Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото III определение ванадием

    Из рассмотренных примеров фотохимического комплексонометрического титрования отдельных катионов и их смесей видно, что фотохимическое титрование можно применять для определения катионов, которые сами не способны восстанавливаться под действием света. Это значит, что можно определять очень многие элементы, как те, которые могут фотохимически восстанавливаться или окисляться (элементы с переменной валентностью), например железо, медь, серебро, уран, молибден, вольфрам, рений, таллий, золото, ртуть, ванадий, хром, мышьяк и другие, так и элементы с постоянной валентностью, способные образовывать комплексные соединения и оказывать при этом ингибирующее или сенсибилизирующее действие на фотохимические реакции. К последней группе принадлежат практически все металлы, образующие двух-, трех- или четырехзарядные катионы. [c.40]


    В присутствии избытка амина (например, три-н-бутиламина) легко могут быть количественно отделены тартратные комплексы следующих ионов Pd , VO " , иоГ, Fe , Bi - > Zr" и e Комплекс урана (VI) интенсивно окрашен в желтый цвет. Комплекс ванадия (V) интенсивно окрашен в голубой цвет, а поэтому может быть использован для определения ванадия фотометрическим методом. Тартратный комплекс церия (IV) количественно экстрагируется в присутствии избытка амина с окрашиванием неводной фазы в оранжево-красный цвет. Родий (III) экстрагируется с интенсивным красным окрашиванием. Золото (III) и палладий (II) через некоторое время после экстракции восстанавливаются в органическом слое до металла. [c.170]

    Этот реагент дает также желтые окраски с золотом и платиной. Однако золото и платина встречаются в силикатных породах в количествах, недостаточных, чтобы оказывать мешающее влияние на определение ванадия, но платина, попадающая из платиновой посуды, может полностью исказить фиолетовую окраску от пород, содержащих лишь п - 10 % ванадия. По этой [c.441]

    Применяют силоксен как индикатор в методах о ис-ления — восстановления, для определения микроколичеств церия, ванадия, золота, марганца и др. [c.368]

    В качестве окислительно-восстановительного индикатора при титровании солей цинка раствором ферроцианида для обнаружения меди, золота, ванадия для количественного определения нитритов и золота для кинетического определения хрома (П1). [c.134]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Прямое диспергирование не является ни единственным, ни наиболее эффективным способом получения дисперсий. Со времен Сведберга [8] в коллоидной химии различают другой общий метод получения дисперсных систем — конденсационный метод. Мельчайшие частицы, самопроизвольно возникающие в процессе конденсации — образования новой фазы из метастабильных (пересыщенных) паров, растворов или расплавов, — при определенных условиях образуют достаточно устойчивые коллоидные дисперсии. Образование новой конденсированной фазы часто проходит через стадию капель аморфной жидкости, под влиянием поверхностного натяжения приобретающих сферическую форму. Как показали 3. Я. Берестнева и В. А. Каргин [9], из пересыщенных растворов двуокиси кремния, двуокиси титана, пятиокиси ванадия, сернистого мышьяка, металлического золота и т. д. вначале возникают аморфные сферические частицы сравнительно большого размера лишь впоследствии они распадаются на более мелкие кристаллики. Явление самопроизвольного возникновения капель новой фазы с повышенной концентрацией растворенного вещества в процессе ее образования из метастабильных растворов высокомолекулярных соединений часто принято называть коацервацией [10—13]. Во всех этих случаях конденсационный метод приводит к образованию дисперсий, состоящих из изо-метричных частиц. [c.9]

    Иридий (IV), рутений (IV), серебро и ванадий (V) создают серьезные препятствия при определении золота. [c.66]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    ХИМИКО-СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ, ВАНАДИЯ, ЖЕЛЕЗА, ЗОЛОТА, КАЛЬЦИЯ, МАГНИЯ, МАРГАНЦА, МЕДИ, [c.479]

    Химико-спектральное определение алюминия, ванадия, железа, золота кальция, магния, марганца, меди, никеля, олова, свинца, серебра, сурь мы, титана, хрома и цинка в иоде............. [c.527]

    Химико-спектральное определение бериллия, магния, кальция, бария, алюминия, титана, ванадия, вольфрама, хрома, марганца, железа, кобальта, никеля, меди, серебра, золота, цинка, кадмия, индия, олова, свинца, висмута, галлия и сурьмы в боре, борном ангидриде и борной кислоте Химико-спектральное определение магния, кремния, алюминия, меди, свинца, железа, фосфора, мышьяка, молибдена и натрия в боре..... [c.527]

    В аналитической химии для колориметрического определения золота, нит рат-иона, церия(1У) и обнаружения золота, кобальта, меди, ванадия. [c.122]

    Определению мешают по механизму (б) — золото (1П) Ф = 1,1), рений (VII) (3000) и ртуть по механизму (в ) — серебро, хром (VI), вольфрам, ванадий, анион NO3. Обработка растворов металлической медью (цементация), предусмотренная прописью определения, устраняет мешающее влияние до 100—200 жкг золота и до 10—20 жг ртути и серебра. Присутствие в растворе 1 г железа, меди или молибдена не влияет на результаты определения. [c.206]

    Даны два варианта подготовки пробы. В первом определение проводят непосредственно после вскрытия пробы кислотами. При такой обработке большая часть хрома остается нерастворенной. Эффективная навеска не должна содержать более 10—15 мг вольфрама, 2—3 мг ванадия и указанных в подразделе 2 количеств золота, ртути и серебра, а также более 0,5 г аниона N03. [c.207]

    Целый ряд неорганических реактивов и соединений использован для чувствительных и надежных методов определения следов металлов, например марганца — в виде перманганата, хрома — в виде хромата, титана — с перекисью водорода, ванадия — с перекисью водорода или с фосфорновольфрамовой кислотой, мышьяка и других металлов — по образованию молибденовой сини, висмута и платины — с иодидом, золота и теллура —в виде коллоидных металлов и т, п, [c.83]

    Мешающие вещества. Краситель образует окрашенные соединения при содержании в анализируемой пробе 1 мкг золота (III) и таллия(I), Ю мкг хрома (VI), индия(III), сурьмы(V), олова (IV) и ванадия( ), 500 мкг железа(III). Поэтому мешающие ионы при большом их содержании необходимо предварительно отделять. Определению иода также мешают нитрит-ионы при их содержании больще 5. мкг в анализируемой пробе. Определению не мешают до [c.340]

    Шабарин С. К. и Фридман И. Д. Исследование некоторых вопросов пробирного анализа. (К методике анализа сплавов благородных металлов). Сб. науч. тр. (Моск. ин-т цвет, металлов и золота и ВНИТО металлургов), 1952, № 22, с. 83--92. 6200 Шаврин А. М. Спектрально-аналитическое определение ванадия в медистых песчаниках. Зав. лаб., 1949, 15, № 1, с. 66—69. [c.236]

    Цолярографически - амперометрическое определение ртути, серебра, золота, железа и ванадия. Определение ванадия в уране. [c.65]


    Другим недостатком этих методов является часто недостаточная устойчивость окрашенных органических продуктов. Мы упомянем здесь лишь несколько методов этого типа. Бензидин дает с перманганатом в кислом растворе быстро изменяющуюся сине-зеленую окраску с иридием (IV) в тех же условиях образуется синяя окраска. о-Толидин в кислом растворе окисляется золотом (III) с образованием желтой окраски многие другие сильные окислители вызывают ту же окраску. Свинец определяют, выделяя его электролизом в виде двуокиси и растворяя последнюю в уксуснокислом растворе тетраметилдиаминодифе-нилметана, дающего синий дифенилметановый краситель. Лейко-основание малахитовой зелени пригодно для определения зодои и иридия. Тетраметил-п-фенилендиамин предложен в качестве реактива для определения осмия. Дифениламин использован для колориметрического определения ванадия (V) " . Фенолфталиь (полученный восстановлением фенолфталеина цинком в щелоч-ном растворе) вместе с перекисью водорода дает розовую окра ску с очень малыми количествами меди. [c.132]

    Готовят эталоны с содержанием 1% каждого определяемого элемента и затем разбавляют их до необходимых концентраций. Для молибдена и ванадия готовят отдельные эталоны, так как при совместном определении их с другими элементами возможно наложение линий. Для приготовления эталонов, содержащих по 1 % молибдена и ванадия и 0,1 % золота, сначала прибавляют к 0,9о6а г [c.180]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    И. П. Алимарин п Ю. А. Золотов [6] показали, что уран ( 1) количественно экстра гируется в виде а-нитрозо-р-нафтолата из водных растворов не смешивающимися с водой органическими растворителями. Наибатее эффективными экстрагентами для извлечения i-иитрозо-р-нафтолата уранила являются изоамнловый и н.бутиловый спирты и этилацетат. Так как в органическую фазу вместе с ураном переходит много других элементов, в том числе кобальт, медь и железо, то для повышения селективности экстракционного отделения урана в виде а-нитрозо- -нафтолата указанные авторы применили комплексон III. В разработанных ими условиях уран может быть полностью отделен от ванадия и железа. Для отделения урана от ванадия (V) последний восстанавливают до ванадия (IV) с помощью двуокиси серы или самим комплексоном III при pH 1—2 [184]. Затем добавляют не менее чем четырехкратное по отношению к ванадию количество комплексона III, нейтрализуют аммиаком до pH в пределах 6,5—9,0 и экстрагируют несколько меньшим или равным объемом изоамилового спирта, к которому предварительно прибавляют не менее чем 100-кратный избыток а-нитрозо- -нафтола. (в молярном отношении в расчете на UgOg) в виде 2%-ного раствора в этаноле. Для выделения урана из полученного экстракта его упаривают досуха и прокаливают при 900°. Определение урана может быть закончено непосредственным взвешиванием прокаленного остатка. Отделение урана от ванадия становится неполным, если содержание ванадия более чем в 3 раза превышает содержание урана. [c.310]

    Разделение дитизоном. Дитизон применяется главным образом для отделения небольших количеств кобальта от посторонних элементов перед его фотометрическим определением в силикатных породах, биологических и растительных материалах и др. Дитизонат кобальта образуется при pH от 5,5 до 8,5. Это дает возможность отделить от кобальта серебро, медь, ртуть (II), палладий (II), золото (III), висмут, т. е. элементы, экстрагирующиеся раствором дитизона в хлороформе или четыреххлористом углероде при pH менее 4. Экстрагирование дитизоном из аммиачного раствора, содержащего цитрат, отделяет кобальт от железа, хрома, ванадия и многих других металлов. Цинк, свинец, никель и кадмий при указанных условиях экстрагируются вместе с кобальтом, однако если экстракт обработать разбавленным раствором соляной кислоты, то дитизонаты цинка, свинца и кадмия разлагаются и переходят в водную фазу, а дитизонат кобальта остается в неводном растворе без изменения [827]. [c.76]

    Диаминоантрахинон служит также реагентом для экстракционнофотометрического определения Ре , Со , N1 , Си , для флуорометрического определения пятивалентного ванадия, для качественного определения золота и осмия. Важнейшими реагентами для определения бора являются 1,1 -, 2,2 - и 1,2 -диантримиды. [c.64]

    Медь (I). О применении одновалентной меди в кулонометриче-ской бромометрии говорилось выше [388, 398, 400, 402, 410, 4501. Этот титрант генерируют в солянокислых растворах с концентрацией < 0,5 М НС1 путем восстановления ионов на платиновом катоде. Конечную точку в титрованиях с участием одновалентной меди определяют в большинстве случаев биамперометрически с двумя платиновыми электродами, а иногда потенциометрически [475, 4761. Описаны методы определения меди, железа [477— 479], хрома и ванадия [4801, золота [481], брома [482] и газообразного кислорода [483], основанные на реакции восстановления электрогенерированной медью указанных окислителей или промежуточных компонентов, образующихся в системе в результате взаимодействия определяемого соединения с вводимым в реакционную среду дополнительным реагентом (например, Вг при определении броматов). [c.58]

    Альфонси [9—13] провел широкое исследование потенциостатического выделения и определения содержания сурьмы в сплавах, состоящих из свинца, олова, висмута и меди. Танака [14—16], работавший, главным образом, с синтетическими образцами, определил условия, при которых следует производить отделение сурьмы от золота, серебра, ртути, меди, висмута, кадмия, цинка и ванадия в целом ряде общеизвестных электролитов. Данлэп и Шульц [17] разработали две кулонометрические методики, дающие возможность определять содержание сурьмы в каждой из ее окисленных форм отдельно, а также полное содержание сурьмы. По первой методике после предварительного восстановления сурьмы (V) в присутствии гидразингидрата сурьма (П1) восстанавливается до амальгамы на ртутном катоде при потенциале —0,28 в в фоновом электролите, содержащем 0,4Ai винной кислоты и М соляной кислоты. По второй методике сурьма (V) сначала восстанавливается до сурьмы (П1) при потенциале —0,21 в, а затем далее до амальгамы при потенциале —0,35 в. Процесс восстановления проводится в электролите, содержащем 0,4 М винной кислоты и 6 М соляной кислоты. Даже в присутствии небольших количеств мышьяка, свинца, олова, железа или урана можно добиться точности 0,5% (средняя квадратичная погрешность) при содержании сурьмы 5 мг. В табл. 1 приведены различные условия эксперимента при определениях сурьмы потенциостатическим методом. [c.45]

    С этой точки зрения можно сказать, что в настоящее время экспериментальные данные, позволяющие непосредственно судить об эквивалентности или неэквивалентности обменной адсорбции компенсирующих ионов в двойном слое, совершенно недостаточны. Действительно, из приведенных примеров в случае золей сернистого мышьяка, золота, трехокиси вольфрама, пятиокиси ванадия и двуокиси титана, а также, вероятно, мастики процесс ионного обмена осложнен образованием малорастворимых солей в интермицеллярной жидкости. В случае адсорбции красителей коллоидной кремнекислотой мы, вероятно, имели дело с адсорбцией не ионов, а молеку.ч. Наконец, в случае окиси железа ничего определенного сказать нельзя, так как количества адсорбированных и вытесненных анионов не сравнивались при достаточно высоких концентрациях прибавленного электролита. Однако, как было указано, в случае коагуляции электролитами положительных коллоидов мы имеем косвенные указания на то, что процесс обменной адсорбции должен толковаться с более широкой точки зрения, не требующей соблюдения эквивалентности замещающихся компенсирующих ионов. Непосредственные указания на несоблюдение эквивалентности получены в нашей лаборатории при коагуляции щелочных золей кремнекислоты солями бария. Значительная адсорбция ионов Ва (— 10 N) сопровождается вытеснением очень малых количеств Н -ионов (— 10 Л ), причем концентрация Ка-ионов остается практически неизменной. [c.105]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Платина мешает титрованию как бихроматом, так и перманганатом, ванадий мешает при титровании КМПО4, но не мешает при титровании КаСг О . Из других мешаюш,йх определению элементов следует отметить золото, молибден, мышьяк сурьму и вольфрам Все мешаюгцие вещества лучше удалять церед прибавлением хлорида олова (II), потому что восстановление их не протекает количественно и нельзя вычислить поправку, даже если их количества известны. Уран хлоридом олова (II) не восстанавливается. I [c.442]

    На возможность колориметрического определения ниобия по его реакции с роданидом в солянокислых растворах, содержащих хлорид олова (II) и винную кислоту, впервые указали Л. Н. Моньякова и П. Ф. Федоров По их наблюдениям образующееся в этих условиях соединение экстрагируется эфиром, и содержание ниобия можно определить по интенсивности желтой окраски эфирного слоя. Механизм этой реакции и влияние на нее различных факторов, подробно изученные И. П. Алимариным и Р. Л. Подвальной , рассмотрены ниже. Титан также дает окрашенный в желтый цвет роданидный комплекс, но чувствительность реакции на титан во много раз меньше, чем на ниобий, и при соотношении ] Ь Т1 = 1 30 еще возможно достаточно точное определение ниобия при условии, если концентрация Т10г в анализируемом растворе не превышает 0,3 мг в 10 мл. Тантал в условиях определения ниобия дает с роданид-ионами бесцветный комплекс. Определению ниобия мешают молибден, фольфрам, уран, ванадий, железо, хром, кобальт, медь, золото и платина, образующие в этих условиях окрашенные соединения с роданидом. При экстрагировании эфиром устраняется влияние хрома, урана, железа и меди, которые остаются в водном слое. Совместно с ниобием эфиром извлекаются окрашенные роданиды молибдена, вольфрама, титана, кобальта и йлатины. Соединения золота, селена и теллура восстанавли-. ваются до элементарного состояния и покрывают стенки сосуда, что мешает наблюдению окраски ниобиевого комплекса. [c.689]

    Экстракция МаВОС была применена для выделения висмута и определения его в высокочистых золоте, серебре [661], медных и никелевых шламах [1601], ванадии и ниобии [724] и сплавах [173, 1296, 1524] [c.233]

    Систематическое изучение экстракции металлов 0,207 М. раствором дибутилдитиофосфорной кислоты в четыреххлористом углероде было проведено Хендли [1329] (см. табл. 32). Щелочные, щелочноземельные и редкоземельные элементы, алюминий, хром(1П), иридий(1У), платина(1У), рутений(1У), ванадий(У), марганец(П) и железо(И) не экстрагируются. При помощи реакций вытеснения был определен следующий порядок экстрагируемости металлов палладий>золото(1) >медь(1) >ртуть(11) > > серебро(1) > медь(П) > сурьма(П1) > висмут > сви-нец(И) >кадмий>никель>цинк (lg К. = 1,22 1 Рд, = 2,77) [13271. [c.255]

    При определении фосфора с применением экстракции значительно уменьшается число мешающих ионов. В методе, разработанном Люком и Большем [128], которые впервые проводили экстракцию изобутиловым спиртом и затем восстанавливали молибдофосфорную кислоту хлоридом олова (П), было показано, что определению 0,6 ррт фосфора существенно мешают только мышьяк (V), церий(IV), германий(IV), золото(III), вольфрам (VI), ванадий (V), олово (II) и тиосульфат. Допустимо присутствие следующих ионов в концентрации вплоть до указанной в скобках (в ррт) As (60), I- (60), Hg> (20), Si v (30) и Sn v (40) и тиосульфат (60). [c.460]

    III) с кристаллическим фиолетовым из раствора 2—2,5 М по Н3РО4 и 0,1 по СГ, В этих условиях при анализе руд в большинстве случаев удается экстрагировать хлорталлат красителя непосредственно после кислотного вскрытия до 1 г пробы. Если анализируемый материал содержит большие количества золота, рения, ртути, вольфрама или ванадия, разложение проводят сплавлением с перекисью натрия, отфильтровывают гидроокиси, растворяют их и выполняют экстракционно-абсорбциометрическое определение (см. главу 6). Порог чувствительности в первом варианте составляет при тщательном выполнении анализа 3-5-10 %, во втором — на порядок большую величину. Более высокую чувствительность, особенно при анализе проб сложного состава, из числа применяемых методов может обеспечить только флуориметрический метод с родамином 6Ж после концентрирования таллия посредством экстракции эфиром. [c.158]

    Серебро(П) — один из самых сильных окислителей, применяемых в аналитической химии. Оно окисляет це-рий(1П) до церня(1У), марганец(И) до перманганата и хром(П) до хрома(У1). В 4М НКОд при 25° его стандартный потенциал равен примерно 1,93 В. Серебро(П) можно получить из серебра(1) окислением последнего пероксиди-сульфатом, газообразным фтором или озоном, а также и с помощью электролиза. Понижая температуру для подавления реакции серебра(П) с водой, Лингейм и Девис [97] успещно применили этот реагент для количественного определения марганца, церия и хрома. Позже этим же авторам [98] удалось получить серебро(П) для кулонометрического определения щавелевой кислоты, церия(И1), мышь-яка(П1) и ванадия(1У). Охлаждая растворы и применяя специальную обработку платиновых или золотых электродов в среде азотной кислоты, эти авторы добились почти 100%-ного выхода серебра(П) по току. Свойства и применение серебра(П) недавно подробно описал Макмиллан в своем обзоре [99 ]. [c.317]


Смотреть страницы где упоминается термин Золото III определение ванадием: [c.35]    [c.231]    [c.173]    [c.61]    [c.10]    [c.137]   
Новые окс-методы в аналитической химии (1968) -- [ c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение



© 2024 chem21.info Реклама на сайте