Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот, анализ и выделение углеводородов

    При сжигании газа с высоким содержанием предельных углеводородов окись меди поглощает часть образующейся углекислоты а при сжигании смесей, богатых азотом, происходит выделение углекислоты, поглощенной в предыдущих анализах. [c.142]

    В процессах переработки углеводородных систем в атмосферу выбрасывается более 1500 тыс. т/год вредных веществ. Из них (%) углеводородов — 78,8 оксидов серы — 15,5 оксидов азота — 1,8 оксидов углерода — 17,46 твердых веществ — 9,3. Выбросы твердых веществ, диоксида серы, оксида углерода, оксидов азота составляют до 98% суммарных выбросов от промышленных предприятий. Как показывает анализ состояния атмосферы, именно выбросы этих веществ в большинстве промышленных городов создают повышенный фон загрязнения. Удельные выбросы токсичных веществ в воздушный бассейн в целом по заводам данной отрасли составляют (кг/т нефти) углеводороды — 3,83 оксиды серы — 0,79 оксиды азота — 0,09 оксиды углерода — 0,41. Выбросы в атмосферный воздух специфических веществ (аммиака, ацетона, фенола, ксилола, толуола, бензола) составляют -2%. На предприятиях нефтепереработки и нефтехимии улавливается около 46,2% от общего количества выбросов от всех стационарных источников выделения вредных веществ, причем, количество утилизируемых вредных веществ составляет 56,7% (от улавливаемых). Прежде всего, это углеводороды (25-70%). В табл. 3.1 представлена структура выбрасываемых, улавливаемых и утилизируемых веществ предприятиями нефтепереработки и нефтехимии. [c.195]


    Если в смеси азота присутствует небольшое количество углекислоты и углеводородов, анализ азота в неоне может быть проведен по полосам СМ, их интенсивность меняется линейно с изменением концентрации азота. Условия проведения анализа аналогичны условиям определения азота в гелии и аргоне. Смесь при давлении порядка 100 мм рт. ст. возбуждается в высокочастотном разряде в капилляре диаметром 0,5—1 мм. Для выделения излучения азота могут быть использованы соответ-ствуюш.ие интерференционные фильтры. При фотографической регистрации спектра съемка производится на спектрографе ИСП-28. [c.186]

    Для определения оптимальных условий синтеза диалкилалюминийхлоридов в реактор с экранированным электроприводом мешалки, предварительно спрессованный и продутый очищ,енным азотом, загружали суспензию хлористого алюминия. Перемешивали содержимое реактора и нагревал,и до заданной температуры, затем добавляли раствор алюминийтриалкила в бензине. По окончании реакции раствор охлаждали и анализировали. Как показал анализ, синтез диэтилалюминийхлорида пр и 25 и 75 °С протекает с теоретическим выходом. Однако уже при 100 °С наблюдается незначительное выделение водорода, этана, бутана и бутилена, а при 155 °С содержание углеводородов в газообразных продуктах значительно снижается. Твердый осадок, выделенный из продуктов реакций (проведенных при 100 и 155°С), почти полностью состоит из металлического алюминия. [c.181]

    ИК-спектры полиазинов показывают наличие интенсивной полосы поглош,ения при 1670 см , характерной для валентных колебаний связи С=0, а также полосы при 1600 см , указывающей на присутствие связей G=N. Полиазины — термически нестойкие вещества. Даже наличие системы сопряженных двойных связей не приводит к повышению термостойкости этих полимеров. Так, полиазин из глиоксаля разлагается при нагревании до 210" , причем разложение происходит взрывообразно. Убыль в весе, обусловленная выделением газообразных продуктов, составляет 67,5 % от начального веса полимера. Хроматографический анализ показывает, что выделившиеся газы содержат 67,49% азота, 5,39% водорода и 27,12 % аминов, углеводородов и воды (следы). [c.274]

    Р. Мартином с сотрудниками получены и доложены на VI Международном нефтяном конгрессе [88, 210] интересные результаты по исследованию компонентного состава нефтяных фракций. Предложенный метод дает возможность быстрого анализа насыщенных углеводородов, включая Сг и алкилбензолы состава Ст—Сю, позволяет определить следы углеводородов и не нуждается в предварительной ректификации нефти на узкие фракции. На рис. 26 приведена схема использованной авторами хроматографической установки. Р. Мартин и Дж. Уинтерс применили сочетание насадочной аналитической колонки (/=2,5 ж, й = Ъ мм), которая заполняется хромосорбом с нанесенным в количестве 10% силиконом и служит для выделения фракции углеводородов до Ст или Сю включительно, с капиллярной колонкой. Разделение углеводородов на этой колонке происходит в со-сответствии с их температурами кипения. Выделенные углеводороды конденсируются в емкости 4, охлаждаемой жидким азотом. Более высококипящие углеводороды остаются в предварительной колонке и выдуваются из нее током газа-носителя при нагревании. Для проведения анализа выделенных углеводородов емкость 4 нагревается и проба через приспособление для сброса 5 поступает в разделительную капиллярную колонку 6 длиной 150 м с внутренним диаметром 0,25 мм. [c.86]


    Проведение анализа. Перед началом анализа прибор проверяют на герметичность. Создают вакуум при иомогци напорной склянки одной нз измерительных бюреток. После устранения обнаруженных неплотностей систему и колонку продувают углекислым газом со скоростью 40 мл1мин. Для анализа в бюретку 5 забирают 100 мл газа. Определяют суммарное содержание двуокиси углерода и сероводорода поглош,ением в 33%-ном растворе КОН. Содержание кислорода определяют поглощением в растворе пирогаллола. Остаток газа после абсорбционного анализа остается в бюретке 5 для дальнейшего хроматографического анализа. Часть этого газа расходуется на промывку системы. Замеренное количество газа, примерно 20—25 мл, направляется на колонки 1 ж 2. При этом водород, азот, метан, этан и этилен выделяются вместе и направляются в бюретку 6, где сохраняются для дальнейшего анализа. На колонках 1 и 2 при той же скорости потока углекислого газа разделяют углеводороды Сд, С4 и Сд в следующей последовательности сначала выделяется пропан, затем пропилен, изобутан, к-бутан, сумма бутиленов, изопентан, к-нентан и сумма амиленов. При выделении углеводородов С4 скорость потока углекислого газа увеличивается до 60 мл мин. При разделении углеводородов Сд скорость потока газа-носителя составляет уже 80 мл/мин. На разделение углеводородов Сз, С4 и С5 требуется 40—50 мин. Отсчеты объема газов в бюретке производят через каждые 15 сек. [c.200]

    Во втором случае имеется возможность одновременного определения углерода. Содержание серы можно вычислить по площадям пиков сероводорода или двуокиси при использовании соответствующих калибровочных кривых или калибровочных факторов. При применении обоих методов необходимо, однако, выделение продуктов гидрирования или окисления при помощи охлаждаемых ловушек. Определение сероводорода производят на колонках с молекулярными ситами, причем получают результаты, хорошо совпадающие с результатами метода ASTM . Возникающие при гидрировании низшие углеводороды должны быть выделены при помощи включенной перед хроматографической колонкой охлаждаемой колонки с молекулярными сптами. При окислении, кроме двуокиси серы, возникают вода и двуокись углерода. Воду удаляют обработкой сульфатом кальция, а для разделения двуокиси углерода, кислорода и двуокиси серы хорошо подходит колонка, содержащая динонилфталат на хромосорбе. Метод окисления позволяет определять серу в сульфоксидах, сульфонах, сульфидах и дисульфидах но сульфаты не переводятся количественно в двуокись серы. Азот и галогены не оказывают в.лияния на результаты определения. Продолжительность анализа составляет только 20 мин. [c.253]

    Состав газа в % углекислоты 5—7 окиси углерода 27—30, метана 2—2,8 водорода 14—14,5 непредельных углеводородов. — 0,2—0,25 кислорода 0,2—0,3 азота 46—50. Низшая теплотворная способность газа колеблется в пределах 1500— 550 ккал/н.м . Анализ отстойной смолы влажность 30—40%, летучих кислот в пересчете на уксусную 1,7—2%. Анализ кислых вод — отстоя от смолы, выделенной из газа электрофильтрами водорастворимой смолы 14—17% летучих кислот в пересчете на уксусную 5—6%. Анализ кислых вод, выделившихся из газа в гчдрозатво-рах и газопроводах водорастворимой смолы 5—7%, летучих кислот в пересчете на уксусную 2,5—3,5%). Анализ раствора древесноуксусного порошка уксуснокальциевой соли 7,5—10,5%), сухого остатка 10—15%, крепость порошка (содержание в сухом остатке уксуснокальциевой соли) 70—73%. [c.120]

    Для детального исследования летучих органических веществ, выделяемых растениями был применен ХМС анализ с предварительным концентрированием на гидрофобных сорбентах [349] Концентрирование осуществляли пропусканием О 5—1 л воздуха, содержащего летучие выделения листьев растений че рез стеклянные трубки 25 см X 6 мм заполненные О 5—О 7 г Карбохрома или Тенакса G со скоростью О 25 л/мин Десорбцию проводили при 300 °С в течение 30 мин непосредственно в стальную капиллярную колонку с динонилфталатом начальный участок которой охлаждали жидким азотом температуру ко лонки программировали со скоростью 3°С/мин в интервале от 40 до 130 °С Колонка через сепаратор соединялась с масс спектрометром LKB 2091, масс спектры получали при энергии электронов 70 эВ Полученные масс спектры сравнивались со спектрами каталога При изучении состава летучих выделений Листвы 14 видов древесных растений обнаужено более 50 раз ных соединений парафиновые и непредельные углеводороды, спирты, сложные эфиры, карбонильные соединения, фуран и его производные, большое число монотерпеновых углеводородов и их производных Общим для всех растений является выделение изопрена и ацетона [c.146]

    Содержание азота в углеводородных газах может быть определено прямым и косвенным путем. В аналитической практике чаще всего не проводят специально] ) определения азота, а принимают за азот остаток от поглотительного анализа и сжигания водорода и предельных углеводородов. Значительно реже пользуются более надеж- ным методом — определением азота по остатку, полученному в результате сжигания отдельной пробы газа на специальном приборе. Это определение исключает ошибки, связанные с растворением или выделением газа поглотительными растворами, с задержкой газа в отростках гребенки и по-гл( тителышх пипеток (ирибор ВТИ) и т. д. [c.79]


    Возможность разделения на компоненты фракции — gi н-парафинов, а-олефинов и а,, ю-диенов, а также выделенных методом элюентного адсорбционного микрохроматографирования а, со-диенов Сю—Сз1 (см. разд. 1.2.2.1.2) изучена в условиях программирования температуры газо-жидкостного хроматографирования [132]. Условия хроматографирования стальная колонка размером 2000 x 2 мм заполнена хромосорбом W (фракция 0,211—0,160 мм) с нанесеннсй жидкой фазой — полиэтиленгликольадипинат (7%) и ортофосфорная кислота (1%), программирование температуры от 100 до 200 °С са скоростью 2 °С/мин, детектор — пламенно-ионизационный, расход газа-носителя (азот) — 40 мл/мин, объем пробы — 0,2—0,5 мкл. На графике зависимости логарифма относительного времени удерживания от числа атомов углерода в молекуле получают изогнутые линии (рис. 8). Наиболее полное разделение на компоненты всех трех групп углеводородов получают в области С —С ,, с дальнейшим увеличением числа атомов углерода в молекуле четкость разделения падает. Однако при анализе группы а, ш-диенов симметричные пики полностью разделенных компонентов получают до С ai- [c.69]

    Изложены основные принципы молекулярного масс-спектрального анализа углеводородов и ге--тероатомных соединений в нефтях, продуктах переработки нефти, угля, горючих сланцев. Рассматриваются вопросы представления масс-спектров сложных смесей, выделения аналитических признаков и определения калибровочных коэффициентов, методы качественного и количественного анализа группового состава. Приведены методики анализа насыщенных и ароматических углеводородов,, серо-, азот- и кислородсодержащих соединений и примеры их определения в нефтях. [c.239]

    Выделение и характеристика типов полярных соединений в остатках 675°С проведены МсКау с сотр. [54]. Остатки четырех нефтей разделены на 5 фракций кислотные, основные, нейтральные азотистые соединения, насыщенные и ароматические углеводороды. Преобладающими в остатках 675°С являются первые три типа соединений, которые были подвергнуты дальнейшему разделению к анализу. Методы анализа в общем те же, что описаны в [36, 37]. Отмечены причины, ограничивающие точность ИК-анализа, и прежде всего межмолекулярная ассоциация (П-связь), которая уменьшает интенсивность поглощения групп О—Н и N—П и дает заниженные результаты. Исправить положение помогает разбавление растворов и использование кювет большо1г толщины. Второй источник ошибок — в определении средней молекулярной массы фракций. В [54] она принята равной 900. Наконец, большая ошибка (до 25%) может возникнуть, если не зачитывать возможность присутствия в остатках молекул с более чем одним гетероатомом. Например, если в молекуле — два атома азота в пиррольпых группах, то в ИКС отразится поглощение обеих групп, и расчет покажет наличие двух молекул карбазола вместо одной. В целом трудно определить размер погрешности, вносимой в расчет би- или полифунк-циональными молекулами, так как известно только количество, а не расиределение гетероатомов в остатках. Однако ошибка эта существенна, поскольку и элементный анализ, и данные по молекулярным массам показывают, что скорее всего в каждой молекуле более одного гетероатома. Количественные данные по содержанию азотистых оснований были получены потенциометрическим титрованием. ИКС здесь оказалась бессильной, поскольку не всегда поглощение сильных оснований и нетитруемых соединений проявлялось на спектре. ИКС показала, что типы кислых и основных соединений в остатках те же, что и в ранее изученных дистиллятах [36, 37]. Наиболее трудной для разделения и анализа оказалась фракция нейтральных азотистых соединений. Как нерастворимость ее в большинстве растворителей, так и высокие молекулярные массы (1500—3500) показывают, что молекулы сильно ассоциированы и (или) что эта фракция содержит наиболее высокомолекулярные соединения нефти. Б ИКС преобладает поглощение пиррольных групп N—Н кар- [c.35]

    При анализе легких фракций углеводородов (с началом кипения не ниже 150°) необходимо провести микроректификационную отгонку растворителя, не потеряв при этом выделенных микрофракций. Для этого пускают ток охлаждающего газа через установленные медные трубки 5 (см, рис. 1) и одновременно включают микропечки 8 горячей зоны (см. рис. 2) работающей ректификационной ячейки. Нагрев и охлаждение регулируют так, чтобы слабый ток азота из капилляра высушивания 6 (см. рис. 1) способствовал удалению всех паров растворителя, а микрофракция, выделяясь в холодной зоне, стекала вниз по стенкам микроприемника. [c.40]

    Информативность этого способа идентификации может предположительно составить 75-80%. Однако достичь такой высокой надежности результатов качественного анализа сложной смеси ПАС и ПАУ можно лишь после предварительного отделения матрицы (в данном случае — органических соединений других классов — углеводородов и их производных с атомами серы, азота и кислорода) и выделения фракции ПАУ методом ТСХ, ВЭЖХ и т. п. Автору этой монографии удалось воспроизвести метод идентификации ПАС, описанный в работе [17] на основе ПАУ-индексов, предложенных аналитиками США. На аналогичной колонке и чешском хроматографе Хром-5 с ПИД были идентифицированы около 150 ПАУ в газовыделениях из сырой нефти, что стало возможным лишь после предварительного вьщеления фракции ароматических углеводородов методом жидкостной хроматографии. [c.61]

    Аналогичный хромато-масс-спектрометрический метод использован при анализе сточных вод, загрязненных парафиновыми углеводородами С5— [317]. Примеси извлекали из воды потоком азота (20 мл/мин) в специальном приборе для динамического выделения нерастворимых в воде органических веществ. Время извлечения составляло 11 мин. К прибору присоединяли ловушку, заполненную хромосорбом 103 или тенаксом ОС (ноли-2,6-фениленом). Для десорбции псглощенных в ловушке веществ в хроматограф ее нагревали до 130° С и пропускали поток азота (20 мл/мин) в теченне 3 мин. Для анализа применяли газовый хроматограф с пламенно-ионизационным и микрокулонометрическим детекюрами. Колонки заполняли хромосорбом 101 или хромосорбом Р, содержащим 4% голи-силоксана 5Е-30. [c.146]

    При пиролизе ряда связующих происходит образование сильно науглероженной фазы (кокса). Чем больше выход твердых продуктов пиролиза, прочность кокса и прочность его сцепления с наполнителем, тем выше качество такого материала. Связующие, применяемые для получения коксованных карбоволокнитов, можно разделить на две группы. К первой относятся сетчатые полимеры (фенольные, фурановые, эпоксиноволачные, пеки и др.), продуктами пиролиза которых являются полициклические остатки. Вторую группу составляют линейные полимеры (полиамиды, полиимиды и др.), первичными продуктами пиролиза которых являются газообразные углеводороды. При контакте последних с горячей поверхностью коксующегося слоя происходит выделение углерода [52, с. 462—472]. Способность полимерных связующих к коксованию устанавливают с помощью термогравиметрического анализа в инертной атмосфере, например в азоте [53]. Большим коксовым числом (выход кокса при пиролизе) характеризуются сетчатые и некоторые линейные полициклические полимеры, например полиимиды, иолибензимидазолы. В табл. V.11 приведены показатели механических свойств низкомодульных карботекстолитов до и после карбонизации связущих при различных температурах испытания на воздухе. [c.237]

    Такое снижение температуры опыта имеет несомненное преимущество перед сожжением предельных углеводородов над чистой окисью меди при температуре 900 , так как устраняются явления, отражающиеся на точности анализа. Дело в том, что при высокой температуре (900°) окись меди диссощшрует с выделением кислорода, причем количество последнего тем больше, чем значительнее содержание азота в исследуемом образце газа свежеокислен-ная медь выделяет кислорода больше, чем медь, частично отработанная. Имея это в виду, необходимо несгоревший остаток газа проверять на содержание кислорода. [c.124]

    Таким образом, анализ, точка плавления и прочие свойства доказывают, что это был несомненно пептабромтолуол, которьп мы получали также из углеводорода, описываемого ниже. Крепкая красная азотная кислота действует на него очень слабо. После кипячения в течение часа, разбавления водой и промывки получилось желтое вещество, которое может быть легко промыто бензолом, извлекающим преимущественно окрашенный продукт. При свободном испарении бензольного раствора нолучаются желтые, бородавчатые кристаллы и белое аморфное тело. Оно начинает спекаться уже около 105° в бурокрасную массу, а около 140° наступает разложение с выделением газов, что особенно замечается около 150°. Кристаллы не содержат азота. Белое вещество получается из бензола в аморфном порошке. Оно сильно чернеет прп 260° и плавптся [c.559]

    Полученный осадок комплексного соединения разлагается соляной кислотой с выделением непредельного углеводорода. С высшими алкенами реакция идет трудно. Химические методы анализа и ис-следования состава углеводородных смесей в последнее время начинают вытесняться хроматографически.ми. Это относится и к анализу смесей, содержащих непредельные углеводороды. Предложено очень много вариантов газо-жидкостной и жидкостной адсорбционной хроматографии для анализа крекинг-бензинов и других углеводородных смесей, содержащих алкены . В отдельных работах указывается на возможность раздельного определения алкенов различного строения или молекулярного веса. Так, например, в колонке длиной 1,8 м, наполненной огнеупорным кирпичом, пропитанным динонилфталатом, при 100° С, с азотом в виде газа-носителя было достигнуто хорошее разделение смеси пентена-1, гексена-1, гептена-1, октена-1 и нонена-1. В другой работе в качестве неподвижной жидкой фазы был использован диэтиленгликоль, а в качестве газа-носителя — гелий. На двухметровой колонке при температуре 42° С удалось определить раздельно все семь изомеров нормальных октенов. [c.127]

    В фоне, однако при разрешающей силе 500 эти ионы можно отличить от Не. Не также может присутствовать в измеримом количестве в стеклянной аппаратуре благодаря диффузии атмосферного гелия сквозь стенки вакуумной системы. Основное наложение в области изотопов аргона возникает, вероятно, вследствие наличия следов ионов НС1, имеющихся в том случае, если на приборе анализировались хлорированные соединения. Ионы наиболее тяжелых инертных газов практически полностью свободны от наложения. Таким образом, во всех случаях исследования инертных газов спектр фона не ограничивает достижение определенной точности 1890]. Наивысшая чувствительность достигается в том случае, если возможно использование совершенной статической системы, т. е. когда масс-спектрометр может быть отключен от насосов, и весь образец газа вводится в прибор. Для предотвращения относительно быстрого увеличения давления в трубке (вследствие обезгаживания) необходимо использовать технику сверхвысокого вакуума. Рейнольдсу [1689] удалось достигнуть 5-10" мм рт. ст. в течение 48 час от произвольных начальных условий при помощи системы с включенным катодом, периодически откачиваемой при 375° и при комнатной температуре. Давление в изолированной трубке в течение трех часов измерений поднималось до 5-10 мм рт. ст. из-за выделения газов в приборе, вызванного ионным пучком. Наиболее устойчивые эффекты памяти в такой системе обусловлены тем, что часть образца в форме ионов с большой энергией входит в стеклянные и металлические поверхности, где остается до тех пор, пока ионный пучок в последующих опытах не ударится об эти поверхности. Исключить полностью память прогреванием невозможно. Работа с образцами инертных газов имеет то преимущество, что отсутствует химическое поглощение, свойственное органическим материалам. Небольшие количества углеводородов, которые могут быть обнаружены в образце инертного газа при проведении обычного динамического анализа, не могут быть замеченыв статическом анализе, так как они разлагаются на катоде. При проведении статического измерения малые количества азота могут полностью окклюдироваться на чистой металлической поверхности. Лучшая чувствительность обнаружения инертного газа равна по Рейнольдсу 5-10 молекул ксенона. Чувствительность может быть повышена введением дискриминатора для понижения шумов в используемом умножителе. [c.191]


Смотреть страницы где упоминается термин Азот, анализ и выделение углеводородов: [c.171]    [c.271]    [c.17]    [c.37]    [c.257]    [c.191]    [c.316]    [c.321]    [c.80]    [c.399]    [c.47]    [c.133]    [c.136]    [c.263]    [c.201]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.936 , c.975 ]




ПОИСК





Смотрите так же термины и статьи:

Азот, анализ и выделение

Азот, анализ и выделение углеводородов посредством

Выделение азота

Выделение углеводородов



© 2025 chem21.info Реклама на сайте