Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент адсорбата

    Построение прямой в координатах In Л — [In (ps/p) ]" дает возможность найти константы этого уравнения. Температурная инвариантность уравнений (111.80) и (111.81) позволяет вычислить изотермы адсорбции данного адсорбата при других температурах, а коэффициенты аффинности — перенести зависимости на другие адсорбаты. [c.143]

    В дальнейшем будем исходить из квазигомогенной модели пористого адсорбента, рассматривая его в качестве однородной поглощающей среды. Массоперенос в гранулах сорбента предполагается происходящим за счет диффузии адсорбата внутри транспортных пор и поверхностной диффузии адсорбированного вещества, причем будем опускать взаимодействие этих двух видов массопереноса, включая локальные процессы поверхностной диффузии, учитываемые эффективным коэффициентом диффузии [c.34]


    Для описания адсорбционного равновесия в настоящее время широко используются уравнения, базирующиеся на различных представлениях о механизме адсорбции, связывающие адсорбционную способность с пористой структурой адсорбента и физико-химические свойства адсорбтива. Эти уравнения имеют различную математическую форму. Наибольшее распространение при расчете адсорбционного равновесия в настоящее время получили уравнения Фрейндлиха, Лангмюра, Дубинина — Радушкевича. Дубинина — Астахова и уравнение Кисарова [3]. Рассчитанные по ним величины адсорбции удовлетворительно согласуются с опытными данными лишь в определенной области заполнения адсорбционного пространства. Поэтому прежде чем использовать уравнение изотермы адсорбции для исследования процесса методами математического модели]зования, необходимо осуществить проверку на достоверность выбранного уравнения экспериментальным данным си-. стемы адсорбент —адсорбтив в исследуемой области. В автоматизированной системе обработки экспериментальных данных по адсорбционному равновесию в качестве основных уравнений изотерм адсорбции приняты указанные выше уравнения, точность которых во всем диапазоне равновесных концентраций и температур оценивалась на основании критерия Фишера. Различные способы экспериментального получения данных по адсорбционному равновесию, а также расчет адсорбционных процессов предполагают необходимость получения изобар и нзостер. В данной автоматизированной системе указанные характеристики получаются расчетом на основе заданного уравнения состояния адсорбируемой фазы. Если для взятой пары адсорбент — адсорбат изотерма отсутствует, однако имеется изотерма на стандартном веществе (бензол), автоматизированная система располагает возможностью расчета искомой изотермы на основе коэффициента аффинности [6], его расчета с использованием парахора или точного расчета на основе уравнения состояния. [c.228]

    К2,аа/2К а=(3.18) где Вго — двухмерный второй вириальный коэффициент адсорбата. [c.47]

    Коэффициент активности (д адсорбата в адсорбционном слое может быть вычислен по уравнению (XVI, 16) и (XVI, 26) или (XVI, За)  [c.442]

    Согласно (1.5) коэффициент а равен концентрации в объеме, соответствующей половинному заполнению поверхности. Уравнение (1.5) описывает изотермическую адсорбцию на активной поверхности и называется изотермой Лангмюра (рис. 1.3). При малых концентрациях адсорбата в газовой фазе, пока ЬС I, оно дает 0 = ЬС, т. е. при малых степенях заполнения поверхности адсорбция протекает по закону Генри (участок О А на рис. 1.3). При больших концентрациях, когда йС 1, 0 = 1, что соответствует насыщению поверхности адсорбента (участок ВТ) на рис. 1.3). Чем больше Ь, тем при меньших объемных концентрациях наступает насыщение поверхности. [c.16]


    В настоящее время при расчете адсорбционного равновесия наиболее часто применяются два метода расчета влияния температуры на плотность адсорбированной фазы, использующие физические константы адсорбируемого вещества. Согласно первому методу, предложенному К. М. Николаевым и М. М. Дубининым, плотность адсорбата полагается равной плотности нормальной жидкости при температурах, меньших температуры кипения Т С. То, а при Го 7" Гкр термический коэффициент адсорбции ао = й п ао/й1 постоянен и расчет плотности адсорбированной фазы основан на использовании уравнения Ван-дер-Ваальса  [c.30]

    Здесь а и с — концентрации адсорбата в неподвижной и подвижной фазах Г] = X при параметре формы зерна К = О — для призматического или цилиндрического зерна длиной 2/ , боковые поверхности которого непроницаемы (пластина) т) = / —радиальная координата для цилиндрического зерна с непроницаемыми торцами (/С = 1) или сферического зерна (К = 2) / — время D — аффективный коэффициент диффузии. Насыщение идет с внешней поверхности гранулы, на которой поддерживается постоянная концентрация с = Со. [c.35]

    Исследования кинетики десорбции проводят с целью выявления влияния различных факторов на процесс, таких как скорости десорбирующего агента, температуры десорбирующего агента, начальной концентрации адсорбата (поглощенного вещества) в адсорбенте, высоты слоя адсорбента, геометрических размеров гранул адсорбента и др. Знание основных закономерностей процесса десорбции позволяет определить оптимальные режимы работы десорбера для данной системы адсорбат — адсорбент, время десорбции для достижения той или иной степени десорбции и основных кинетических характеристик данной системы (коэффициентов внешнего и внутреннего массообмена, эффективных коэффициентов диффузии и др.). [c.84]

    Здесь ТР о — предельный объем адсорбционного пространства о — объем одного миллимоля адсорбата В — структурная константа Г — температура Сг — концентрация адсорбтива при насыщении р — коэффициент аффинности. [c.85]

    Здесь Оп — коэффициент диффузии на поверхности зерна а — концентрация адсорбата в зерне адсорбента. [c.241]

    Коэффициенты аир зависят от физико-химических свойств адсорбента и адсорбата и ряда условий процесса фильтрации. [c.159]

    При выборе газа-носителя ледует руководствоваться, в основном, следующим адсорбция газа-носителя при температуре опыта (температура жидкого азота) должна быть настолько мала, чтобы ею можно было пренебречь коэффициенты теплопроводности газа-носителя и адсорбата должны сильно различаться между собой для обеспечения высокой чувствительности катарометра, действие которого основано на том, что нагретое тело теряет тепло со скоростью, зависящей от состава окружающего газа. Поэтому, скорость теплоотдачи может быть использована для определения состава газа [58—60]. [c.299]

    Уравнение Лэнгмюра [2—3]. При достаточно больших концентрации или давлении газа наступают отклонения от закона Генри из-за неравенства коэффициента активности -уа единице. Неравенство в случае однородной поверхности адсорбента обусловлено силами взаимодействия между молекулами адсорбата в адсорбционном слое. Наиболее часто это силы притяжения при приближении к предельному заполнению адсорбционного слоя они переходят в силы отталкивания. [c.99]

    Величина Е называется характеристической энергией адсорбции. Отношение характеристических энергий для двух адсорбатов также равно коэффициенту аффинности. Показатель степени п выражается целыми числами от 1 до 6 в зависимости от структуры адсорбента. Степень заполнения адсорбента можно представить как отношение величины адсорбции А к максимальной адсорбции Ло, или как отношение заполненного объема V к предельному объему адсорбционного пространства Vo- Тогда из уравнения (111.77) получим  [c.142]

    Получив с помощью уравнения (116) изотерму адсорбции, можно ее обработать рассмотренными в главах XVI, XVII и XIX способами и получить, например, методом БЭТ (см. сгр. 454) емкость плотного монослоя и величину удельной поверхности адсорбента, а также получить изменение химического потенциала исследуемого вещества при адсорбции, откуда можно вычислить зависимость коэффициента активности адсорбата от заполнения иоверхности. Из серии хроматограмм, определенных при разных температурах, можно получить соответствующую серию изотерм адсорбции и определить нз них зависимость дифференциальной теплоты адсорбции от заполнения поверхности, дифференциальные энтропии и другие термодинамические характеристики адсорбции при разных заполнениях. Результаты таких газо-хроматографических исследований при благоприятных условиях опыта близки к результатам статических методов. [c.592]


    Для активных углей коэффициент аффинности приблизительно равен отношению парахоров рассматриваемого и стандартного веществ. Парахор не зависит от температуры, и поэтому эта величина удобна для характеристики адсорбатов. [c.143]

    Газовая адсорбционная хроматография позволяет не только разделять и анализировать смеси газообразных и парообразных веществ, но и определять ряд свойств как адсорбентов (удельную ло-верхность) и адсор батов (коэффициент диффузии), так и систем адсорбат — адсорбент (изотермы и теплоты адсорбции). [c.66]

    Коэффициент р был назван коэффициентом аффинности. Отсю- a следует, что, зная характеристическую кривую для одного ад сорбата и коэффициент аффинности для другого адсорбата по отношению к первому, мох<но вычислить изотерму адсорбции btoi poro адсорбата на том же адсорбенте. [c.142]

    Изучая одним из статических методов количество поглощенного газа в зависимости от его равновесного давления при постоянной температуре, получают изотерму адсорбции. Выполняя эксперимент при постоянном давлении и при различной температуре, можно получить зависимость адсорбции от температуры и из этих данных рассчитать теплоту адсорбции. По характеру и взаимному расположению изотерм адсорбции, полученных для разных газов или паров, можно судить об избирательном действии выбранного адсорбента по отношению к тому или иному газу. Данные, получаемые из статических измерений, позволяют также рассчитывать пористость, удельную поверхность, коэффициент диффузии и другие характеристики адсорбента и адсорбата. [c.112]

    Элюентный анализ. В методе элюентного анализа адсорбированные соединения вымывают избытком растворителя с меньшим коэффициентом распределения, чем у адсорбата. При этом в элюате образуются раздельные зоны (рис. Д.80,г). [c.243]

    НЫЙ коэффициент адсорбата и газа-носителя (см. разд. А. VIII и уравнение (25)), Р — среднее давление газа в колонке (Р°Ц),Т — температура колонки, ф и 0 — доли соответственно адсорбата в адсорбированном монослое и в газовой фазе при равновесии. Таким образом, Ф/Q — коэффициент емкости колонки, наблюдаемый для газа-носителя. При выводе уравнения [c.104]

    Следует указать на несвязанный с выбором со абсолютный молекулярно-статистический метод Баркера и Эверетта [2]. Он основан на молекулярной теории адсорбции при высоких Т и небольших 0 и позволяет определить 5 из второго вириального коэффициента адсорбата. Вольф и Самс [1] рассчитали на ЭВМ соответствующие конфигурационные интегралы и из сопоставления с опытными изотермами определили 5 графитированной термической сажи. Из второго вириального коэффициента они получили следующие значения 5 (в м 1г) Аг — 8,54, Хе — 8,68, Кг — 8,2, СН4 — 8,8 и СВ — 7,3 (последнее значение определено неточно). Вольф и Самс указывают, что определение 5 через второй вириальный коэффициент, параметры которого находятся из свойств реальных газов, предпочтительнее определения через константу Генри. Однако и в последнем случае при определении параметров потенциальной функции с помощью формулы Кирквуда — Мюллера авторы получили величины 5 (Аг — 9,33, Хе — 9,48 м 1г), практически не зависящие от размеров молекул и температуры и близкие к определенным из второго вириального коэффициента. Это указывает на правильный выбор потенциальной функции. [c.319]

    Два важных свойства адсорбента—коэффициент разделения а и скорость адсорбции — в бсльшой степени зависят от среднего диаметра пор. Избирательное действие адсорбента проявляется только по отношению к тому слою молекул, который прилегает к его поверхности. Отсюда ясна зависимость избирательной адсорбции от удельной поверхности. По-видимому, жидкость, находящаяся в центре поры, имеет тот же состав, что и жидкость вне адсорбента. Вследствие этого величина коэффициента разделения должна убывать по мере увеличения диаметра поры. С другой стороны, увеличение диаметра поры благоприятствует увеличению скорости адсорбции. Для некоторых сортов силикагеля величина среднего диаметра поры только немного больше утроенного диаметра молекулы бензола, и в результате относительно небольшого прироста величины диаметра поры скорость адсорбции может значительно увеличиться. Идеальным является такой адсорбент, в котором достигнуто необходимое равновесие между избирательностью и скоростью адсорбции. По мере увеличения размеров молекулы или вязкости адсорбата влияние скорости адсорбции на процесс становится более ощутимым. [c.160]

    Расчет коэффициентов массообмена проводился следующим образом. На кривой G = G(t) (рис. 5.10) линейный участок продолжаем до пересечения с вертикальной кривой, проведенной через точку t + Д", соответствующую моменту устаиовления равновесия в системе адсорбат — адсорбент. Находим точку G3 и точку начала криволинейного участка Gi. Для достижения требуемой точности при расхождении то- [c.117]

    Методика расчета коэффициентов диффузии по формуле (2.1.91) была использована при обработке экспериментальных данных, представленных Л. Маркуссен в работе [17], В этой работе проводились экспериментальное и теоретическое исследования по адсорбции паров воды из потока воздуха сферическими гранулами оксида алюминия при различных скоростях потока и температурах. Прежде всего приведем пример расчета коэффициента диффузии на основе экспериментальных данных работы [17]. Кинетические кривые снимались при начальной концентрации адсорбата Са = 0,00342 кг/м скорости потока w — 11,3 м/с, радиусе сферических гранул адсорбента R = = 1,63-10- м, Моо = 0,0642 кг/кг. Равновесие хорошо описывается изотермой Фрейндлиха с показателем 1/т = 0,4906. Результаты эксперимента приведены в табл. 2.6 там же указаны значения вспомогательных величин /(y), рассчитанные по формуле (2.1.90), где я = 0,6737 получено по формуле (2.1.52). На рис. 2.9 экспериментальные данные представлены в координатах s/tKVR ) - f (Y). Хорошо ВИДНО, что точки группируются около не-которой прямой. Угловой коэффициент этой прямой равен и находится из уравнения (2,1.91). [c.54]

    Расчет адсорбционных процессов в неподвижном слое адсорбентов предлагается осуществлять с учетом двух основных факторов, влияющих на характер развития процесса нелинейности изотермы адсорбции и кинетики, определяемой внутренней и продольной диффузией. Представлены аналитические решения вну-тридиффузионных процессов адсорбции на зернах различной геометрии для произвольной нелинейной изотермы с постоянным и переменным эффективными коэффициентами диффузии, функционально зависимыми от степени заполнения адсорбционного пространства адсорбатом. Установлена связь между кинетическими и равновесными характеристиками процесса. [c.5]

    Второй метод оценки температурной зависимости плотности адсорбата был предложен В. Куком и Д. Басмаджаном. Согласно этому методу, предполагается, что при Г < 7о плотности адсорбата и жидкости совпадают, а при Г > Го термический коэффициент адсорбции ао обратно пропорционален температуре, т. е. ход изменения плотности адсорбата совпадает с касательной к кривой зависимости плотности жидкости в точке кипения. [c.30]

    Будем предполагать, что в начальный момент времени зерно свободно от адсорбата и, если не оговорено противоположное, коэффициент диффузии /) = onst. Функция /(с) —дважды дифференцируемая, монотонно возрастающая, выпуклая, имеющая в точке с = О бесконечную производную  [c.35]

    Рассмотренная математическая модель внутридиффузион-ного переноса в гранулах адсорбента предполагает, что массоперенос в твердом теле полностью определяется некоторым постоянным коэффициентом диффузии. Действительно, проникание адсорбата внутрь зерна адсорбента — процесс диффузионный, а под коэффициентом диффузии D понимают количество вещества, диффундирующего в единицу времени через 1 см поверхности при градиенте концентрации, равном единице. Естественно, что нельзя ожидать, чтобы один постоянный коэффициент диффузии описал те явления, которые происходят в процессе переноса адсорбата в таких сложных пористых структурах, которыми обладают гранулы любого промышленного адсорбента. Величина D должна рассматриваться как эффективный коэффициент диффузии, значение которого зависит от структуры пор и вклада в массоперенос различных транспортных механизмов, таких как нормальная или объемная диффузия, молекулярная или кнудсенов-ская диффузия и поверхностная диффузия. Для того чтобы учесть негомогенность структуры адсорбентов, при экспериментальном и теоретическом изучении кинетики адсорбции микропористыми адсорбентами в настоящее время широко используется представление о бипористой структуре таких адсорбентов [18], которое предполагает два предельных механизма массопереноса диффузия в адсорбирующих порах (например, в кристаллах цеолита) и перенос в транспортных порах. [c.50]

    При дальнейн1ем увеличении концентрации вещества или давления пара уменьшается свободная поверхность адсорбента, что влечет за собой снгьженпе его реакционной способности, выражающееся в росте коэффициентов активности адсорбата на поверхности адсорбента (кривые на рис. III. 3 загибаются к оси абсцисс). Коэффициенты активности адсорбата в поверхностном слое могут быть определены из экспериментальной изотермы адсорбции. Константу Генри получают экстраполяцией коэффициента расиределения иа нулевую концен-1 рацию. Если известны коэффициенты активности распределяемого ве[н,естза в объе.мио ( фазе, то ио уравнению (1П.9) легко определить коэффициенты активности компонента [c.113]

    Карбохромы относятся к неспещ1фическим сорбентам с гладкой, однородной и химически инертной поверхностью. Межмолекулярные взаимодействия адсорбат - карбохром сильно зависят от геомефического строения адсорбирующихся молекул. Взаимодействие тем сильнее, чем ближе к поверхности сорбента последние могут расположиться. Т ис, молекулы с разветвленной углеродной цепью удерживаются слабее, чем изомеры линейного строения. Высокие коэффициенты конценфирования, позволяющие определять органические соединения на уровне ПДК в воде, достигнуты и для циклических углеводородов [59 . [c.187]

    Адсорбция из растворов подчиняется уравнению мономолеку-лярной адсорбции Лэнгмюра. Следовательно, функциональная связь адсорбции с равновесной концентрацией адсорбата в растворе описывается криволинейной выпуклой изотермой адсорбции. В результате при повышенных концентрациях тыльная часть хроматографической зоны размыкается и на хроматограммах образуются так называемые хвосты . Поэтому только при очень разбавленных растворах можно избежать дополнительного размывания и принимать коэффициент Генри не зависящим от концентрации. [c.69]

    Приведенные изотермы адсорбции наблюдаются при адсорбции из растворов, компоненты которых смешиваются неограпичейио. Для ограниченно растворимых веществ изучение адсорбции возможно лишь н области малых концентраций. Для разбавленных растворов Г а, поэтому при адсорбции слаборастворимых веществ обычно наблюдается лишь восходящая ветвь изотермы адсорбции, которая в координатах Г=f( ) иногда имеет линейный характер, свидетельствующий о применимости уравнения Лангмюра. Однако предельная адсорбция, рассчитанная по углово.му коэффициенту этой прямой, не всегда отвечает образованию насыщенного монослоя, поэтому расчет удельной поверхности по Г и площади поперечного сечения молекул адсорбата может дать ошибочный результат. [c.55]

    Как показывает название, в основе адсорбционной хроматографии лежит адсорбция разделяемых веи еств на твердой поверхности выбранного адсорбента. Адсорбция обусловлена или физическими ван-дер-ваальсовыми силами межмолекулярного взаимодействия в системе адсорбат—адсорбент (молекулярная хроматография), или силами химического сродства, действующими, например, в процессе реакции при обмене ионов разделяемых компонентов на поверхностные ионы применяемого ионообменного адсорбента (ионообменная хроматография). В обоих случаях главным условием для осуществления разделения должно быть различие энергии адсорбции разделяемых веществ, что равносильно различию коэффициентов адсорбции. [c.11]


Смотреть страницы где упоминается термин Коэффициент адсорбата: [c.319]    [c.247]    [c.455]    [c.520]    [c.21]    [c.32]    [c.50]    [c.231]    [c.241]    [c.30]    [c.278]    [c.428]    [c.113]    [c.38]    [c.332]    [c.57]   
Фазовые равновесия в химической технологии (1989) -- [ c.452 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбат



© 2024 chem21.info Реклама на сайте