Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азеотропные толуол углеводороды

    Ароматические углеводороды образуют с парафиновыми и нафтеновыми углеводородами, содержащимися в продуктах риформинга и пиролиза, азеотропные смеси из таких смесей выделить ароматические углеводороды с высокой степенью чистоты обычной ректификацией не удается. Азеотропная смесь ароматических углеводородов Сб — Са с парафиновыми и нафтеновыми углеводородами характеризуется более низкой температурой кипения, т. е. большим давлением насыщенных паров, чем каждый из компонентов этой смеси. Температуры кипения и состав азеотропных смесей бензола, толуола и ароматических углеводородов С а с некоторыми парафиновыми и нафтеновыми углеводородами приведены в табл. 2.1, 2.2 и 2.3 [3— 15]. [c.37]


    Очистка бензола. Для нолучения и очистки бензола из углеводородных смесей нефтяного происхождения посредством экстракционной перегонки требуется такая же тщательная подготовка исходного продукта, как я для получения и очистки толуола. В табл. 22 (стр. 121) приведены некоторые из известных азеотропных смесей бензола с другими углеводородами. Хорошо выраженную азеотропную смесь образуют циклогексан и бензол. Для приготовления бензольного концентрата может применяться то же оборудование, что и для приготовления толуольного концентрата, при условии соответствующего изменения температур отбора фракций. Очистка бензола путем экстракционной перегонки аналогична описанной выше очистке толуола [17], В качестве растворителя обычно применяется фенол. В бензинах и других фракциях прямой гонки содержатся очень малые концентрации бензола. Часто он получается путем дегидрирования легкого лигроина, содержащего метилциклопентаны и циклогексан. [c.107]

    На рис. 15 приведены графики зависимости температуры кипения углеводородов, образующих азеотропные смеси с бензолом и толуолом, от содержания ароматического углеводорода в смеси [32] Эти графики [c.121]

Рис. 19. Влияние разности температур Рис. 20, Зависимость понижения темпе-кинения Л углеводорода парафинового ратуры кипения <5 смесей толуола с ряда и этилового спирта на концентрацию первичными спиртами от разности тем-углеводорода в азеотропной смеси. ператур кипения Л толуола и разде- Рис. 19. Влияние <a href="/info/151902">разности температур</a> Рис. 20, <a href="/info/358195">Зависимость понижения</a> темпе-кинения Л <a href="/info/11721">углеводорода парафинового</a> ратуры кипения <5 <a href="/info/423160">смесей толуола</a> с ряда и <a href="/info/7424">этилового спирта</a> на <a href="/info/707753">концентрацию первичными</a> спиртами от разности тем-углеводорода в <a href="/info/939613">азеотропной смеси</a>. ператур кипения Л толуола и разде-
    Бинарные азеотропные смеси углеводородов, содержащие толуол [32] [c.122]

    Если использовать рециркулирующие фракции бензина гидроформинга, то можно получить практически чистый толуол фракционной перегонкой, так как в исходных фракциях нет компонентов, способных образовывать азеотропы. Азеотропную перегонку (обычно с метилэтилкетоном) успешно применяют для сырья, содержащего большое количество (около 70. о) бензола или толуола с целью уменьшения расходов реагента и пара, экстракционную перегонку — когда сырье содержит 30—50% ароматических углеводородов. [c.59]


    Выделение индивидуальных углеводородов из природных смесей и продуктов их переработки является одной из важнейших областей применения методов азеотропной и экстрактивной ректификации. Появление этих методов было обусловлено, в первую очередь, необходимостью разделения смесей близкокипящих углеводородов в связи с широким развитием химического использования нефти и природных газов. Большое практическое значение методы азеотропной и экстрактивной ректификации приобрели после того, как с их помощью удалось организовать крупное промышленное производство толуола. [c.272]

    В качестве растворителя при полимеризации бутадиена применяют ароматические (бензол, толуол), алициклические (циклогексан), алифатические (гексан, гептан, бензин) углеводороды и их смеси. Свыше 99% растворителя находится в замкнутом производственном цикле и требует лишь азеотропной осушки и отгонки от тяжелокипящих побочных продуктов, образующихся в ходе процесса полимеризации. При необходимости растворитель может дополнительно очищаться пропусканием через активную окись алюминия или цеолиты. [c.184]

    Азеотропная ректификация отличается применением третьего компонента повышенной летучести, способного к образованию с одним из компонентов исходной смеси второго азеотропа с более низкой температурой кипения, чем исходный. Для рассматриваемого ниже примера промышленного извлечения толуола в качестве разделяющего агента принят водный раствор метилэтилкетона (МЭК). На такой установке чистота выделенного толуола достигает 99% и более. На других установках для тех же целей служит метанол. Технологическая схема процесса ректификации представлена на рис. 202. Для полного отделения толуола от неароматических углеводородов в колонну необходимо подавать в 2,8—3 раза больше МЭК, чем содержится неароматических углеводородов в исходной смеси. Содержание воды в МЭК не превышает 10%. Основная его масса отводится с головным продуктом колонны 1 и экстрагируется водой в колонне 2. Из водного раствора МЭК легко извлекается обычной ректификацией. Получаемый сверху регенерационной колонны 3 МЭК содержит около 10% воды и является разделяющим [c.327]

    Результаты расчетов разделения смесей парафинового углеводорода и толуола путем азеотропной ректификации [c.244]

    Рнс. 94. Изменение составов жидкости по высоте колонны при разделении смеси парафинового углеводорода в толуоле путем азеотропной ректификации при / = оо. [c.244]

    Исходная смесь углеводородов подается в середину колонны 1, куда поступает также азеотропная смесь метилэтилкетона и воды (с содержанием последней 10%) в количестве, несколько превышающем расход его, необходимый для отгонки всех неароматических углеводородов в виде азеотропов. Из куба колонны 1 отбирается толуол, содержащий некоторое количество метилэтилкетона, отгоняемого в колонне 2, в которой в виде кубовой жидкости получается чистый толуол. Азеотропы неароматических углеводородов и метилэтилкетона подаются в колонну 3 для экстракции водой. Выходящие из колонны 3 неароматические углеводороды очищаются от остатков метилэтилкетона путем ректификации в колонне 4. Водный раствор метилэтилкетона поступает в ректификационную колонну 5, в которой в виде дистиллата отбирается азеотроп метилэтилкетон—вода, возвращаемый в колонну 1. Отбираемая из куба колонны 5 вода возвращается в качестве растворители в узел экстракции. [c.275]

    Явление азеотропии представляет интерес для технологии переработки нефти и по другой причине. Из-за образования азеотропных смесей часто невозможно получить из нофти химические соединения достаточной степени чистоты путем обычной фракционной перегонки. В особенности зто относится к получению бензола и толуола, образующих азеотропные смеси с некоторыми неароматическими углеводородами, кипящими при близких температурах. Типичный пример такой азеотропной смеси представляет собой система бензол—циклогексан, которая будет подробно рассмотрена ниже. [c.96]

    Методы выделения и очистки толуола позднее были применены для выделения других ароматических углевод- ро ов. Эти методы включают в себя две основные стадии. В первой стадии путем обычной ректификации выделяется узкая фракция с температурами кипения, близкими к температуре кипения выделяемого углеводорода. Во второй стадии из этой фракции выделяется ароматический углеводород путем азеотропной или экстрактивной ректификации. Возможность успешного проведения процесса на этой стадии основывается на увеличении относительной летучести неароматических углеводородов в присутствии полярных веществ, используемых в качестве разделяющих агентов. [c.272]


    Выделение ароматических углеводородов из нефтяных фракций может быть осуществлено также с помощью азеотропной ректификации. Бензол и толуол высокой степени чистоты могут быть выделены этим методом из смесей, содержащих непредельные и парафиновые углеводороды, с использованием в качестве разделяющих агентов ацетонитрила, метанола, этанола, изопропанола, ацетона, метилэтилкетона и уксусной кислоты [272]. Метанол был рекомендован также для выделения ксилолов [273]. Из числа указанных соединений наиболее эффективен, по-виднмому, ацетонитрил. В качестве разделяющего агента может применяться также пропионитрил [274]. В виде дистиллата отгоняются азеотропные смеси парафиновых углеводородов с нитрилами, расслаивающиеся после конденсации. Нижний слой, богатый нитрилом, возвращается в колонну в виде флегмы, а верхний слой, содержащий преимущественно парафиновые углеводороды, отбирается в качестве дистиллата, из которого углеводороды выделяются путем отгонки. [c.274]

    С помощью триоксана можно разделять смеси с температурами кипения от 65 до 150°. Вначале отгоняются азеотропные смеси с парафиновыми углеводородами, а затем — с нафтеновыми. В кубе остаются чистые ароматические углеводороды. Этот метод может применяться, в частности, для выделения толуола и ксилола. Например, к смеси с т. кип. 100—113°, содержащей около 42% толуола, 9% олефиновых, 49% парафиновых [c.274]

    При сульфировании серной кислотой эта проблема наиболее просто решается для достаточно летучих ароматических углеводородов, когда образующуюся воду можно отгонять в виде азеотропной смеси с непревращенным углеводородом. Этот метод, получивший название сульфирования в парах , особенно широко применяется для сульфирования бензола и толуола. Он рекомендуется и для сульфирования высококипящих соединений, но с введением постороннего агента, с которым вода уходит в виде азеотропной смеси. Иногда вода удаляется и без такого агента — если процесс ведут при достаточно высокой температуре или в вакууме. [c.331]

    Состав жидких продуктов каталитического риформинга и пиролиза (после гидроочистки) зависит от исходного сырья и условий проведения процесса. Они содержат ароматические, парафиновые, нафтеновые и следы непредельных углеводородов. Бензол, толуол и технический ксилол выделяют из бензинов риформинга и пиролиза азеотропной и экстрактивной перегонкой или экстракцией, если не используются специальные методы ведения процесса риформинга, например для получения толуола или технического ксилола (см. гл. 1), или если не получают бензол гидро-деалкилированием бензина пиролиза (см. гл. 6). [c.36]

    Исходные вещества. Технический бензол или другой ароматический углеводород, применяемый для алкилирования, нужно предварительно осушать, для чего используют отгонку воды в виде азеотропной смеси с ароматическим углеводородом (бензол или толуол). При такой азеотропной осушке содержание влаги снижается до 0,002—0,005%. Фракции низших олефинов поступают с газоразделительных установок пиролиза или крекинга до-статсчио сухими, ио нередко содержат различные иримеси, ведущие к повышенному расходу реагентов и катализатора, а также к образованию побочных веществ, от которых иногда трудно очистить целевой продукт (С2Н2 или его гомологи, бутадиен, другие олефины). Нередко очистку фракций от этих веществ не проводят, допуская наличие 2—3% (об.) указанных примесей, но значительно лучшие результаты получаются, когда количество этих примесей снижено примерно в 10 раз. Более тонкая очистка фракций от ненасыщенных веществ для алкилирования не требуется, что в еще большей степени относится к примесям парафинов. Очевидно, что оптимальная степень очистки фракций должна определяться экономическими расчетами. [c.251]

Таблица 2.2. Температуры кипения и состав азеотропной смеси толуола с парафиновыми и нафтеновыми углеводородами Таблица 2.2. <a href="/info/6377">Температуры кипения</a> и <a href="/info/939613">состав азеотропной смеси</a> толуола с парафиновыми и нафтеновыми углеводородами
    Углеводород Температура кипения, С Содержание толуола в азеотропной смеси вес. % [c.37]

    Температуры кипения азеотропных смесей парафиновых и нафтеновых углеводородов с бензолом, толуолом и ароматическими углеводородами С 8 соответственно следующие (в °С) 62-80 95-111 130-144. [c.38]

    На рис. 200 приведена схема установки для выделенх-гя бензола, толуола и ксилолов. Экстракт /, представляющий собой смесь ароматических углеводородов, после адсорбционной очистки для извлечения непредельных соединений и смол подается в среднюю часть бензольной колонны 1, сверху которой отб11рается азеотропная смесь II, состоящая 11з неароматических углеводородов и частн [c.325]

    Бензол с насыщенными углеводородами образует азеотропные смеси только с минимальной температурой кипения, вследствие чего при ректификации раньше всего будут выделяться азеотропные смеси. Углеводороды жирного и гидроароматического ряда образуют азеотропные смеси не только с бензолом, но также с толуолом и ксилолами. На рис. 11 представлены кривые, характеризующие зависимость между содержанием бензола и толуола в азеот-ропной смеси и температурой кипения насыщенного углеводорода, образующего эту смесь [75]. Из рис. 11 видно, что насыщенные углеводороды, кипящие в пределах 66—96° С, образуют азеотропные смеси с бензолом, а углеводороды, кипящие в пределах 103—120° С, образуют азеотропные смеси с толуолом. [c.45]

    Процесс основан на том, что неароматическая часть образует со смесью метанол — вода илиметил-этилкетон — вода тройную азеотропную смесь, от которой ароматические углеводороды могут быть отделены перегонкой. На рис. 52 дана упрощенная схема выделения чистого толуола из продуктов гидроформинга. Из продуктов гидроформинга выделяется кипящая в узких пределах толуольная фракция, которую подают в колонну вместе с азеотропо-образователем, в данном случае с водным метилэтилкетоном. Азеотропная смесь (метилэтилкетон — вода — неароматическая часть) отгоняется, а получающийся в виде остатка чистый толуол отбирают из низа колонны, и далее очищают серной кислотой и промывают щелочью, водой и повторно перегоняют. [c.108]

    Толуол можно получать также из фракций некоторых нефтей непосредственно. Например, содержание толуола в восточнотексасской нефти составляет 0,4%, а в некоторых западнотексасских нефтях 0,5%. Из таких нефтей четкой ректификацией на колонне с 50 тарелками можно выделить фракцию, содержащую 23—25% толуола, из которой затем методом ступенчатой азеотропной перегонки можно выделить толуол 98%-ной чистоты. Из приведенных на стр. 103 цифр можно видеть, однако, что значительно выгоднее, когда наряду с ограниченным количеством толуола во фракции содержится относительно много нафтеновых углеводородов, которые могут быть превращены в толуол посредством каталитических процессов. [c.109]

    Тем не менее ужесточение режима каталитического риформинга представляет определенный интерес не только потому, что способствует увеличению выхода ароматических углеводородов. Поскольку содержащиеся в риформатах парафины и нафтены образуют азеотроп-иые смеси с ароматическими углеводородами, для их выделения в чистом виде исиользуют процессы жидкостной экстракции селективными растворителями (полигликолями, сульфолаиом и др.). Применение жидкостной экстракции, обеспечивая высокий выход и высокую чистоту аро.матических углеводородов, значительно удорожает их производство. В условиях высокой жесткости, какая осуществима на устаг(овках рифор.ми[1га с непрерывной регенерацией катализатора, в частности в процессе аромайзинг, происходит глубокое, почти исчерпывающее превращение нафтенов и парафинов Q—Qo в другие углеводороды с более низкой молекулярной массой, не -образующие азеотропных смесей с ароматическими углеводородами Q и толуолом. В результате становится врз.можным выделение технического ксилола (ароматических Сд) и толуола необходимой чистоты, обычной ректификацией 1211. В комплекса.х по производству ароматических углеводородов установки риформинга с непрерывной регенерацией катализатора работают в режиме, обеспечивающем получение технического ксилола ректификациейчриформата.  [c.184]

    В табд. 8 приведены результаты разгонки по Энглеру типичного толуольного концентрата, предназначенного для экстракционной перегонки. Больше 95 % всего объема смеси выкипает при температуре ниже нормальной температуры кипения толуола. Тут сказывается способность низкокипящих неароматических углеводородов отгоняться вместе с толуолом в виде или азеотропных смесей, или близких к ним. [c.105]

    Влияние температуры кипенеароматического углеводорода на состав азеотропных смесей бензола и толуола с неароматическими углеводородами. [c.122]

    Толуол, полученный этнм методом, после обработки кислотой, нейтрализации едким натром, промывки водой и повторной перегонки пригоден для нитрования. Если в исходном продукте содержатся ненасыщенные углеводороды, то конец кипения фракции снижается с 121 до 113°. Сравнение экономических показателей этого процесса н про[ ,есса очистки толуола путем экстракционной перегонки показало, что азеотропная Ш ре-гонка выгоднее, если исходный продукт содержит более 40 % толуола [26]. Очистка толуола азеотропной перегонкой представляет значительный интерес. В табл. 27 приведены некоторые данные об опубликованных патентах, относящихся к этому процессу. [c.131]

    Гийо впервые показал на примере бензола, что сульфирование можно осуществить полностью, если применять повторное пропускание углеводорода в паровой фазе через кислоту, удаляя таким образом воду, образующуюся во время сульфирования в виде азеотропной смеси. В этохМ методе перегонки с использованием парциального давления сочетаются превосходные выходы с простотой операций, поэтому он стал господствующим промышленным методом сульфирования таких стойких низкокипящих ароматических углеводородов, как бензол, толуол и ксилолы. Метод можно распространить также и на более высококипящие соединения путем добавления соответствующего инертного низкокипящего вещества, образующего смесь, например четыреххлористый углерод или лигроин. Воду можно также удалять при помощи инертного газа с применением вакуума или же с использованием химической реакции с веществами типа ВГз, который обпазует стойкий гидрат. [c.520]

    Каталитический риформинг дает как экономическую, так и техническую возможность получать бензол, толуол, ксилолы и этилбензол из нефтяного сырья. Из реформата эти углеводороды извлекаются либо путем селективной экстракции (экстрагент-смеси воды с диэтиленгликолем или же жидкая двуокись серы), либо путем экстрактивной или азеотропной дистилляции, либо путем адсорбции [343—345]. В газойлях каталитического крекинга содержатся значительные количества нафталина и метилнафталинов, однако основным поставп] иком этих углеводородов пока по-прежнему остается коксохимическая промышленность. [c.588]

    НОЙ смеси. Если добавляемое вещество образует с одним из углеводородов первоначальной азеотропной смеси максимальный азеотроп , то при перегонке удаляют второй углеводород, а азеотроп остается в остатке от перегонки. Добавленные вещества отделяют от угл( водородов по окончании перегонки обработкой водой или щелочью. В табл. 12 приведены азеотроиные смеси, которые [образуют бепзол ц толуол с другими углеводородахми, а в табл. 13 —азеотроиные смеси этилового спирта с некоторыми углеводородами. [c.83]

    Иа верхней части рисунка показаны результаты азеотропной перегонки ацетоЕТИтрила со смесью, состоящей из толуола, парафинов и циклопара-фино . Азеотропная смесь содержала около 25% объемн. парафинов и циклопарафинов и около 20% объемн. ароматических углеводородов, причем первые два образуют при температуре кипения с ацетонитрилом две фазы. [c.247]

    Для азеотропной смеси коэффициент относительной летучести а = 1, так как концентрации каждого из компонентов в жидкой (хх) и паровой (у у) фазах одинаковы (рис. 29). Азеотропную смесь можно разрушить, добавляя к ней третий компонент, который образует азеотропную смесь с одним из компонентов разделяемой смеси. Нанример, толуол можно выделить из катализата риформинга добавлением метанола, который образует азеотропную смесь с неароматическими компонентами катализата. Последовательно двукратно добавляя в разделяемую смесь метанол, удается получить толуол чистотой свыше 99%. Отогнавшийся вместе с парафино-нафтеновой частью катализата метанол легко отделяется водной промывкой конденсата, отстаиванием водного раствора метанола и последующей регенерацией последнего отгонкой от воды. Метанол используют также для выделения из катализатов риформинга технического ксилола (смеси изомеров ксилола и этилбензола — углеводородов С Ню)- [c.49]

    Азеотропную перегонку этой смеси нужно проводить на колонке с хорошим погоноразделением (около 20 теоретических тарелок) или в две ступени сначала перегнать исходную смесь, а затем остаток первой разгонки с добавлением дополнительного количества уводителя (третьего компонента). О чистоте разделения можно судить по показателям преломления, которые очень различны для ароматических, неароматических углеводородов и метанола для толуола 1,4969 для бензина (деароматизирован-ного) в среднем 1,4000—1,4300 для метанола 1,3286. Характерна также высокая плотность ароматических углеводородов. [c.50]

    Экстрактивная перегоика — второй метод разде [ения близкокипящих компонентов. При этом смесь перегоняют с третьим, малолетучим компонентом, присутствие которого увеличивает разницу в летучести разделяемых компонентов. Так, смесь толуола и метилциклогексана имеет относительную летучесть а = = 1,25 при наличии 50% (масс.) фенола в жидкой фазе а повышается до 1,75. В отличие от разделяющего компонента азеотропной перегонки, летучесть которого относительно велика и который уходит в виде дистиллята, разделяющий компонент экстрактивной перегонки обладает невысокой летучестью и уходит с остатком перегонки, что может оказаться экономичным, если концентрация компонента, уходящего в виде остатка, невелика. Экстрактивная перегонка, подобно азеотропной, применяется для выделения ароматических углеводородов, а также для разделения бутан-бу-тиленовых и бутилен-бутадиеновых смесей, получаемых в процессе дегидрирования к-бутана. В качестве экстрагентов применяют фурфурол, N-мeтилпиppoлидoн и др. [c.50]

    Целью процесса яиляется получеиие высокооктанового ароматизированного компонента бензина или чистых ароматических углеводородов, которые выделяют из катализата одним из извест-пых промышленных методов (экстракцией, азеотропной перегонкой и др.). При получении компопента бепзина риформингу подвергают обычно широкие фракции с началом кипения 85— 105 °С и концом кипения около 180 °С. Для ироизводства ароматических углеводородов используют более узкие фракции 62—105 или 62—120 °С — для получепия бензола и толуола 120—150 °С — для получения ксилолов. Наиболее распространены катализаторы, содержаш ие платину, а также платину и рений на окисноалюминие-вой или цеолитовой основе. Все шире применяют полиметаллические катализаторы, в которых помимо платины и рения содержатся германий, свинец и другие металлы. В зависимости от вида катализатора температура риформинга составляет от 400 до 500 °С. [c.161]


Смотреть страницы где упоминается термин Азеотропные толуол углеводороды: [c.17]    [c.298]    [c.101]    [c.118]    [c.122]    [c.126]    [c.128]    [c.130]    [c.206]    [c.243]    [c.276]    [c.50]    [c.38]   
Нефтехимическая технология (1963) -- [ c.147 ]




ПОИСК







© 2025 chem21.info Реклама на сайте