонностью к адсорбции на металле и способностью к формированию на поверхности защитных апенок с высокими барьерными свойствами. Кроме того, многие из этих соединений являются дешевыми и не находящими квалифицированного использования продуктами производств химической и нефтеперерабатывающей промышленности. В частности, при производстве многих катализаторов, используемых в нефтехимических процессах, от 3 до 5 % целевого продукта составляют магериалы, которые содержат соли переходных металлов. Отработанные катализаторы не подлежат регенерации, поэтому одним из возможных путей их утилизации является применение в качестве недорогого сырья для производства ингибиторов. [c.286]

    Из тех данных, с которыми мы познакомились при характеристике типов связи, следует, что специфика химической связи является важнейшим фактором, определяющим физико-химические свойства веществ (см. 5.10). Так, комплекс свойств металлических тел глубоко взаимосвязан с металлической связью. Многие свойства сплавов и соединений металлов d- и /-элементов (гидридов, бори-дов, карбидов, нитридов, оксидов и др.) не могут рассматриваться без учета возможной у них доли металлической связи. Сравнительно легко отличить свойства соединений с преобладанием ковалентной или ионной связи. К соединениям ковалентного типа относятся углеводороды, разнообразные другие органические вещества, СиО,, P I3, P I5 и т. п. Значительная доля ковалентной связи содержится в молекулах галогенидов, оксидах и сульфидах переходных металлов. [c.124]

    Комплексы переходных металлов с органическими соединениями обладают различными ценными свойствами. Они являются присадками к маслам, лекарственными препаратами антиаллер-генного и антибактериального действия. Квантово-химическими методами изучены комплексы цинка с ароматическими основаниями Шиффа, содержащими гидроксильные и аминометильные заместители в ароматическом кольце. Установлено, что комплексо-образование может происходить как с участием атома азота ими-ногруппы, так и атома азота в аминометильной группе -СНгМНг бензильного заместителя. Показано, что цинк является четырехкоординированным и в комплексообразовании принимают участие две молекулы ароматического основания Шиффа в качестве лигандов. При этом расстояние 2пО, в зависимости от комплекса, изменяется от 1.907А до 2.015 д. порядок связи - от 0.638 до 0.885. При координации с атомами азота иминогруппы расстояние 2п - М(=С) составляет от 2.011 А до 2.044 А, порядок связи - от [c.15]


    В первые годы после этого открытия метод ЭПР применялся в основном физиками для решения частных физических задач. В конце сороковых годов этот метод начал с успехом применяться для исследования тонких деталей электронной структуры парамагнитных ионов в кристаллических решетках разной симметрии. С начала пятидесятых годов началось бурное применение метода ЭПР к решению химических задач. Это связано с тем, что для современной химии имеет чрезвычайно большое значение выяснение структуры и химических свойств парамагнитных частиц, принимающих участие в сложных химических процессах. Это, с одной стороны, парамагнитные ионы металлов переходных групп периодической системы, являющиеся активными центрами огромного числа различных гетерогенных катализаторов и входящие в состав различных металлоорганических комплексов, определяющих активность сложных органических катализаторов, в том числе большинства биологических ферментов. С другой стороны, детальное исследование огромного числа сложных химических реакций в газовой и жидкой фазах, в том числе фотохимических, радиационно-химических и биохимических процессов, привело к представлению о чрезвычайно большой распространенности в химии свободно-радикальных и цепных механизмов. В большинстве случаев, и особенно в случае быстрых процессов, заключение о радикальном характере того или иного процесса в связи с трудностями непосредственного обнаружения, измерения концентраций и установления строения свободных радикалов основывалось на косвенных кинетических данных. Как будет показано ниже, метод ЭПР позволил подойти к решению обеих проблем, которые можно объединить [c.7]

    Химическая связь в органических комплексах переходных металлов [c.11]

    Двумя основными методами в теории химической связи являются метод валентных связей и метод молекулярных орбиталей . Известно, что, несмотря на внешнюю разницу в подходах, эти методы но суш еству отличаются исходными позициями приближения к более разработанным формам, в которых они становятся идентичными. А именно, в методе валентных связей преувеличивается, а в методе молекулярных орбиталей недооценивается электронная корреляция (снижение вероятности одновременного нахождения двух электронов в одном и том же месте, вызванное межэлектронным отталкиванием). Естественно поэтому, что оба метода в большинстве случаев приводят к согласуюш имся выводам. Однако, несмотря на отсутствие принципиальной разницы, между обоими методами существует большая разница с точки зрения их практического использования. Сравнительная простота молекулярно-орбитальных расчетов привела к их подавляющему чрличественному преобладанию. А это обстоятельство привело в свою очередь к использованию метода молекулярных орбиталей и в качестве языка для обсуждения свойств молекул, не опирающегося на проделанный расчет. Между тем в качестве основы для создания такого языка метод валентных связей обладает несомненным преимуществом. Действительно, концепция резонанса — основанная на методе валентных связей качественная теория химического строения — оперирует, с соблюдением определенных правил , валентными структурами. В выборе валентных структур и в суждении о них можно руководствоваться химической интуицией, поскольку они представляют собой пусть фиктивные, но молекулоподобные многоэлектронные системы. Напротив, в качественных рассуждениях, использующих молеку-лярщде орбитали, интуиция химика, опирающаяся на звание свойств молекул и химических связей, а не орбиталей, бессильна. И все же при обсуждении свойств органических комплексов переходных металлов предпочтение отдается молекулярно-орбитальному языку, а не языку теории резонанса. Объясняется это непомерно большим числом резонансных структур, необходимых для резонансного описания комплексов .  [c.10]

    В этом кратком введении, естественно, не представляется возможным приводить большое количество конкретных примеров применимости концепции двухэлектронных, более или менее независимых, но не двух-, а многоцентровых связей в области органических комплексов переходных металлов. Однако уже примеры связей металл—кольцо, металл—этилей, по-видимому, показывают, что и в этой области можно пользоваться понятием локальной двухэлектронной химической связи, изучать ее свойства, изменение этих свойств при изменении образующих связь партнеров — атома металла и лиганда,— при изменении гибридизации (координации) металла, степени его окисления, изучать взаимное влияние этих связей и т. д. [c.18]

    Комплексы переходных металлов наряду с ферроценовыми производными представляют, пожалуй, наибольшие возможности для варьирования органического лиганда. Самым простым способом получения их является нагревание соответствующего карбонила металла с ароматическим соединением. Оптимальная температура таких реакций (идущих с отщеплением СО-групп) равна 120—150 °С, поэтому необходимо использовать соответственно высококипящие органические растворители. Лучшими оказываются такие донорные растворители, как 2-метоксиэтиловый эфир, ди-н-бутиловый эфир, диоксан и тетрагидрофуран, а также очень часто и их смеси. Для получения термически неустойчивых соединений, в первую очередь соединений Мо и W, или комплексов с очень реакционноспособными ароматическими лигандами следует применять реакцию обмена лигандов в замещенных металлкарбоиилах МЬз(СО)з, где L — донорный лигаид со слабой обратной связью. Реакции замещения L протекают в таком случае гораздо быстрее, чем замена СО-групп. Обмен лигандов можно также значительно ускорить добавкой кислот Льюиса, которые образуют с отщепляющимся лигандом прочный аддукт. Для этих трех методов получения комплексов типа М(т1-ароматический лиганд) (СО) з далее будет дано лишь по одному примеру. Полный обзор литературы по этим комплексам для М = Сг можно найти в книге [1]. Кроме того, опубликованы подробные обзорные статьи [2—4] о получении и химических свойствах этих металлоорганических соединений. [c.1972]


    ХИМИЧЕСКАЯ СВЯЗЬ В ОРГАНИЧЕСКИХ КОМПЛЕКСАХ ПЕРЕХОДНЫХ МЕТАЛЛОВ [c.9]

    Химическая связь в органических комплексах переходных металлов. Л ит. етр. 18 [c.12]

    Несмотря на то что некоторые соединения переходных металлов со связью металл — углерод были известны с давних пор, лишь сравнительно недавно в результате многочисленных работ, последовавших за открытием ди-л-циклопентадиенилжелеза (ферроцена) (я-С5Н5)оРе, стало очевидным, что способность к образованию связей с углеродом является общим и весьма характерным свойством всех переходных металлов ii-группы. Эти металлы образуют самые разнообразные соединения с обычной о-связью металл—углерод, хотя бинарные алкильные или арильные соединения обычно и тер>лически, и химически менее устойчивы, чем комплексы с другими лигандами, особенно с лигандами, образующи.ми л-связи. Благодаря особым свойствам d-орбиталей переходные металлы взаимодействуют также с ненасыщенными углеводородами и их производными, образуя довольно необычные неклассические соединения, ранее не встречавшиеся ни в одной области хилшн. Синтезировано большое число самых разнообразных устойчивых соединений этого рода лабильные органические производные переходных металлов играют очень важную роль в каталитических превращениях олефинов, ацетиленов и их производных, особенно в реакциях присоединения окиси углерода и (или) водорода к ненасыщенным молекулам. [c.161]

    Химическое отделение Заведующий W. D. Ollis Направление научных исследований теория химической связи в органических и неорганических молекулах спектроскопия возбужденных молекул применение рентгеновской дифракции для изучения строения жидкостей и растворов реакции атомов и радикалов в газовой фазе полярография в неводных растворителях химическая структура смешанных окислов металлов боргидриды органические реакции в сильных кислотах фотоокисление электронная и вибрационная релаксация в ароматических молекулах металлорганические соединения и комплексы переходных металлов химия фенолов, природных пигментов, алкалоидов механизм действия энзимов строение, синт. з, биосинтез и масс-спектрометрия природных О-гетероциклических соединений фотохимия нуклеиновых кислот полициклические тиофены нитроамины биосинтез. [c.270]

    Принципы, лежащие в основе структуры, химической связи, стереохимии, синтеза и химических свойств определенных молекул или ионов гидридных комплексов переходных металлов в достаточной мере понятны, поэтому вполне правомерно появление книги, полностью посвященной этим вопросам. Однако подобный аргумент можно было бы выдвинуть и для многих других областей химии соединений водорода. Интерес к химии гидридов в настоящее время чрезвычайно высок активные исследования в этой области проводятся во многих странах Европы и Азии и в США. В последние годы наибольшее внимание уделялось структурам и стереохимии гидридов переходных металлов кроме того, довольно активно изучалось химическое поведение связи металл — водород. Особого внимания заслуживает тот факт, что по связи металл — водород может происходить обратимое взаимодействие с рядом органических субстратов, поэтому такое взаимодействие является ключевым моментом во многих типах гомогенных каталитических реакций. Указанное о бстоятельство обусловливает в основном [c.7]

    В остальной части книги каждая глава посвящена обсуждению химической связи в определенном клас( е молекул. В главах II—VII рассматриваются структуры наиболее типичных молекул, образуемых элементами от водорода до конца второго периода периодической системы. Таким образом, в этой части книги описаны строение и характер связей в двухатомных, линейных и угловых трехатомных, плоских треугольных и тетраэдрических молекулах, а также в молекулах, no rpoea-ных в виде тригональной пирамиды. Главы VIII и IX представляют собой введение в современные представления о характере связей в молекулах органических веществ и в комплексах переходных металлов. Книга снабжена большим количеством иллюстраций, на которых особым приемом изображены граничные поверхности орбиталей. Мелкие точки, которыми пользовалЬя [c.7]

    Путем классификации и анализа огромного количества данных и фактов, накопленных более чем за 100 лет, механизмы обычных органических реакций в настоящее время четко установлены. Эти реакции обычно классифицируют как ионные, радикальные или молекулярные, хотя существует и более детальная классификация. Механизмы многих реакций с участием соединений непереходных металлов совершенно понятны, в то время как механизмы органических реакций с участием комплексов переходных металлов до сих пор не ясны. Без сомнения, эти реакции протекают путем образования о-связи металл — углерод, однако химические свойства этих связей остаются непонятными. Поэтому для более ясного понимания реакций, протекающих с использованием комплексов переходных металлов, вначале стоит проанализировать и сравнить их с реакциями реактивов Гриньяра, которые очень хорошо знакомы химикам-органикам. Известно, что первая стадия реакций Гриньяра состоит во взаимодействии металлического магния с ал-килгалогенидами с образованием алкилмагнийгалогени-дов, такшазываемых реактивов Гриньяра. В этой реакции нульвалентный магний окисляется до двухвалентного и происходит расщепление ковалентной связи углерод — галоген, следовательно, эту стадию можно рассматривать как окислительное присоединение алкилга-логенидов к металлическому магнию. Полученный таким способом реактив Гриньяра является источником карб-аниона и реагирует с различными электрофильными реагентами, например карбонильными соединениями или нитрилами. Эту стадию можно формально представить как реакцию внедрения ненасыщенной связи карбонильной группы по связи магний — углерод. В последнем процессе не изменяется степень окисления магния. Таким образом, реакцию Гриньяра можно представить [c.14]

    Большой интерес для органического синтеза представляют хорошо известные алкильные комплексы переходных металлов. В ч. 1, разд. 3.5, а было показано, что химическая связь между переходными металлами и алкильными лигандами не очень прочная для большинства алкильных комплексов переходных металлов первого ряда она составляет около 30 ккал/моль, для переходных металлов второго и третьего ряда — несколько выше. Тем не менее гомолитический распад таких комплексов наблюдается редко, более характерно для них элиминирование р-водорода с образованием алкен-гидридных комплексов (ч. 1, разд. 3.5, а и 6.3). Наблюдается также элиминирование а-водорода с образованием алкилиден-гидридных комплексов (ч. 1, разд. 6.2е), сопровождающееся иногда конкурентным элиминированием р-водорода (как в комплексе 59, ч. 1, разд. 3.5а). Относительно устойчивы комплексы, в которых алкильные группы не содержат -водорода, например СНз, СН251Мез. [c.162]

    Можно понять специалистов в области координационной химии, полагающих, что, хотя чисто органические ферменты — замечательные катализаторы сами по себе, однако в присутствии ионов металла их химическая активность существенно повышается, вследствие чего возрастает интерес к ним с точки зрения химии. Известно много примеров различных ферментов, содержащих и не содержащих металла, которые катализируют одну и ту же реакцию, действуют на один и тот же субстрат или образуют один и тот же продукт. Так, например, электрон-транспортные белки могут содержать флавины, железопорфирины или ферредоксины, а ферменты, катализирующие восстановление перекиси водорода органическими субстратами, могут также содержать или флавины, или железопорфирины (разд. 8.1). Однако есть и другие реакции, которые, насколько это известно в настоящее время, могут происходить только в присутствии ферментов, содержащих переходные металлы это фиксация азота (разд. 9.2), восстановление нитрата до нитрита (см., в частности, 132]) и некоторые реакции изомеризации, в которых участвуют кобальткорриноиды (разд. 10.2) [18, 1811. И несомненно, должны существовать многие реакции, которые более эффективно катализируются ферментами, содержащими переходные металлы. Эти металлобелковые комплексы или металлоферменты участвуют во многих процессах биологического обмена веществ, однако две реакции заслуживают специального упоминания по двум причинам. Во-первых, эти реакции представляют основной путь, по которому молекулярный азот или нитрат-ионы включаются в биологический обмен. Во-вторых, они тесно связаны с основными способами генерации и конверсии энергии в биологии как переносчики электронов и, возможно, в процессе выделения кислорода в хлоропластах как переносчики электронов и в реакции с кислородом, сопряженной с фосфорилированием и, наконец, при выделении водорода и метана при анаэробной ферментации. [c.134]

    Эта теория, развитая Полингом [6], имела огромное значение. для качественного обсуждения широкого круга вопросов неорганической и органической химии. Ее популярность, несомненно, кроется в простоте химической картины, даваемой ею. Однако эта простота в свою очередь значительно ограничивает применение теории для количественных расчетов. Теория валентной связи различает два типа комплексов металлов, которые можно условно обозначить как ионные и ковалентные . Иногда применяют другие классификации, относящие их к внешним и внутренним или высокоспиновым и низкоспиновым комплексам (последнее различие основано на магнитных свойствах). В обоих случаях предполагается, что определенное число атомных орбиталей катиона (равное числу лигандов в комплексе) гибридизо-вано и затем использовано для образования связи. Эта трактовка соответствует известной гибридизации 25, 2рх, 2ру и 2рг-орбита-лей атома углерода с образованием четырех эквивалентных орбиталей, расположенных вокруг него тетраэдрически. Если в случае ионов переходных металлов постулировать, что в образовании связи использованы -орбитали, имеющие то же главное квантовое число, что и 5- и р-орбитали, то такой комплекс называют ковалентным . В противном случае он ионный . [c.36]


Смотреть страницы где упоминается термин Химическая связь в органических комплексах переходных металлов: [c.117]    [c.2108]    [c.241]    [c.125]    [c.5]    [c.104]    [c.250]    [c.15]    [c.601]    [c.34]    [c.124]   
Смотреть главы в:

Методы элементоорганической химии Кн 1 -> Химическая связь в органических комплексах переходных металлов

Методы элементоорганической химии Кн 2 -> Химическая связь в органических комплексах переходных металлов




ПОИСК





Смотрите так же термины и статьи:

Комплекс химический

Комплексы металлов комплексы металлов

Комплексы переходных металлов

Металло-азо-комплексы

Металлов комплексы

Металлы переходные

Металлы химическая связь

Металлы химические

Органические металлы

Переходные металлы, органические

Связи в металлах

Связь в комплексах металлов

Связь химическая в комплексах

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте