Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительно-восстановительная редокс система

    Окислительно-восстановительные реакции играют очень большую роль в ряде биологических процессов. Эти процессы имеют существенное значение для сельского хозяйства. Так, установлено, что для нормального развития растений необходимо, чтобы окислительно-восстановительный потенциал почвы лежал в пределах 0,2—0,7 в. Многие технологически важные системы пищевой промышленности являются окислительно-восстановительными. Редокси-потенциал этих систем оказывает большое влияние на протекание многих ферментативных процессов в них и на интенсивность биологического окисления-восстановления ряда биоколлоидов. [c.272]


    Индикаторами второго типа являются так называемые окислительно-восстановительные или редокс-индикаторы. Эти вещества изменяют свою окраску при изменении потенциала системы. Принцип действия и основные характеристики индикаторов этого типа рассмотрены в гл. 6 (раздел 6.7). [c.272]

    Важнейший процесс биологического окисления, а именно перенос электронов и протонов с окисляемого субстрата на кислород, осуществляемый в тканях при помощи строго определенного ряда промежуточных ферментов-переносчиков, также представляет собой цепь окислительно-восстановительных процессов. Каждое звено этой цепи соответствует той или иной редокс-системе, характеризующейся определенным редокс-потенциалом  [c.55]

    Редокс система хинон — гидрохинон относится к обратимым окислительно-восстановительным системам  [c.176]

    На рис. 1.13 приводится несколько вариантов диаграмм распределения энергетических зон на границе полупроводник— раствор в зависимости от стандартного окислительного потенциала редокс-системы и типа полупроводника. При качественном рассмотрении легко прийти к выводу, что наибольшего перекрывания уровней с равной энергией и, следовательно, наибольшего тока обмена, следует ожидать для полупроводников гг-типа в контакте с редокс-системами, имеющими выраженные восстановительные свойства (низкие Ен) В системах с окислительными свойствами (высокие увеличение тока обмена будет наблюдаться для полупроводников р-типа (рис. I. 13,6). [c.66]

    Инертный проводник I рода (например, Р1), находящийся в контакте с равновесной системой (1), становится электродом данного полуэлемента —приобретает определенный потенциал, называемый окислительно-восстановительным (редокси-потенциал). Знак и величина его измеряются по отношению к нормальному водородному [c.327]

    Допустим, что приобретение электродом соответствующего значения потенциала связано с электрохимическим процессом, происходящим при погружении, например, индифферентного электрода из благородного металла в раствор, содержащий какую-нибудь окислительно-восстановительную (редокс) систему (пару) На поверхности такого металла, обладающего электронной проводимостью, но не способного в данных условиях к окислению или восстановлению, с большей или меньшей скоростью происходит обмен электронами с окисленным (Ох) и восстановленным (Red) компонентами данной редокс системы Ох + пе = [c.20]

    Электронообменные иониты можно перевести в восстановленную форму действием дитионита натрия или в окисленную действием пероксида водорода. В восстановленной форме их применяют для удаления кислорода, пероксидов и галогенов из водных и других растворов. Ионы обратимой редокс-системы можно также количественно восстанавливать и затем определять методами окислительно-восстановительного титрования. Другие области использования электронообменных смол выделение из растворов благородных металлов (золота, серебра), [c.252]


    Величина редокс-потенциала системы характеризует ее окислительно-восстановительную способность. Количественная мера этой способности —AO реакции между окисленной и восстановленной формами. Система с более низким потенциалом не может самопроизвольно окислить систему с более высоким потенциалом. При этом надо помнить, что потенциал зависит не только от природы системы ( °), но и от отношения концентраций [ох] /[red]. [c.196]

    Разложение диацильных пероксидов ускоряется аминами, образующими с ними окислительно-восстановительные (редокс) системы, которые можно применять при пониженных температурах (<50 °С). Например, пероксид бензоила в присутствии восстановителя ]М,Ы-диметиланилина распадается во много раз быстрее, чем без восстановителя. [c.45]

    Окислительно-восстановительные иониты. При введении в ионит группы, представляющей собой окисленную или восстановленную форму соответствующей окислительно-восстановительной системы, получают ионит, обладающий электронообменными свойствами , который называют окислительно-восстановительным (редокс) ионитом. При прохождении через такой ионит раствор восстанавливается (или окисляется), при этом в зависимости от потенциала редокс-системы возможно селективное восстановление (окисление) [51]. Аналогичным действием обладают также электронообменные иониты [52], матрица которых представляет собой редокс-систему (обычно гидрохинон). Такие иониты не содержат ионогенных групп, т. е. не являются ионитами по данному выше определению. Но для них характерно протекание таких же реакций, как и в случае редокс-смол на них происходят электронообменные процессы [c.373]

    Металлические электроды первого рода представляют собой металлическую пластинку или проволоку, погруженную в раствор хорошо растворимой соли этого металла. Электроды из серебра, ртути, кадмия и некоторых других металлов обратимы и дают воспроизводимые результаты. Однако для многих металлов, таких, как хром, кобальт и других, это не характерно и электроды из этих металлов в качестве индикаторных не используются, так как не дают достаточно воспроизводимых результатов. У многих электродов воспроизводимость значительно улучшается, если использовать не просто металл, а его амальгаму. Это амальгамные электроды. Особое место среди индикаторных электродов занимают редокс-электро-ды, служащие для измерения окислительно-восстановительного потенциала системы. В качестве редокс-электродов используются благородные металлы платина, золото, иридий или графит. Потенциал таких электродов зависит от отношения концентраций (активностей) окисленной и восстановленной форм редокс-пары. [c.193]

    Инертный проводник I рода (например, Р1), находящийся а контакте с равновесной системой (1), становится электродом данного полуэлемента — приобретает определенный потенциал, называемый окислительно-восстановительным (редокси-потен-циал). Знак и величина его в первую очередь зависят от соотношения между электроноакцепторной активностью окисленной формы данного атома или иона (ОФ) и их способностью быть донором электронов в виде восстановленной формы (ВФ). [c.163]

    Ох Red уравнение (VH,34) дает Е = Е , следовательно, разность потенциалов между редокс-электродом и раствором, в котором активности окисленной и восстановленной форм данного вещества равны единице, называется нормальным окислительно-восстановительным потенциалом данной системы. Чем больше нормальный окислительно-восстановительный потенциал системы, тем больше активность окислителя в этой системе, тем, следовательно, в большей мере выражены ее окислительные свойства и наоборот. Так, например, нормальные окислительно-восстановительные потенциалы систем [c.290]

    ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНАЯ (РЕДОКС) ЭЛЕКТРОДНАЯ СИСТЕМА [c.123]

    В области точки эквивалентности при переходе от раствора, недотитрованного на 0,1 %, к раствору, перетитрованному на 0,1 %, потенциал изменяется больше чем на 0,5 В. Резкий скачок потенциала позволяет использовать для обнаружения точки эквивалентности непосредственно потенциометрические измерения или окислительно-восстановительные (редокс) индикаторы, окраска которых изменяется при изменении потенциала. Ввиду необратимости системы МпОГ/Мп в условиях титриметрического анализа реально наблюдаемый скачок титрования будет несколько меньше, чем рассчитанный. Равновесные концентрации веществ в точке эквивалентности и в других точках кривой титрования зависят от константы равновесия, которая, в свою очередь, определяется разностью стандартных потенциалов, как это можно видеть из уравнения (6.25). Чем больше разность стандартных потенциалов, тем больше [c.271]

    Присоединение и отдача электронов — сопряженные процессы, так как свободные электроны могут существовать в химических системах в исключительно малых концентрациях. Поэтому окисление всегда происходит одновременно с восстановлением, и наоборот. Например, при образовании HgO из Hg и Ог ртуть окисляется до Hg2+, а кислород восстанавливается до О . Вообще, все процессы, в которых происходит обмен электронами, называют окислительно-восстановительными или редокс-процессами. [c.408]


    В данной работе следует I) приготовить смеси с различным содержанием ионов Fe + и F + 2) измерить компенсационным методом для всех смесей э. д. с. и рассчитать стандартный окислительно-восстановительный потенциал исследуемой системы. По полученному значению Е° рассчитать константу равновесия и электродной реакции 3) исследовать влияние комплексообразователя на редокс-систему. Установить характер изменения редокс-потенциала. Построить график зависимости редокс-потенциала от состава изучаемой системы 4) построить график зависимости редокс-потенциала от логарифма отношения активности окисленной и восстановленной форм ионов определить экстраполяцией стандартный редокс-потенциал Е°. [c.306]

    Окислительно-восстановительные (редокс) индикаторы -органические соединения, способные к окислению или восстановлению, причем окисленная и восстановленная формы имеют различную окраску, которая зависит от потенциала системы. [c.86]

    Биологическое значение редокс-потенциалов. Окислительно-восстановительные потенциалы имеют большое значение в физиологии человека и животных. К числу редокс-систем относятся такие системы в крови и тканях, как гем — гематин и цитохромы, в которых содержится двух- и трехвалентное железо аскорбиновая кислота (витамин С), находящаяся в окисленной и восстановлен- [c.54]

    Окислительно-восстановительные иониты получают, вводя в обычный ионит ионы обратимой редокс-системы. Например, окислительно-восстановительные иониты образуются при введении в сильнокислотный катионит пар ионов Fe(Il)/Fe(lll), Sn(II)/Sn(IV), e(II)/ e(IV), Ti(IIl)/Ti(IV) и др. [c.252]

    Потенциал, который принимает индифферентный электрод при погружении в данную окислительно-восстановительную систему, называется редокс-потенциалом. Из общего соотношения (5.64) следует, что редокс-потенциал Аф зависит от температуры, отношения активностей окисленной и восстановленной форм и от природы системы (Аф°). [c.223]

    При погружении инертного электрода (платина, золото) в раствор, содержащий окисленную и восстановленную формы вещества, может быть получен обратимый электрод. Такие электроды называются окислительно-восстановительными. Необходимо напомнить, что нет существенного различия между электродами этого типа и рассмотренными ранее электродами, такими, как металл в растворе своих ионов или неметалл в растворе своих анионов. Тем не менее некоторые редокс-системы имеют общие свойства, оправдывающие их отдельное рассмотрение. [c.28]

    Цепь из двух индифферентных электродов, помещенных в различные редокс-системы, называют окислительно-восстановительной цепью. Ее э. д. с. равна разности редокс-потенциалов электродов и, следовательно, зависит от величины нормальных редокс-потенциалов и соотношения концентраций окисленных и восстановленных форм у каждого электрода  [c.54]

    Формальный окислительно-восстановительный потенциал системы - -это условный (относительный) потенциал редокс-пары при формальных концентрациях реагентов (формальностях), т. е. при концентрациях, равных 1 моль/л, и при определенных задатплх концентрациях остальных компонентов раствора. Формальный потевдиал обозначают символом °.  [c.153]

    Любое состояние химического равновесия может быть описано константой равновесия К. Это очень полезный параметр, и он может быть использован для описания большого ряда аналитически важных химических процессов, та- ких, как кислотно-основные взаимодействия, комплексообраэованне, а также окислительно-восстановительные (редокс) реакции. Гетерся енные равновесия играют важную роль в современных аналитических методах разделения, таких, как экстракция и хроматография. Константа равновесия — это средство, с помопц>ю которого могут быть представлены и подробно описаны химиче-ские равновесия всех типов. Введение этой характеристики системы позволяет объяснять и моделировать особенности химических процессов в сложных системах.  [c.121]

    Было найдено, что распад Н2О2 на свободные радикалы значительно ускоряется в присутствии ионов двухвалентного железа Fe Ион Fe является восстановителем, а перекись водорода — окислителем, поэтому такие системы были названы окислительно-восстановительными (редокс-снстемы). Кроме солей двухвалентного железа, эффективными активаторами перекиси водорода оказались соли хрома, ртути, меди, титана и марганца. Энергия активации окислительно-восстановительного инициирования полимеризации на 10—20 ккал/моль ниже, чем при термическом распаде инициатора. [c.131]

    Основное кислотно-основное равновесие А В-ЬН+ формально очень похоже на окислительно-восстановительную реакцию Я Ох + е. И в том и в другом случае реализуемые на практике процессы получают как комбинацию двух кислотно-основных или редокс-систем. Следовательно, представляет интерес указать на главные различия между обоими упомянутыми классами явлений. Прежде всего отметим, что равновесие между двумя кислотно-основными парами почти всегда устанавливается быстро, в то время как две редокс-системы часто реагируют очень медленно. Далее, вода и аналогичные растворители обратимо участвуют в кислотно-основных реакциях, однако обычно являются индифферентными растворителями для редокс-систем (в том случае, если они не окисляются или не восстанавливаются необратимо). По этой причине силу кислот и оснований всегда определяют, рассматривая равновесие со стандартной кислотно-основной парой, обычно с растворителем, тогда как редокс-системы характеризуют потенциалом относительно стандартного электрода. Стандартные окислительно-восстановительные потенциалы, конечно, тесно связаны с константами равновесия. Например, если окислительно-восстановительный потенциал системы К—Ох измеряют по отношению к стандартному водородйому электроду, величина потенциала определяется равенством РЕ = кТ пК, где К — константа равновесия процесса К + + HзO+ч Ox- /гИг + НгО. В общем случае, однако, термодинамику таких реакций нельзя исследовать непосредственно кроме того, соответствующие константы равновесия изменяются в пределах 50—60 порядков. Для характеристики кислотно-основных равновесий, вообще говоря, можно было бы использовать редокс-потенциал на том основании, что потенциал водородного электрода в растворе, содержащем кислотноосновную пару А—В, определяется константой равновесия процесса А- -е В + /гНг. Если окислительно-восстановитель-ный потенциал данной системы измерять относительно стандартного водородного электрода, соответствующую э. д. с. можно непосредственно связать с константой равновесия реакции А-)-Н20ч=ьВ + Нз0+. Значения констант равновесия [c.57]

    Боковые группы цистеина и гистидина проявляют слабые кислотные свойства значения рК этих групп равны 8.3 и 6.0 соответственно, однако атом серы цистеина и атом азота в имидазольном кольце гистидина могут принимать и передавать электрон в зависимости от состояния окружающей среды. Окислительно-восстановительное состояние системы определяется как отнощение концентраций окисленного и восстановленного компонента окс-редокс пары, например РеЗ /Ре2 или НАД+/НАД Н. На схеме представлена реакция восстановления никотинамидного кольца никотинамидаденилдинуклеотида (НАД+) под действием сульфгидрильной группы цистеина  [c.37]

    Некоторые исследователи изучали вопрос о возможности автоматического определения углеводов. Из спектрофотометрических методов можно использовать окисление глюкозы гексацианоферратом (III) с последующим измерением уменьшения поглощения раствора. Из электрометрических методов определения глюкозы наиболее удобным является измерение окислительно-восстановительного потенциала системы феррицианид/ферро-цианид. Портер и Сойер [76] определяли содержание углеводов в кормах после гидролиза методом редокс-потенциометрии при окислении и гексацианоферратом (III). Этим методом можно проанализировать 40 образцов в час и определить содержание декстрозы в количестве 0,0025—0,5%. Ленадо и Рехниц [77] описали автоматический ферментный метод определения глюкозы в сыворотках, основанный на следующих реакциях  [c.552]

    Окислительно-восстановительные электроды. Все электроды, которым соответствует потенциалопределяющие реакции с участием электронов, представляют собой окислительно-восстановительные системы. Однако принято в особую группу выделять электроды, в потенциалопределяющих реакциях которых не участвуют простые вещества — газы, металлы. Эти электроды называются окислительновосстановительными редокси-электроды). Они, как правило, состоят из инертного вещества с электронной проводимостью (например, платина), погруженного в раствор, содержащий вещества с различной степенью окисления Red и Ох. В общем виде схема электрода -и уравнение потенциалопределяющей реакции записываются так  [c.483]

    Для того чтобы записать уравнение окислительно-восстановительной реакции, прежде всего надо знать исходные вещества и конечные продукты реакции. В отдельных случаях однозначный ответ можно получить из расчета, основанного на данных об окислительно-восстановительных потенциалах соответствующих редокс-пар (разд. 33.5.1.5). Однако часто приходится устанавливать полученные в реакции. вещества с помощью химического анализа. Особое внимание следует обращать на возможность выделения в ходе реакции газов. Например, при реакции пиролюзита МпОг с соляной кислотой цвет и запах выделяющегося газа указывает на образование хлора, а цвет и другие свойства раствора — на образование Мп +. Зная компоненты системы, можно установить состав сопряженных окислительно-восстановительных пар, взаимодействующих в данной реакции. В нащем примере такими парами являются МПО2/МП2+ и С1 /С12- Сначала запишем по 1уреакции для обеих сопряженных пар. Начнем с определения степени окисления, которую атомы элементов имеют в окисленном и восстановленном состоянии. Далее найдем число электронов, которые участвуют в каждой полуреакции  [c.410]

    Интересно также поведение окислительно-восстановительной системы Н2О2 в присутствии солей Мп(П) и МпОг для нее характерны следующие редокс-потенциалы  [c.419]

    Bo всех системах, отвечающих электродам 1, 2 и 3-го рода, одним из компонентов восстановленной формы служит металл электрода. Если же инертный металл электрода не участвует в полуреакциях типа (Г) и (Д) и является лишь передатчиком электронов между веществами Ох и Red, то такие системы называют окислительн о-в осстановительными электродами или редокс-системами. Это название широко распространено, хотя и не совсем удачно, поскольку на любом обратимом электроде идет окислительно-восстановительная полуреакция типа (Г) и (Д). В качестве примера окислительно-восстановительных электродов можно привести следующие наиболее простые системы  [c.132]


Смотреть страницы где упоминается термин Окислительно-восстановительная редокс система: [c.245]    [c.245]    [c.271]    [c.134]    [c.414]    [c.198]    [c.30]    [c.234]    [c.136]   
Органические перекиси, их получение и реакции (1964) -- [ c.450 , c.451 ]

Органические перекиси, их получения и реакции (1964) -- [ c.450 , c.451 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановительные системы

Окислительно-восстановительные системы

Редокс-система



© 2024 chem21.info Реклама на сайте