Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебательная релаксация

    Молекула обладает набором энергетических состояний (рис. 28). Молекула, попавшая на верхние колебательные уровни любого возбужденного состояния, быстро теряет избыток колебательной энергии при столкновениях с окружающими молекулами. Это процесс колебательной релаксации. Безызлучательный переход между электронными состояниями одинаковой мультиплетности называется внутренней конверсией, аналогичный переход между состояниями разной мультиплетности — интеркомбинационной конверсией. [c.51]


    Рассмотрим на примере углекислого газа, которому посвящено наибольшее количество исследований, колебательную релаксацию сложных молекул. Молекула СО, линейна и, следовательно, характеризуется тремя соб- [c.94]

    КИНЕТИКА КОЛЕБАТЕЛЬНОЙ РЕЛАКСАЦИИ ДВУХАТОМНЫХ МОЛЕКУЛ [c.96]

    Кузнецов Н. М. Взаимодействие процессов колебательной релаксации и диссоциации двухатомных молекул.— Докл. АИ СССР, 1965, т. 164, № 5, с. 1097-1100. [c.365]

    Колебательная релаксация (V—Т-обмен). Колебательная релаксация существенно влияет па кинетику химических реакций. Простейшим примером является релаксация системы гармонических осцилляторов в тепловом резервуаре. Исследование взаимодействия двухатомной молекулы, моделируемой гармоническим осциллятором, с молекулой теплового резервуара с температурой показывает (см. 15), что переходы происходят только между соседними колебательными уровнями со средними вероятностями [c.48]

    Столь же большие вероятности вращательных нереходов были найдены и для молекулы N0 8 электронно-возбужденном состоянии 4 2+ [208]. В атом же состоянии исследована и колебательная релаксация как при высоких (5000—10000 К) [488], так и низких (400 К) [208] температурах. [c.101]

    Как мы видели выше, скорость обменной бимолекулярной реакции в зависимости от соотношения скоростей колебательной релаксации и собственно химической стадии реакции выражается различными формулами. [c.147]

    Процессы передачи и релаксации энергии являются одними из определяющих в механизме элементарных реакций. Метод классических траекторий позволяет достаточно полно исследовать процессы внутримолекулярной релаксации энергии и межмолекулярной ее передачи и сопоставлять результаты расчетов с экспериментом. В этом разделе приведены примеры исследования методом классических траекторий процессов колебательной релаксации. Для конкретных систем изучается механизм передачи энергии, определяются порции переданной энергии в зависимости от температуры термостата. Другой класс работ связан с исследованием вопроса о внутримолекулярном перераспределении энергии. Путем расчета траекторий движения изолированной молекулы определяются времена рандомизации молекулярной системы, исследуются процессы межмодовой передачи энергии в случаях термического и селективного возбуждения молекулы. [c.104]

    Исследования процессов колебательной релаксации двухатомных молекул методом классических траекторий на примере реакции О, + Аг проведены в работах [104, 105]. Потенциал молекулы О2 аппроксимировался методом Ридберга—Клайна—Риса. Рассчитывались вероятности изменения колебательных состояний и диссоциации молекул в широком диапазоне температур - от 1000 до 20 ООО К. В этом температурном диапазоне вероятность одно- и двухквантовых переходов при и > 20 не зависит от температуры и уменьшается с увеличением номера колебательного уровня V. Получено удовлетворительное согласие результатов проведенных расчетов с экспериментами по рассеянию в молекулярных пучках и прямыми измерениями времени релаксации. [c.104]


    В работе [6] методом классических траекторий исследовались релаксационные процессы а системе Вг2 —Аг. Рассматривалось влияние молекулярного вращения на скорость колебательной релаксации. Для рассмотренной системы 1/-/ -обмен оказался эффективнее, чем 1 —7"-обмен. В работе проведено сравнение результатов, полученных с моделями дышащей и шероховатой сфер, и даны рекомендации по использованию этих моделей. [c.104]

    Для решения задач газодинамики больших скоростей, химической кинетики и некоторых других необходимо знать основные закономерности различных релаксационных процессов. Такими процессами являются установление максвелловского распределения, вращательная и колебательная релаксация, диссоциация, ионизация и др. При этом, естественно, надо знать законы элементарных актов, сформулировать и решить соответствующие статистические задачи [55]. [c.200]

    Рассмотрим ситуацию, когда реагирующие компоненты обладают внутренними степенями свободы. Таким системам в общем случае может быть приписана единая температура. При наличии максвелловского и больцмановского распределений (но без требования равенства температур) система описывается двумя температурами Гп и Гк- Например, при ударной волне в инертном газе с малой примесью двухатомных молекул наблюдается колебательная релаксация молекул примеси к новой температуре. Это объясняется тем, что непосредственно за волной коле- [c.222]

    При столкновениях с молекулами происходит колебательная релаксация  [c.201]

    Перспективный метод изучения процессов обмена анергии был создан Норришем [440] и Портером [462]. Сущность этого Д18тода, называемого методом импульсного фотолиза, заключается в том, что исследуемый газ облучается в течение короткого времени (несколько микросекунд) интенсивным (тысячи джоулей источником света непрерывного спектра. В результате первичного или вторичных фотохимических процессов возникают радикалы или молекулы на различных колебательных уровнях. Спектроскопическая регистрация временного изменения концентраций этих частиц в определенных квантовых состояниях, обусловленная передачей энергии при столкновениях, дает возможность изучения колебательной релаксации. [c.79]

    Колебательная релаксация Флуоресценция Внутренняя конверсия Интеркомбинационная конверсия Колебательная релаксация Фосфоресценция [c.312]

    Наблюдаемые эффекты тушения люминесценции являются обычно результатом конкуренции радиационных и бимолекулярных столкновительных процессов дезактивации электронных энергетических уровней, поскольку колебательная релаксация протекает настолько быстро (особенно в конденсированной фазе), что излучательные переходы практически всегда начинаются с основного колебательного уровня возбужденного электронного состояния эти особенности будут предметом нашего обсуждения в следующем разделе. Простейший процесс возбуждения с последующей дезактивацией, не включающий процессов внутримолекулярной безызлучательной релаксации, имеет вид [c.85]

    Ступенчатая столкновительная релаксация колебательных возбуждений является относительно эффективным процессом, сечения рассеяния для одноквантовой дезактивации лежат в пределах 1—100% от газокинетических сечений для многих тушащих газов. Поэтому резонансная флуоресценция не наблюдается при давлениях, для которых кинетическая частота столкновения существенно превышает скорость спонтанной эмиссии например, для Л 10 с наблюдение резонансного излучения ограничивается давлениями ниже 1 мм рт. ст. (или меньше, если Л<10 с ). Нижние колебательные уровни верхнего электронного состояния заселяются переходами с уровня V, заселяемого поглощением, и при умеренных давлениях, при которых излучательные процессы и процессы тушения за счет колебательной релаксации еще конкурируют, излучение будет происходить со всех колебательных уровней верхнего состояния вплоть до V. Например, спектр флуоресценции МОг при низких давлениях, хотя его отдельные линии и не разрешаются, по мере возрастания давления в системе все более сдвигается в длинноволновую область. [c.93]

    Если время адиабатического сжатия газа нри прохождении звуковой волны заметно превышает время колебательной релаксации Ткол то молекулярную колебательную теплоемкость можно считать близкой к равновесной колебательной теплоемкости С ол- В тех же случаях, когда полупериод колебаний меньше вс личины Ткол (большие частоты), колебательная теплоемкость будет практически равна нулю, т. е. вся заключенная в данном элементе газа энергия будет иметь форму поступательной и вращательной энергии. [c.77]

    Следует отметить также, что в последнее время появились работы, посвященные изучению колебательной релаксации па твердых поверхностях (гетерогенная релаксация), что имеет большое значение для кинетически гаао-фаз1сых реакций (см., нанример, [32, 1891). [c.79]

    Условие применимости теории возмущений, (,Pv,v i) " I > обычно выполняется для низших колебательных уровней при температурах вплоть до не-с1Г0льких тысяч градусов. Поэтому вероятности (14.4) могут бить использованы для построения системы кинетических уравнений, описывающих колебательную релаксацию не очень сильно возбужденных молекул. Если же состояние сильно колебательно возбуждено, то вероятность перехода между высшими уровнями может оказаться сравнимой с единицей даже при условии, когда вероятность перехода между низшими состояниями мала. [c.84]


    На рис.. 17, заимствованном из работы Милликепа и Уайта [418], приведена температурная зависимость времени колебательной релаксации i [c.84]

    Ярким примером, иллюстрирующим влияние ангармоничности колебаний на вероятность обмена колебательной энергии, служат результаты, полученные Хэнкоком и Смитом [307, 308] при изужшин колебательной релаксации СО. Молекулы СО на высоких колебательных уровнях (4 1 < 13) получились в результате реакций О СЗа = 30-1- С8, СН - - О = СО - - 8 - -1- 75 ккал в системе О—СЗз [467]. В частности, изме репные значения/ , -1 для процессов СО (и) Не СО (и — 1) -Н Не (77 -процессы) при и = 9 и у = 13 оказались соответственно равными 2,4-10 и б - 10 при Т — 700 К. Сравнивая эти числа между собою, находим Z9 в/2,= А вместо числа 13/9, получающегося из соотношения = 1/у. Рас хождение этих чисел [c.86]

    Таким образом, практически в любом случае в основе механизма колебательной релаксации многоато.мной молекулы лежит совокупность процессов — процесса (I ), отвечающего превращению в поступательную энергию наименьшего 1 олебательного кванта в системе или возбуждению низшего [c.95]

    Колебательная релаксация молекул является одним из важнейших процессов неравновесной химической кинетики. Из большого многообразия относящихся сюда явлений наиболее просты те, которьге связаны с релаксацией двухатомных молекул, поскольку в них не участвуют сложные внутримолекулярные процессы. Далее, существенное упрощение возникает в тех случаях, когда степень колебательного возбуждения глолекул невелика, так что в основном происходят одноквантовые переходы, вероятности которых сравнительно просто зависят от колебательных квантовых чисел. Наконец, если поступательную температуру считать неизменно1[, то в ряде случаев можно получить аналитические приближенные решения микроскопических кинетических уравнений. [c.96]

    Подробное исследопание кинетических уравнений при условиях %уу -==С vv Tv-r no3Bo.i i6T построить следующую качественную картину колебательной релаксации 1100]. [c.97]

    Ки1№тпна колебательной релаксации двухатомных молекул 99 [c.99]

    Остановимся теперь на особенностях колебательной релаксации двухатомных молекул, свяшппых с ангармоничностью колебаний. В УГ-процессах ангармоничность проявляется в том, что, вследствие уменьшения величины колебательного кванта по мере роста квантового числа, вероятности одноквантовых переходов растут с номером уровня v быстрее, чем по линейному закону [см. (14.8)). Поэтому релаксационное уравнение для средней энергии несправедливо, а эффективное время колебательной релаксации, определенное из условия [c.99]

    В настоящее время имеются многочисленные экспериментальные данные, подтверждающие изложенную выше теорию колебательной релаксации двухатомных молекул, причем наряду с релаксацией в тепловом резервуаре подробно изучена релаксация в небольцмановском резервуаре и в условиях постоянно действующего возмущения (например, интенсивного ИК-облуче-ния) [100]. [c.100]

    При всей ограниченности экспериментальных данных но колебательной релаксации электронно-возбужденных молекул, по-видимому, можно сделать заключение о том, что, как правило, их колебательная релаксация осуществляется быстрее колебательной релаксации тех же молекул в основном электронном состоянии. Существуют, по крайней мере, три причины большой скорости колебательной релаксации электронно-возбужденных молекул. Во-первых, поскольку возбужденные молекулы характеризуются большим радиусом электронной оболочки, силы взаимодействия между сталкивающимися частицами медленнее убывают с расстояпием, чем для молекул в основном состоянии. Во-вторых, часто электронно-возбужденное состояние является вырожденным, что, как было показано выше, приводит ] большим вероятно- [c.100]

    Одним из немногих примеров, когда это осуществимо, является колебательная релаксация гармонических осцилляторов, рассмотренная в 8. Для многоатомных молекул рассчитать функцию к (Е, Е ) практически невозможно, так что теория активации и дезактивации при столкновениях в значительной степени осног.ы1)ается на гипотезах, относящихся к общим свойствам функции к Е, Е ). Две альтернативные гипотезы, позволяющие существенно упростить микроскопические кинетические уравнения, формулируются как гипотеза сильных столкновений и гипотеза многоступенчатой активации и дезактивации [98]. [c.107]

    Как отмечалось в 8, неравновесные бимолекулярные реакции должны описываться микроскопическими кинетическими ураинениями. Решение атих уравнений требует информации о зависимости сечений реакций от энергии различных степеней свободы. Поэтому проведенные к настоящему времени модельные расчеты неравновесных эффектов основаны на модельных представлениях о зависимости сечений от поступательной или колебательной энергии [98]. Что касается влияния нарушения максвелловского распределспия на скорость бимолекулярной реакции, ю оно сравнительно мало, если энергия активации заметно превышает к [71]. С другой стороны, следует ожидать, что неравновесные аффекты, обязанные нарушению больцмановского распределения по колебательным состояниям реагентов, будут значительно больше. Это связано с тем, что времена колебательной релаксации намного больше времен поступательной релаксации, и поэтому вполне вероятно, что столкновения не будут успевать восстанавливать равновесное распределение, нарушаемое реакцией. Мы раесмотрим этот вопрос в рамках фспомено.логического подхода, заменяя сложную систему кинетических уравнений для заселенностей более простыми уравнениями для концентраций молекул, способных в различной степени участвовать в реакции. [c.146]

    В то же время аналитическое решение задач химической кинетики при рассмотрении ее совместно с другими релаксационными процессами (мак-свеллизация, колебательная релаксация и т. д.) в настоящее время невозможно [149]. Поэтому большой интерес представляет разработка численных методов, пригодных для решения широкого класса таких задач. В [55] изложены результаты расчетов на ЭВМ для задачи о максвеллизации бинарной смеси метана и аргона с разными начальными температурами (соответственно 300 и 40 ООО К). Оказалось, что процесс релаксации по поступательным степеням свободы протекает в два этапа. На первом, неадиабатическом этапе функции распределения молекул обоих газов существенно отличаются от максвелловских, причем высокоэнергетическое крыло функции распределения метана образуется практически мгновенно. Наличие этого крыла должно оказать существенное влияние на кинетику других релаксационных процессов (в частности, химических реакций), особенно в начальные моменты времени. [c.205]

    Выше рассматривались случаи, когда сама реакция служила причиной возникающих отклонений от равновесия. Ei последнее время интенсивно развиваются физические методы стимулирования газофазных реакций, в частности лазерная накачка в ИК-диапазоне. При решении задач этого направления принципиальное значение имеют вопросы кинетики заселенностей и, в частности, колебательной кинетики, так как любое воздействие на вещество (тепловое, химическое, электронный удар, оптическая накачка) приводит к перераспределению заселенности уровней, которые определяют кинетику и механизм химических реакций. Широко проводимые в настоящее время исследования касаются самых различных аспектов кинетики в существенно неравновесных условиях и включают а) изучение вида функций распределения по ко.пебательным уровням б) определение общей скорости релаксации колебательной энергии в) нахождение зависимости неравновесного запаса колебательной энергии от скорости накачки вненпшм источником, приводящим к разогреву колебаний г) анализ взаимного влияния колебательной релаксации и химического процесса (диссоциация молекул, бимолекулярная реакция компонент смеси), а также, например, генерации на колебательно-вращательных переходах. [c.66]

    Энергетическая емкость колебательных степеней свободы значительно выше, чем посгунательных и вращательных. 2. Колебательная релаксация — очень медленный процесс в масштабе времени свободного пробега. Например, для колебательного возбуждения молекулы необходимо около 10 столкновений при комнатной температуре. Однако по отношению к химическим реакциям колебательную релаксацию в ряде случаев можно считать быстрым процессом. [c.104]

    При высоких давлениях газов, при которых скорость столкновений существенно превышает скорость излучения, колебательная релаксация протекает очень быстро и флуоресценция с уровней v >0 не наблюдается. Скорость колебательной релаксации очень велика в растворах, поэтому флуоресценция с колебательно-возбужденных уровней никогда не наблюдается в жидкой фазе. Более того, ни спектр флуоресценции, ни скорость дезактивации не изменяются с изменением длины волны возбуждающего излучения, до тех пор пока оно лежит в пределах полосы поглощения. Переходы 5о->-51 в органических соединениях часто бывают частично запрещены поэтому для того чтобы получить достаточное с точки зрения возможности регистрации газофазной флуоресценции поглощение света, требуются высокие давления, которые приводят к колебательной релаксации молекул на уровень и = 0. Эта релаксация совместно с безызлучательными потерями энергии у сложных частиц способствует тому, что в сложных органических молекулах эффекты резонансной флуоресценции или излучение с колебательновозбужденных уровней наблюдаются крайне редко. [c.93]


Смотреть страницы где упоминается термин Колебательная релаксация: [c.38]    [c.76]    [c.78]    [c.94]    [c.98]    [c.98]    [c.109]    [c.93]    [c.105]    [c.105]   
Смотреть главы в:

Кинетика и механизм газофазных реакций -> Колебательная релаксация

Физико-химическая кинетика и термодинамика Том 2 -> Колебательная релаксация


Биохимия природных пигментов (1986) -- [ c.22 , c.23 ]

Механизмы быстрых процессов в жидкостях (1980) -- [ c.91 , c.93 , c.138 , c.140 ]

Физические методы исследования в химии 1987 (1987) -- [ c.343 ]

Этилен (1977) -- [ c.150 , c.152 ]




ПОИСК







© 2025 chem21.info Реклама на сайте