Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент фосфорной кислоты

    Для процессов теплообмена, протекающих в химически агрессивных средах, в ряде случаев используют теплообменники из неметаллических материалов. К таким аппаратам относятся блочные теплообменники, выполненные из графита (рисунок 1.10). Пропитанный феноло-формальдегидными смолами графит является химически стойким материалом в весьма агрессивных средах (например, в горячей соляной, разбавленной серной, фосфорной кислоте и др.) и отличается высокими коэффициентами теплопроводности /33, 34/. [c.28]


    Удельная и молярная электрическая проводимость растворов фосфорной кислоты, температурный коэффициент электрической проводимости [112, 113] — см. также рис. 270 [c.177]

    В производстве термической фосфорной кислоты коэффициент избытка воздуха принимают 1,75—2,0, что соответствует содержанию кислорода в отходящих газах 10—13 масс. % и температуре горения фосфора 1800—2100 °С. [c.73]

    Пособие содержит описания лабораторных работ по общей химии (определение эквивалентов и молекулярных масс, кинетика реакций, электролитическая диссоциация, гидролиз и др.), а также опытов по изучению свойств элементов н их важнейших неорганических соединений. Особое внимание уделено описанию синтезов соединений, не требующих сложной аппаратуры. Каждый раздел заканчивается перечнем контрольных вопросов, упражнений и задач. В практикум по неорганической химии впервые включен ряд инструментальных работ (определение частного порядка и константы скорости реакции, определение коэффициента распределения, спектрофотометрическое определение состава комплексов и др.) и опытов по химии элементов (химии галлия и лантаноидов, химические свойства фосфорной кислоты и ее солей и др.). [c.2]

    При низкой степени полимеризации сырья полимеры состояли почти из чистой димерной фракции, при полимеризации на 50% две трети полимера составляла димерная фракция, а лри почти полной полимеризации сырья она составляла от 35 до 40 % от суммарного количества полимера. Из сказанного видно, что летучесть полимеров из нормальных олефинов можио контролировать путем изменения глубины полимеризации сырья, т. о. в непрерывном процессе, изменением коэффициента рециркуляции. Эти результаты находятся в резком противоречии с данными [24, 22 Ь]. которые были получены при применении 100 %-ной фосфорной кислоты как катализатора при полимеризации пропилена из пропилена нри этом образовалось сравнительно небольшое количество димера, а полимер состоял главным образом из тримеров. [c.195]

    Особенностью реакции полимеризации, катализируемой фосфорной кислотой, является возможность регулирования молекулярного веса полимера в определенных пределах за счет применения различных типов катализаторов, изменения температуры реакции и коэффициента рециркуляции легкого полимера. В случае проведения процесса при высоких температурах образуются низкомолекулярные полимеры. Повышение рециркуляции приводит к большему выходу высокомолекулярных продуктов. [c.105]


    Коэффициент технологического выхода a bux характеризует степень перехода Р2О5 из исходного фосфата в фосфорную кислоту его вычисляют по формуле  [c.321]

    Напишите в общем виде уравнения реакций между фосфатом металла и серной кислотой. В результате реакций могут образоваться нормальные и кислые соли фосфорной кислоты. Расставьте коэффициенты. [c.29]

    При увеличении содержания НР коэффициент активности воды несколько возрастает, что указывает на разрушение ассоциатов-гидратов фосфорной кислоты плавиковой кислотой с выделением воды. [c.93]

Рис. 4.29. Влияние температуры на pH (а) и коэффициент активности воды (б ) в растворе фосфорной кислоты. Рис. 4.29. <a href="/info/15368">Влияние температуры</a> на pH (а) и <a href="/info/678395">коэффициент активности воды</a> (б ) в <a href="/info/399433">растворе фосфорной</a> кислоты.
    Коэффициенты диффузии О фосфорной кислоты в водных растворах при 25 С [154 ] [c.176]

    Коэффициент преломления растворов фосфорной кислоты при 25 и 40 - С и длине волны оптического излучения 589,3 нм 1154  [c.177]

    Химико-технологические расчеты в производстве минеральных удобрении основаны иа балансовых уравнениях химических реакций обменного разложения или окислительпо-восстаповительных гетерогенных некаталитических процессов. В производстве фосфорной кислоты степень разложе1Н1я фосфата серион кислотой характеризуется коэффициентом разложения [c.172]

    В тех случаях, когда расходуемые в производственном процессе сырье, материалы и полуфабрикаты имеют различную Р1лажность, концентрацию, содержание основного (полезного) р ен1ества, расходные ко-зффициенты рассчитываются исходя и.- особенностей характеристики материально-сырьевых ресурсов, предусмотренной ГОСТом, ТУ или РТУ. Например, расходные коэффициенты по таким видам сырья, как фенол, крезол и другие, в производстве пластических масс устанавливаются в пересчете на 100%-ное содержание их, фосфорная кислота — на 95%-иое содержание пятиокиси фосфора, аммиачная вода — иа 25 %-ное содержание аммиака и т. д. В производстве химических волокон, где расходуемое сырье для выпуска продукции имеет большую гигроскопичность, расходные коэффициенты устанавливаются по кондиционному весу, т. е. весу с заранее установленной нормой влажности. Так, в производстве вискозного волокна норма влажности целлюлозы (исходного сырья) установлена 12%, корда-капрона —до 0,2% и т. д., в производстве пластических масс — полистирола суспензионного — 67о, древесной муки — 5,3% и т. д. [c.142]

    Средние коэффициенты активности V и осмотические коэффициенты Ф растворов фосфорной кислоты при 25 °С [154 ] [c.179]

    Лабораторную посуду изготовляют из твердого фарфора, который без покрытия глазурью выдерживает температуру до 1300°. Фарфор, покрытый глазурью, размягчается при —1200°. Коэффициент линейного расширения фарфора приблизительно такой же, как и стекла дуран или пирекс — около 3,5-10" . Вследствие незначительного теплового расширения фарфоровая посуда выдерживает резкие перепады температур и, например, может быть использована при прокаливании на стеклодувной горелке. К химическим агентам фарфор инертен в той же степени, как очень хорошее химическое стекло. Концентрированные минеральные кислоты на фарфор не действуют, за исключением фосфорной кислоты при нагревании и, конечно, плавиковой кислоты, которая разъедает любой материал, содержащий двуокись кремния. При нагревании фарфор заметно разрушается концентрированными растворами щелочей. [c.31]

    Переход продуктов деления в органическую фазу снижается при введении комплексообразующих реагентов оксалатов, фосфатов и др. Присутствие фосфата в концентрации 0,1 моль/л снижает коэффициент распределения циркония почти в сто раз, фторосиликата (0,1 М) — в десять раз, сульфата (0,1 М) — в щесть раз [31]. При этом извлечение плутония также ухудшается. Так, при содержании в растворе 40% фосфорной кислоты коэффициент распределения Ри(1У) в отсутствие высаливателей снижается более чем на один порядок, а коэффициент распределения урана снижается примерно в полтора раза [247]. [c.323]

    Количество Р2О5, переходящее в раствор в процессе экстракции при коэффициенте извлечения фосфорной кислоты в раствор 97 % (по заданию потери составляют 3%)  [c.340]

    Жидкость выходит из подогревательной секции с температурой, близкой к точке кипения и, попадал в испарительную секцию, сразу же закипает. Этим достигается высокий коэффициент теплопередачи в испарительной секции. Такой выпарной аппарат был испытан фирмой А0К1С0 для производства концентрированной фосфорной кислоты. Ранее применяемые испарители растворов фосфорной кислоты имели тот недостаток, что поверхность теплообмена быстро загрязнялась отложениями сернокислого кальция, фторосилпкатов, а также соединений алюминия и железа. Для удаления этих отложений необходимо останавливать испаритель на 12—16 ч каждые 5—7 дней в 2-секционном выпарном аппарате отложение солей сведено к минимуму, благодаря чему аппарат может работать без остановки на очистку в среднем 28 дней [42]. [c.121]


    Электротермический метод получения фосфорной кислоты основан на восстановлении фосфора из фосфата кальция ири высоких температурах (1400—1600°С) в электрических печах. Пары фосфора, выходящие из печи, окисляют (сжигают) с образованием иентаоксида фосфора, гидратацией которого получают фосфорную кислоту (так называемую термическую фосфорную кислоту). Фосфорную кислоту вырабатывают также сжиганием желтого фосфора, иолученного возгонкой в электропечах и конденсацией паров. Оср[овное преимущество электротермического способа -перед экстракционным заключается в возможности получения фосфорной кислоты любой концентрации (вплоть до 100%-ной фосфорной кислоты и полифосфорной кнслоты, содержащей до 89% Р2О5) и высокой степени чистоты сырьем для электротермической возгонки фосфора могут служить любые фосфаты, в том числе низкокачественные, без необходимости их обогащения. Однако велики расходные коэффициенты по электроэнергии. [c.151]

    МИ методами. В отсутствие подходящего изотопа-осадителя, анализ проводят косвенным методом. Ишибаши и Киши предложили метод определения Са и Ы, основанный на осаждении их в виде фосфатов действием фосфорной кислоты с последующим растворением осадка и определением выделившейся кислоты при помощи радиоактивного изотопа свинца. (В то время еще не был известен радиоактивный изотоп Аналогичные определения можно проводить, используя принцип соосаждения радиоактивного изотопа с определенным веществом. При этом должны быть известны коэффициенты распределения веществ все процессы осаждения следует проводить в одинаковых условиях. Эренберг применил указанный метод для определения щавелевой кислоты, осаждая ее действием раствора СаС12, содержащего ТЬВ [171. Метод радиоактивных изотопов позволяет с высокой точностью проводить определение высокомолекулярных веществ (сахар, крахмал) и продуктов полимеризации по их концевым группам другие методы анализа указанных соединений дают довольно большую ошибку. При проведении анализа методом осаждения с применением радиоактивных индикаторов массу осадка можно определить, даже если реакция осаждения протекает нестехиометрически или в результате реакции образуется довольно растворимое соединение, так как распределение радиоактивного изотопа между двумя фазами постоянно. [c.316]

    При взаимодействии фосфата кальция с серной кислотой в зависимости от количеств реагирующих веществ могут образовываться такие соединения а) сульфат кальция и фосфорная кислота б) гидрофосфати сульфат кальция в) дигидрофосфат и сульфат кальция. Составьте уравнения реакций и расставьте коэффициенты. [c.29]

    Можно допустить, что именно концентрационный разрез Лт рекомендован для осуществления технологии. Исходя из того, что процесс гидратации приводит к связыванию части воды в гидратные структуры, можно добавлять вещества, которые, мало изменяя концентрацию А , видоизменяют строение таких структур. Изменение строения структур может сопровождаться либо увеличением, либо уменьшением давления водяного пара над раствором, что, естественно, отразится на значении коэффициента активности воды (Аунао или — Аунго)- Например, добавление соединений кальция, фтора (НР или Н251Рв) к раствору фосфорной кислоты повышает активность воды, в присутствии соединений алюминия и серной кислоты давление пара уменьшается. [c.92]

    При выпаривании водных растворов отводимая паровая фаза может содержать летучие компоненты, которые были растворены в исходном растворе или образовались при его нагревании. В этом случае пар становится сложнее по составу, вследствие чего для конденсации или поглощения каждой из его составных частей необходимо создавать соответствующие условия. Например, упаривание оборотного раствора (фильтровой жидкости) после отделения ЫаНСОз в содовом производстве или выпарка суспензии солей, получаемой в производстве аммофоса, сопровождаются выделением водяного пара и аммиака. При упаривании экстракционной фосфорной кислоты образуется газ, состоящий из водяного пара и фтористых соединений. Удаление из раствора неводных летучих компонентов требует дополнительной затраты теплоты в количестве, определяемом из теплоты испарения. Для увеличения степени извлечения их в газовую фазу применяют разные методы повышения коэффициентов их активности в растворе. [c.232]

    Применяемый в качестве удобрения двойной суперфосфат, основным компонентом которого является дигидрофосфат кальция (монокальцийфосфат) Са(Н2Р04)2 Н20, получают разложением природных фосфатов фосфорной кислотой. При сушке двойного суперфосфата происходит не только удаление влаги из гранул продукта, но идут и химические реакции, сопровождающиеся растворением и кристаллизацией твердых фаз, изменением состава жидкой фазы. Это приводит к дополнительному значительному увеличению коэффициента разложения сырья — апатитового концентрата или фосфорита — и к повышению содержания в продукте водорастворимого и усвояемого Р2О5. [c.367]

    Количество продукционной фосфорной кислоты определяется в зависимости от ее концентрации с учетом установленного опытным путем коэффициента выхода Р2О5  [c.127]

    Таким образом, проницаемость фосфорной кислоты в резины на основе хлоропренового латекса согласуется со вторым законом Фика, что свидетельствует об отсутствии химического взаимодействия кислоты с образцом защитного покрытия и, следовательно, проникновение кислота в иссле(дувмые резины происходит по маха-низцу активированной диффузии. Исходя из этого, принимаем, что коэффициент диффузии кислоты в образец постоянен при условии неизменных концентраций кислоты и температуры /бУ. [c.56]

    Расходные коэффициенты сырья на производство экстракционной фосфорной кислоты зависят от применяемого фосфата и условий процесса. Например, на одном из заводов на г Р2О5 в готовой кислоте расход апатитового концентрата составляет 2,64 г, и при норме серной кислоты 91,5 кг на 100 кг фосфата расход ее равен 2,41 т (в пересчете на моногидрат). Расходные коэффициенты при переработке разных фосфоритов сильно колеблются примерно от 3,3 до 6 г фосфорита и от 2,6 до 4,1 т серной кислоты. Расходные коэффициенты при переработке фосфоритов больше, чем при переработке апатита по фосфату в 1,5—2,3 раза, по Р2О5, содержащейся в фосфате, в 1,02—1,27 раза по серной кислоте в 1,2— 1,7 раза (в зависимости от количества примесей на 1 вес. ч. Р2О5 в фосфате). [c.130]

Рис. 2. Зависимость логарифма коэффициента диффузии 80 -но1 фосфорной кислоты в покрытие и логарифма времени защитного действия пок Шйн от темдерату Рис. 2. <a href="/info/301103">Зависимость логарифма</a> <a href="/info/3327">коэффициента диффузии</a> 80 -но1 <a href="/info/6866">фосфорной кислоты</a> в покрытие и логарифма <a href="/info/1760218">времени защитного</a> действия пок Шйн от темдерату
    Скорость реакции апатита с фосфорной кислотой зависит также от температуры. Температурный коэффициент скорости растворения апатита в растворах фосфорной кислотынаходится в пределах от 1,31 до 1,48. [c.104]

    Кварцевое стекло отличается высокой термической стойкостью длительное применение его допустимо при температурах до 1 000° С, кратковременное— до 1 300—1400°С. Изделия из кварцевого стекла, нагретые до 700—800° С, не трескаются при погру жении в воду. Теплопроводность квар цевого стекла — 6—11 кюал1м ч град Коэффициент его линейного расшире ния в 6 раз меньше, чем фарфора, I в 12—20 раз меньше, чем простого силикатного стекла. Кварцевое стекло имеет вьгсО)Кую электроизоляционную способность. Оно устойчиво по отношению КО всем минеральным и органическим кислотам любых концентраций (кроме плавиковой и фосфорной кислот). Поэтому во многих случаях им заменяют цветные Металлы, а иногда даже серебро и платину. [c.58]

    Технологический выход обычно на 2 3% ниже коэффициента извлечения Р2О5 в раствор (/Сизвл)- Это объясняется недостаточной отмывкой фосфогипса от раствора фосфорной кислоты. [c.126]

    Изделия из кварцевого стекла не следует нагревать длительное время выше 1100°, так как при этом происходит рекристаллизация аморфного кварца в а-кристобаллит с более высоким коэффициентом линейного расширения. Необходимо также помнить, что при высокой температуре кварп ведет себя как сильная кислота и разрушается не только щелочами, но и окислами металлов. В местах контакта в этом случае образуется легкоплавкое стекло, и изделие при охлаждении растрескивается. Вода вообще не действует на кварц, поэтому посуда из кварца является идеальной для проведения некоторых физико-химических работ. Воздействие на кварц минеральных кислот незначительно. Фтористоводородная и фосфорная кислоты при нагревании травят кварц. [c.9]

    Скорость разложения фосфорита Каратау в большом объеме фосфорной кислоты (200 мл кислоты на 10 г фосфорита) значительно больше , чем апатита и также увеличивается с повышением температуры. При 60° уже через 30 мин степень разложения фосфорита кислотой концентрации 29% Р2О5 (40% Н3РО4) составляет 99,86%, тогда как при 20° она достигает 98,32% лишь за 1,5 ч. Температурные коэффициенты скорости разложения фосфорита в диапазоне концентрации кислоты от 7,2 до 22,0% Р2О5 изменяются соответственно от 1,28 до 1,34. [c.189]

    Первую экстракцию урана проводили при отношении объема водной фазы к объему органической фазы, равном 1,5. Водная азотнокислая фаза после экстракции урана содержала весь плутоний, 1 г/л урана, молибден, магний, осколочные элементы и до 40 г/л фосфорной кислоты. Экстракцию плутония из таких растворов проводили после добавления к нему высаливателя — нитрата алюминия или железа. В данном процессе наиболее эффективным высаливателем оказался нитрат железа(1И). Добавление высаливателя в количестве 1 М позволило извлекать Ри(1У) в присутствий фосфорной кислоты с коэффициентом распределения 10. Плутоний экстрагировали 20%-ным раствором ТБФ при отношении объемов водной и органической фаз, равном 1. В органическую фазу извлекалось свыше 98% плутония. Коэффициент очистки от р-активных осколочных элементов равен 300, от уактивных осколочных элементов — 50. Промывка органической фазы ЗМ НМОз и последующая реэкстракция плу-ТОН1ИЯ увеличивают коэффициент очистки плутония от у-активных примесей до 150. [c.324]

    Для мелкозернистых песчаных грунтов с коэффициентом фильтрации 0 —10 м/сут предложены способы силикатизации с помощью фосфорной кислоты, серной кислоты и сульфата алюминия, алюмината натрия и кремнефтороводородной кислоты. Применение кремнефтороводородной кислоты особенно эффективно на тонкопесчаных грунтах, в том числе и со значительным содержанием гумуса. Может быть рекомендован закрепляющий раствор следующего объемного состава, ч.  [c.89]

    В оптимальных условиях он составляет 97—997о- Очевидно, что технологический выход определяется, в свою очередь, коэффициентами извлечения Р2О5 в раствор и отмывки фосфорной кислоты из фосфогипса [c.127]

    На рис. 272 момент насыщения раствора определяется точками пересечения луча растворения гидроксилапатита (например, AR в кислоте концентрации 25% Р2О5) с ветвями изотерм (точки а и ai при 75 и 100° для указанного примера). Степень разложения фосфата (гидроксилапатита) для отдельных точек на кривых растворимости определяется по проходящей через них линии степени нейтрализации (лучу растворения) при помощи верхней части диаграммы. Пример графического определения коэффициента разложения фосфорной кислотой концентрации 40% РгОбПри 100° (для узловой точки при 100°) показан тонким пунктиром. Из положения узловых точек Е видно, что степень нейтрализации жидкой фазы, а следовательно, и коэффициенты разложения в этих точках близки к максимуму для каждой температуры. Для графического определения начальных концентраций фосфорной кислоты, обеспечивающих насыщение раствора в узловых точках Е, проводятся лучи растворения гидроксилапатита через точки Е до пересечения с ординатой (точки Л, В, С, F соответственно для 40, 75, 100 и 115°). Наибольшее разложение апатита в равновесных условиях с образованием насьшхенного раствора наблюдается при более низких температурах и концентрациях фосфорной кислоты (табл. 75). Уве- [c.186]

    Температурный коэффициент скорости растворения апатита до достижения насьвдения в относительно разбавленных растворах фосфорной кислоты находится в пределах от 1,3 до 1,5, а в растворах 2 содержащ,их 51,5—53,5 /о Р2О5 — от 1,68 до 1,73. [c.189]

Рис. 285. Изменение коэффициента разложения апатитового концентрата во времени при стехиометрической норме фосфорной кислоты и температуре 20°. Концентрация кислоты (в % Р2О5) —13,6 2 — 21,0 3-36,4 4 - 64,8 5 - 45,6, 6 - 55,8 7 - 51,5 в - 53,6. Рис. 285. <a href="/info/22940">Изменение коэффициента</a> <a href="/info/715366">разложения апатитового концентрата</a> во времени при стехиометрической <a href="/info/767849">норме фосфорной кислоты</a> и температуре 20°. Концентрация кислоты (в % Р2О5) —13,6 2 — 21,0 3-36,4 4 - 64,8 5 - 45,6, 6 - 55,8 7 - 51,5 в - 53,6.

Смотреть страницы где упоминается термин Коэффициент фосфорной кислоты: [c.332]    [c.369]    [c.270]    [c.257]    [c.321]    [c.306]    [c.148]    [c.53]    [c.116]    [c.187]    [c.191]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициенты кислот



© 2024 chem21.info Реклама на сайте