Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение классификация

    Постоянная (некарбонатная, неустранимая) жесткость обусловливается содержанием в воде всех других солей кальц[(я и магния, остающихся при кипячении в растворенном состоянии. Сумма временной и постоянной жесткости называется общей жесткостью. Принята следующая классификация природных вод по жесткости  [c.25]

    Активная окись алюминия. Активная окись алюминия используется для производства катализаторов процессов риформинга, изомеризации, гидроочистки, гидрокрекинга и др. Широкое применение находит она также в процессах адсорбции (для осушки газов, очистки масел, очистки газов и жидкостей от фторсодержащих соединений). В промышленных масштабах ее получают переосаждением гидрата глинозема путем его растворения в кислотах (серной, азотной) или в щелочи (едком натре) с последующими гидролизом, формовкой, сушкой и прокаливанием. Свойства синтезированной окиси зависят от структуры и морфологии исходной гидроокиси, а также от условий термообработки. Существует большое число модификаций окиси алюминия. Их классификация, обозначения, условия получения даны в [30, 31 ]. В промышленности активная окись алюминия [c.387]


    Обожженный концентрат содержит, как упоминалось выше, некоторое количество соединений цинка, обладающих меньшей скоростью растворения в кислоте, чем свободная окись цинка. Кроме того, скорость растворения обожженного концентрата зависит от крупности зерен. Оба эти обстоятельства учитываются при организации процесса выщелачивания, который, как правило, проводится в две стадии с предварительной классификацией огарка (рис. 192). [c.420]

    Кроме кислотно-основ ных многие растворители обладают и другими свойствами, представляющими интерес для аналитической химии. Довольно большая группа растворителей образует координационные связи с частицами растворенного вещества. Это так называемые координирующие растворители. Их подразделяют на донорные и акцепторные. До-норные образуют координационные связи с акцепторами электронных пар, а акцепторные с их донорами. Донорные свойства проявляют многие диполярные акцепторные растворители — они более энергично сольватируют катионы. Акцепторными являются многие протолитические растворители — более энергично они взаимодействуют с анионами. Эта классификация также не безусловна, так как в зависимости от условий взаимодействия и партнера растворитель может проявлять как донорные, так и акцепторные свойства. [c.36]

    Данная глава посвящена рассмотрению свойств растворов неэлектролитов и главным образом изучению взаимодействия растворенных молекул с растворителем. Будут рассмотрены основы термодинамики растворов неэлектролитов, классификация растворов, состав образующихся в растворе продуктов взаимодействия и методы его определения, характер сил, обусловливающих образование этих соединений, свойства продуктов взаимодействия и методы их определения. [c.215]

    Заметим, что комплексные исследования для окончательного решения стратегических вопросов безопасной разработки месторождения были прерваны в середине 90-х годов по финансовым и организационным причинам. Позднее в ИДГ РАН совместно с кафедрой радиохимии Химического факультета МГУ им. М.В. Ломоносова был продолжен теоретический и лабораторный анализ роли геохимических барьеров для устранения опасных последствий ПЯВ. Показано, что эти барьеры формируются в окрестностях зон ПЯВ как результат совокупности процессов, определяемых особенностями радиоактивного распада продуктов ПЯВ, взаимодействия природных и технологических вод с растворенными в них радионуклидами и горными породами, геохимическими показателями среды и т.д. Отсюда становится очевидной необходимость выявления такого рода барьеров, их классификации по степени радиационной опасности и определения на этой основе необходимых защитных мероприятий. [c.88]


    Для разделения смесей веществ в тонком слое сорбента или носителя применяют адсорбционную, распределительную, ионообменную и осадочную хроматографии. Их классификация основана на характере сил, действующих между растворенными веществами и твердой или жидкой фазой, с которой они соприкасаются. На практике тонкослойная адсорбционная хроматография сопровождается распределительной, если разделение веществ проводят на слабоактивных сорбентах, содержащих воду, или распределительная хроматография сопровождается адсорбционной, если разделяемые вещества имеют сродство к сорбенту-носителю. Ионообменная хроматография почти всегда сопровождается адсорбционными взаимодействиями фазы ионообменника с разделяемыми компонентами смеси веществ. [c.162]

    Растворение п молей вещества в Пх молей воды с образованием растворов протекает вплоть до насыщения либо с выделением теплоты из системы экзотермические процессы, записываются со знаком минус ), либо с ее поглощением системой эндотермические процессы, со знаком плюс ). В каждом из случаев растворения возможно также изменение знака градиента теплоты растворения с переходом через экстремум. По классификации Мищенко и Прониной [135] все вещества могут быть охарактеризованы экзотермичностью теплоты растворения. Причем с экзотермической точки зрения рассматривают как процессы растворения с выделением теплоты, так и эндотермические. При этом главное — оценить уровень и направление изменения экзотермичности (рис. 4.3). В частности, повышение экзотермичности эндотермических эффектов растворения наблюдается при уменьшении количества выделяющейся теплоты. [c.78]

    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]

    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время многими признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные выше данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. [c.15]

    В отечественной и зарубежной литературе приводится множество классификаций буровых растворов. Определяющие признаки по принятой классификации состав дисперсной среды и дисперсной фазы, химический состав, определяющий степень минерализации бурового раствора, величина pH, химическая обработка и способ приготовления. Наиболее агрессивные составляющие буровых растворов — это вода с растворенными в ней газами (кислородом, углекислым газом, сероводородом), а также минеральными солями, кислотами. [c.107]

    Выбор оптимальной неподвижной фазы для решения данной задачи разделения всегда требует большого опыта, и не может быть дан универсальный рецепт на любой случай. Это объясняется тем, что теория растворов еще не разработана в такой степени, чтобы можно было охватить все взаимодействия, выражаемые математически коэффициентами активности. Хотя вклад дисперсионных и ориентационных сил может быть непосредственно вычислен (Мартире, 1961), при отрицательном отклонении от закона Рауля необходимы уже полуэмпирические определения. Взаимодействия между растворенным веществом и неподвижной фазой слишком сложны для того, чтобы можно было в настоящее время в каждом случае точно предсказать объем удерживания. Поэтому в разд. 1 и 2 эти взаимодействия описаны лишь качественно. В то же время по причине этих сложных взаимосвязей не существует простой последовательности неподвижных фаз, которая представляла бы единую модель величин удерживания для всех анализируемых веществ. Хотя полярность как неподвижных фаз, так и анализируемых веществ играет большую роль, между дипольными моментами и объемами удерживания не найдено соотношения, которое было бы пригодно для классификации неподвижных фаз. Газохроматографическая полярность может быть определена лишь следующим образом фаза считается тем более полярной, чем больше при ее применении отношение величины удерживания полярного растворенного вещества к величине удерживания сравни- [c.216]


    В связи с большим разнообразием природных вод многими исследователями были предложены различные системы классификации вод на основе тех или иных признаков. Большинство классификаций основано на химическом составе природных вод и количественных соотношениях между отдельными компонентами растворенных в воде веществ. Наиболее интересные классификации предложены В. И. Вернадским, В. А. Александровым, В. А. Сулиным. До сравнительно недавнего времени для характеристики вод нефтяных месторождений пользовались классификацией Пальмера. Некоторые из этих систем рассмотрены ниже. [c.173]

    По наличию или отсутствию электролитической диссоциации молекул растворенных в-в различают два осн. класса Р. растворы электролитов и растворы неэлектролитов. В особый класс выделяют также Р. высокомол. соединений, св-ва к-рых существенно отличаются от св-в Р. низкомол. в-в из-за больших различий в размерах молекул растворенного в-ва и р-рителя (см. Растворы полимеров). Классификация Р. может быть основана также и на др. признаках. Так, в зависимости от концентрации растворенного в-ва различают Р. концентрированные и разбавленные в зависимости от природы р-рителя выделяют водные и неводные Р. в зависимости от концентрации ионов и ОН -кислые, нейтральные и щелочные (основные). [c.185]

    При исследовании и описании абсорбционно-десорбционных процессов принято делить газы на хорошо-, средне- и труднорастворимые. Эта классификация учитывает скорость растворения их в [c.159]

    При классификации залежей на различные классы или типы, как правило, исходят из их геологического строения, лишь в работах Н. А. Еременко предлагается классификация залежей по фазовому состоянию углеводородов. Однако и здесь, оперируя такими общими понятиями, как нефть, растворенный газ, конденсат или газ (свободный), автор дает лишь качественную характеристику флюида, при этом он не рассматривает залежи твердых углеводородов. [c.13]

    Приведем существующую классификацию полупроницаемых мембран, применяемых при осуществлении процессов обратного осмоса и ультрафильтрации (рис. 6.36). Указанные мембраны могут быть пористыми и непористыми, причем последние являются квази-гомогенными гелями, через которые растворитель и растворенные вещества проникают под действием градиента концентраций (молекулярная диффузия), поэтому такие мембраны получили название диффузионных. [c.225]

    Приведенная система классификации химических и физико-химических методов, так же, как и другие системы, довольно условна. К примеру, метод закачки углекислого газа в принципе может быть отнесен к группе, соверщенствующей систему поддержания пластового давления, так как растворение СОг в воде приводит к повышению вязкости воды и соответствующему увеличению коэффициента охвата пласта. [c.58]

    В жидких нефтяных системах размеры молекул растворенных веществ могут значительно отличаться от размеров моле-1чул растворителя. В настоящее время в литературе принято на- и.1вать молекулы с числом степеней свободы порядка 10 —10 макромолекулами [79J. Описание теплового движения макромолекул в растворах усложняется. Указанное отличие низкомолекулярных соединений от высокомолекулярных по числу сте-не1гей свободы может служить дополнением к классификации молекул по их физико-химическим свойствам (см. главу III, 2, раздел 2.2). [c.44]

    Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Г.Дэви и М. Фарадея, установивших закон электролиза. Так, М. Фарадей предложил ва кнейшее для дальнейшего развития электрохимической теории коррозии соотношение между массой аноднорастворяющегося металла и количеством протекающего электричества, а также высказал (проверено Г. Дэви) предположение о пленочном механизме пассивности железа и электрохимической сущности процессов растворения металлов. В 1830 г. швейцарский физикохимик О. Де да Рив ч ко сформулировал представления об электрохимическом характере коррозии (он объяснил растворение цинка в кислоте действием микрогальванических элементов). Русский ученый H.H. Бекетов (1865 г.) исследовал явление вытеснения из раствора одних металлов другими, а Д.И. Менделеев (1869 г.) предложил периодический закон элементов, который имеет очень важное значение для оценки и классификации коррозионных свойств различных металлов. Важен вклад шведского физикохимика С. Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации и немецкого физикохимика В. Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов. [c.4]

    Согласно этим положениям нельзя считать вполне строгой приведенную ранее классификацию электродов, что вытекает из следующих соображений. Во-первых, электроды второго и третьего рода фактически имеют общую электрохимическую основу во-вторых, такая классификация не охватывает находящиеся в равновесии с редокс системой индифферентные электроды, ко- торые следовало бы причислить к электродам первого рода. На самом деле между ними и активными электродами (Нд4, Ag и др.) нет принципиального различия. Единственно, чем они отличаются, это то, что во втором случае восстановленная форма редокс пары является твердой фазой (сам электрод) с постоянной активностью, а в первом - обе формы находятся в растворенном виде и их активности могут одновременно менять- [c.33]

    При классификации по донорно-акцепторным свойствам обычно выделяют протонные и апротонные растворители. П р отон-ные растворители обладают донорно-акнепторными свойствами по отношению к протону, т. е. могут отдавать или принимать протон и таким образом участвовать в процессе кислотно-основного взаимодействия. Апротонные растворители не проявляют кислотно-основных свойств и не вступают в протолитическое равновесие с растворенным веществом. Эта классификация в известной степени остается условной, так как большое значение имеет природа растворенного вещества. Например, обычно считающийся апротонным бензол в растворе амида натрия в аммиаке проявляет кислотные свойства. Однако для очень многих аналитически важных систем классификация вполне оправдывается. [c.34]

    ЖЕСТКОСТЬ воды — свойство природной воды, обусловленное присутствием в ней растворенных солей кальция и магния. Жесткость воды подразделяется ка карбонатную (временную), обусловленную концентрацией гидрокарбонатов кальция и магния, и некарбонатную (постоянную), обусловленную концентрацией всех других растворенных в воде солей кальция и магния (хлоридов, сульфатов и др.). Суммарное содержание всех солей кальция и магния называется общей жесткостью, которую определяют комплексонометричоским титрованием. Ж. в. можно снизить известковым, содовым, фосфатным, натронным или ионообменным способами, карбонатную Ж. в. — также кипячением. В СССР Ж. в. выражают в миллиграмм-эквивалентах на литр, в некоторых других странах — в т. наз. градусах жесткости. По общепринятой классификации очень мягкая вода в среднем содержит О—1,5 мг-экв/л a или Mg + мягкая [c.96]

    В этой классификации слабым местом является то, что она, как и первая, основывается на кислотно-основных свойствах растворителя. Второй, менее существенный недостаток заключается в протонном понимании кислоты и основания. Согласно протонным представлениям, кислотность и основность — понятия, относящиеся к кислоте и основанию, соответственно, поэтому все растворители, кроме апротонных, могут проявлять кислые или основные свойства в зависимости от растворенного вещества. Тем не менее эта классификация и teeт практическое значение. [c.350]

    Т. Грем (1861 г.), изучая диффузию растворенных в воде веществ через мембраны, обнаружил, что такие органические вещества, как смолы. протеин, танин и ряд других, отличаются ничтожной скоростью диффузии. Такие веще1ства неспособны к кристаллизации, при упаривании их растворов образуются аморфные, хлопьевидные осадки. Они легко переходят в студнеобразное состояние. Поэтому Грем все подобные вещесива назвал коллоидами , т. е. клееподобными. Вещества же, свободно проходящие через мембраны, способные к кристаллизации и образующие истинные растворы, он назвал кристаллоидами . На ошибочность такой классификации вскоре же (1869 г.) указал наш соотечественник Н. Г. Борщев. В 1906 г. доцент Петербургского горного института П. П. Веймарн доказал, что любое вещество при создании соответствующих условий можно перевести в коллоидное состояние , а типичный с точки зрения Грема коллоид, например мыло, из спиртового раствора может кристаллизоваться. [c.222]

    Характеристика неподвижных фаз с помощью констант Роршнайдера — Мак-Рейнольдса. В основе системы характеристики неподвижных фаз, предложенной в 1966 г. Роршнайдером и модифицированной в 1970 г. Мак-Рейнольдсом, лежит измерение разностей индексов удерживания А/ тестовых веществ (табл. IV.3) интересующей неподвижной фазой и фазой сравнения — скваланом. Кроме пяти основных тест-веществ, приведенных в табл. .3, Мак-Рейнольдс предложил еще пять дополнительных 2-метил-пентанол-2, 1-иодбутан, октин-2, 1,4-диоксан и г ис-гидриндан. Значения А/ (константы л , у, г, и з ), определяемые по первым пяти тест-веществам, служат для определения селективности, а сумма этих констант характеризует усредненную полярность неподвижных фаз. Такой подход позволяет при решении различных аналитических задач существенно сузить круг поиска наиболее селективных сорбентов, однако, как показывает практика, число неподвижных фаз, подлежащих экспериментальной проверке, все же остается большим. Это связано с тем, что в основе классификации неподвижных фаз по константам Роршнайдера — Мак-Рейнольдса лежат эмпирические и не всегда однозначные закономерности между Л/ и энергетическими характеристиками процесса растворения хроматографируемого соединения в неподвижной фазе. Рассмотренная выше система не учитывает весьма важного обстоятельства энергетическая цена ( знергетиче-ский эквивалент) единицы индекса удерживания на разных неподвижных фазах различна (может отличаться в 1,5 раза). [c.272]

    Классификация растворителей вытекает из свойств водородных соединений метан — инертный растворитель (и все углеводороды), аммиак — основной, вода — амфотерный, фтороводород — кислый. Важнейшая характеристика растворителей — их диэлектрическая проницаемость. По ее величине все растворители располагаются в элю-отропный ряд Цвета — Траппе. Этот ряд связан с полярностью и сор-бируемостью веществ ( 24, 45, 173). Меняя химический состав растворителя, можно изменять силу растворенных в нем кислот и оснований и преврашать соли в кислоты или основания. Например, мочевина Нз —СО—1 Н2 проявляет в жидком аммиаке кислотные свойства, в безводной уксусной кислоте — сильные основные, в водном растворе — слабые основные. [c.50]

    Из теории жидкостной хроматографии уже известно, что форма элюируемого ника определяется изотермой распределения или — в случае адсорбционной хроматографии—изотермой адсорбции. Уилсон (1940) первым обсудил количественные зависимости. Он предполагал, что в колонке мгновенно устанавливается сорбционное равновесие между твердым телом и растворенным веществом, и применил материальный баланс для граничных слоев веществ, движущихся вдоль колонки. Было показано, что если рассматривать баланс растворенного вещества на узком участке хроматографической колонки, то его увеличение (или уменьшение) характеризуется разностью входящего и выходящего количеств. Дальнейшее развитие этих положений проведено Вейссом (1943), де Во (1943) и Глюкауфом (1947), и была показана возможность расчета формы хроматограммы но виду изотермы почти для всех типов изотерм в классификации БЭТ и, наоборот, возможность расчета изотерм по форме хроматограммы (Грегг и Сток, 1958). Если g — концентрация адсорбата [c.465]

    На рис. 2 представлены изотермы кажущейся адсорбции ПЭПА и МЭА на синтетическом алмазе. Термин кажущаяся адсорбция мы применили потому, что на поверхности алмаза может адсорбироваться не только амин, но и растворитель (этиловый спирт) и измеряемая на опыте разность в концентрации аминов отражает количественную сторону различной адсорбции аминов и спирта. Настоящие исследования не позволили нам перейти от изотермы кажущейся адсорбции к индивидуальной изотерме растворенного амина. Полученные изотермы по виду относятся к типу I (ПЭПА) и IV (МЭА) классификации Брунауера, Деминга и Теллера [2]. Исследования по обратимости адсорбции показали, что на алмазе имеет место преимущественно физическая адсорбция ПЭПА и МЭА. [c.114]

    Именно в силу обретения А. собственного теоретич. взгляда на свой предмет главные практич. вклады А. приходятся на 8-12 вв. в арабском мире и на 12-14 вв. в Европе. Получены серная, соляная и азотная к-ты, винный спирт, эфир, берлинская лазурь. Создано разнообразное оснащение мастерской-лаборатории - стаканы, колбы, фиалы, чаши, стеклянные блюда для кристаллизации, кувшины, щипцы, воронки, ступки, песчаная и водяная бани, волосяные и полотняные фильтры, печи. Разработаны операции с различными в-вами-дистилляция, возгонка, растворение, осаждение, измельчение, прокаливание до постоянного веса. Расширен ассортимент в-в, используемых в лаб. практике нашатырь, сулема, селитра, бура, оксиды и соли металлов, сульфиды мышьяка, сурьмы. Разработаны классификации в-в. Впервые описано взаимодействие к-ты и щелочи. Открыты сурьма, цинк, фосфор. Изобретены порох, фарфор. Бонавентура (13 в.) установил факт растворения серебра и золота в царской водке. В трактате Р. Бэкона Зеркало алхимии можно усмотреть неосознанное приближение к правилам стехиометрич. соотношений и принципу постоянства состава. Ему же принадлежит систематизированное описание св-в семи известных тогда металлов. Но успехи прикладного св-ва А. должна разделить с хим. ремеслом. [c.108]

    Классификация Р.э. основана на классификации электролитов. Соответственно о Р.э. говорят как о симметричных и несимметричных в зависимости от того, распадается ли молекула растворенного в-ва в р-ре на два иона или на большее число частиц z, z-зарядных [напр., р-р Na l 1,1-зарядный, р-р a lj 2,1-зарядный] и т.п. По степени диссоциации электролита а, к-рая равна отношеншо числа молекул, диссоциированных на ноны, к полному числу молекул в р-ре, различают сильные (а = 1), слабые (а 1) электролиты и, соотв., р-ры сильных и слабых электролитов. Такое деление, однако, является условньгм и отражает состояние электролита в р-ре, определяемое не только природой растворенного в-ва н р-рителя, но и концентрацией (молярной долей Xjj,), т-рой Т, давлением р. [c.190]

    Используя данные по избыточным термодинамическим свойствам (теплоемкостным, объемным, энтальпийным) [26, 27] и учитывая вышеприведенные соотношения, можно сделать выводы о преобладании гидрофобных или гидрофильных эффектов для различных пептидов и предложить следующую их классификацию для взаимодействия растворенное вещество-растворенное вещество  [c.194]

    Дпя каждого типа реакций можно при необходимости щювести более детальную классификацию. Например, среди кислотно-основных реакций можно выделить автопротолиз, среди окислительно-восстановительных — диспропорционирование. В химическом анапизе иногда целесообразно рассмотреть не тип реакции, а щюцесс, который не обязательно может быть химической реакцией нпи, наоборот, включает несколько типов реакций. Таковы процессы с изменением агрегатного состояния (осаждение, дистилляция, растворение) и щюцессы распределения (экстракция, хроматография). [c.117]

    Сорбция — процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями на твердом носителе (сорбентами). Классификация сорбционных методов основана на различии механизма взаимодействия веществ с сорбентами. Различают адсорбцию (физическая адсорбция и хемосорбция), распределение веществ между двумя несмеши-вающимися фазами (растворитель и жидкая фаза на сорбенте) и капиллярную конденсацию — образование жидкой фазы в пбрах и капиллярах твердого сорбента при поглощении паров вещества. В чистом виде каждый из перечисленных механизмов, как правило, не реализуется, и обычно наблюдаются смешанные механизмы. [c.239]

    Для исследовательской работы необходимо знание физикохимических основ эффектов растворителей. Поэтому в настоящей книге сначала будут рассмотрены межмолекулярные взаимодействия между растворенными веществами и растворителем, а затем исходя из этих взаимодействий — различные классификации растворителей. После этого следуют разделы, в которых детально описано влияние растворителей на химическое равновесие, скорости реакций и спектры растворенных веществ. В заключительных разделах книги приведены эмпирические параметры полярности растворителей, а в приложении в виде таблиц и графиков даны некоторые правила подбора раствО рителей в повседневной экспериментальной работе. [c.11]


Смотреть страницы где упоминается термин Растворение классификация: [c.13]    [c.70]    [c.9]    [c.94]    [c.69]    [c.378]    [c.120]    [c.70]    [c.19]    [c.250]    [c.190]    [c.11]    [c.77]    [c.294]    [c.11]   
Растворение твёрдых веществ (1977) -- [ c.50 ]




ПОИСК







© 2025 chem21.info Реклама на сайте