Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Асфальт, очистка его

    Лучшие результаты дает кислотно-щелочная очистка, которая заключается в обработке масляного полупродукта крепкой серной кислотой (96—98%), а затем щелочью. Асфальто-смолистые вещества, часть нафтеновых кислот и тяжелые ароматические углеводороды легко вступают в реакцию с серной кислотой и удаляются из масла. Затем полупродукты обрабатывают натриевой щелочью, которая нейтрализует органические кислоты и остатки серной кислоты. Для удаления остатка щелочи и солей масло промывают водой и просушивают нагретым воздухом. Кислотно-щелочным способом производится очистка многих дистиллятных масел. [c.137]


    Чем выше температура кипения сырья, тем выше величина его КТР и тем при более высокой температуре можно его очищать. Повышенное содержание асфальто — смолистых веществ и поли — циклических ароматических углеводородов понижает КТР и требует более низкой температуры экстракции. Практически температура очистки поддерживается на 10—25 °С ниже КТР сырья в зависимости от требуемого качества рафината и составляет 55 — 70 °С для дистиллятного сырья, 75 — 95 °С для деасфальтизатов при очистке фенолом, 60 — 90 и 95—115 °С соответственно при использовании фурфурола. [c.241]

    Вследствие различной природы веществ требуются различные методы обработки этих продуктов для понижения температуры их застывания. Так, для продуктов, имеющих вязкостную форму застывания, температура застывания может быть понижена улучшением их вязкостно-температурных свойств путем удаления низкоиндексных компонентов (асфальто-смолистых веществ, ароматических углеводородов с короткими и разветвленными алифатическими цепями и т. п.). Удаление этих компонентов осуществляется различными методами очистки и деароматизации. При этом очисткой и деароматизацией можно понизить температуру застывания только тех нефтяных продуктов, которые имеют именно вязкостную форму застывания. [c.17]

    Кристаллическая структура остаточных продуктов, так же как и дистиллятных, зависит от степени их очистки, но эта зависимость для первых выражена значительно более резко. Последнее обусловливается тем, что при очистке в значительно большей мере изменяется состав остаточных продуктов, чем дистиллятных. На фракционном составе и свойствах остаточных продуктов значительно сказывается деасфальтизация пропаном, поскольку при деасфальтизации компоненты разделяются не только по химической природе, но в значительной мере и по молекулярному весу. При этом наиболее высокомолекулярные компоненты переходят в остаток от деасфальтизации, т. е. в асфальт, вследствие чего деасфальтируемый продукт может освободиться от некоторой [c.33]

    Кроме сернистых соединений на окисление масел влияют и содержащиеся в них другие неуглеводородные компоненты, в первую очередь смолисто-асфальтеновые вещества. Эти продукты остаются в маслах в количестве нескольких процентов, особенно в высоковязких остаточных маслах (несмотря на глубокую очистку масел в процессе их производства). Смолисто-асфальтеновые вещества содержат в своем составе кроме углеводородной части еще кислород, серу, иногда азот. По [35, 89, 90], нефтяные смолы в концентрации до 1% стабилизируют масло, уменьшая его окисление (рис. 2.13). Увеличение концентрации смол выше 1% снижает их эффективность как естественных ингибиторов, а иногда даже повышает окисляемость масла. Предполагается, что снижение противоокислительной эффективности смол, а также их способность при высокой концентрации увеличивать окисляемость масел связаны с образованием асфальтенов. Сами асфальтены, внесенные в масло даже [c.68]


    Целью сольвентной очистки является извлечение этих нежелательных компонентов и получение очищенного масла с более парафинистым составом. Выделение обычно протекает медленно [И]. Некоторые нежелательные компоненты остаются в рафинате, а некоторые желательные теряются в экстракт. Другие нежелательные компоненты, такие как асфальтовые и смолистые вещества, которые содержат кислород, серу, азот и металлы, удаляются в экстракт более эффективно. Экстракты смазочных масел применяются в частности для производства сульфонатов. Они используются также как сырье для асфальта и, в худшем случае, могут применяться как котельное топливо. [c.285]

    Деасфальтизация пропаном. Соединения асфальтового характера имеют очень высокий молекулярный вес и концентрируются в тех остатках, которые имеют такую высокую температуру кипения, что не могут быть выделены дистилляцией. Вещества смолистого характера имеют молекулярный вес несколько ниже и находятся как в масляных дистиллятах, так и в мазуте. Асфальты и смолы часто в промышленности выделяются из масла отгоном более летучих веществ, и этот процесс экономичен, если сырье содержит незначительное количество ценных высокомолекулярных углеводородов, которые не могут быть отогнаны. Однако во многих случаях желательно в дальнейшей переработке этих остатков получить вязкие масляные дистилляты или тяжелое сырье для каталитического крекинга. Общепринятая сольвентная очистка одним растворителем непригодна, и применяется деасфальтизация пропаном или дуосол-процесс, в котором также используется пропан.  [c.285]

    Смешанные топлива. Нефтеперегонные заводы часто используют как топливо отходы собственного производства. Это обычно сернокислотные осадки операций очистки, нефтяные эмульсии, асфальты и коксовые продукты [112—115]. При их использовании обычно возникают различные технические трудности. [c.483]

    Следовательно надлежащая очистка трансформаторных масел выдвигает крайне сложные проблемы, для решения которых было бы полезно иметь более точные сведения об асфальтах и смолах. [c.122]

    Основным сырьем для производства битумов в нашей стране являются остаточные продукты нефтепереработки гудроны, асфальты деасфальтизации, экстракты селективной очистки масляных фракций. Использование природных битумов крайне незначительно. [c.6]

    На основе низковязких асфальтов битумы можно получить по первому, третьему н четвертому способам переработки. При этом первый способ обеспечивает получение битумов только марок БН, но сырье в данном случае состоит на 100% из асфальта деасфальтизации (см. табл. 16, рис. 65). По третьему способу переработки для получения битумов БН в состав сырья окисления можно вовлекать до 50% асфальта, а для получения битумов БНД — до 30%. Для четвертого способа в качестве разбавителя рекомендуется гудрон с условной вязкостью при 80 °С 20—40 с или экстракт селективной очистки масел доля асфальта в конечном продукте — битуме марок БНД — составляет здесь 25—50% при использовании гудрона и 50—70% при использовании экстракта [145, 148]. [c.103]

    По оптическим свойствам нефтей и нефтепродуктов можно косвенно судить о содержании в них асфальто-смолистых веществ, о глубине очистки нефтепродуктов, о превалировании тех или иных групп углеводородов, о возрасте и происхождении нефти и т. д. К оптическим свойствам нефтепродуктов относятся цвет, лучепреломление и оптическая активность. [c.95]

    Нефти встречаются от светло-желтого до темно-коричневого и черного цвета. Легкие нефти плотностью 0,78—О,,79 г/см имеют желтую окраску, нефти средней плотности (0,79—0,82 з/сж ) — янтарного цвета и тяжелые — темно-коричневые и черные. Разный цвет может иметь даже нефть одного и того же месторождения. Например, в Сураханском месторождении (Баку) на глубине 200 м залегает белая нефть — прозрачная, почти бесцветная жидкость плотностью 0,782 г/см на глубине 420 м — красная нефть плотностью 0,810 г/см , а, еще глубже цвет ее меняется от коричневого до черного. Цвет нефтям и нефтепродуктам придают асфальто-смолистые вещества, продукты окисления углеводородов и некоторые непредельные и ароматические углеводороды. По цвету сырых нефтей судят об относительном содержании в пих асфальто-смолистых соединений. Обычно чем тяжелее нефтепродукт, тем он темнее. Цвет нефтепродукта — надежный показатель степени его очистки от смолистых примесей. [c.95]

    За последние годы в технологию производства масел все больше внедряются процессы гидроочистки взамен селективной очистки и обработки отбеливающими глинами. Таким способом получают дистиллятные масла (легкие и средние индустриальные, автотракторные и др.). Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуются деасфальтизат и асфальт. Деасфальтизат подвергают дальнейшей обработке, подобно масляным дистиллятам, а асфальт перерабатывают в битум или кокс. [c.152]


    В 80 гг. на Куйбышевский НПЗ начала поступать угленосная нефть Прикамья. К 1985 г. ее доля возросла до 95 %. Угленосные нефти характеризуются высокой плотностью и вязкостью, высоким содержанием сернистых и асфальто-смолистых веществ, а также повышенным содержанием меркаптанов и сероводорода. В связи с этим на НПЗ возникла проблема исследования, интенсификации и внедрения более экономичных, малоотходных процессов и схем очистки нефтяных фракций от сернистых соединений с максимальным использованием существующего оборудования и катализаторов, выпускаемых отечественной промышленностью. В связи с повышением спроса на топливо ТС-] разработан и внедрен на НПЗ процесс очистки этого топлива от меркаптанов. [c.4]

    Если окислению подвергаются тяжелые гудроны с добавками асфальта и экстрактов селективной очистки масел, то выход битума будет на I—2% выше, чем указано в табл. 3.27. [c.209]

    Очистка парными растворителями. Экономическая эффективность производства смазочных масел значительно повышается при комбинировании процессов на одной установке. При производстве остаточных масел применяется очистка парными растворителями (дуосол-процесс), которая сочетает деасфальтизацию пропаном и селективную очистку смесью крезолов и фенола (селекто). Эти растворители обладают ограниченной взаимной растворимостью и разной избирательностью к одним и тем же компонентам сырья, что является следствием структуры их молекул. Пропан вследствие дисперсионных сил взаимодействия молекул хорошо растворяет высокоиндексные неполярные или слабополярные углеводороды остаточного сырья, высаживая из раствора асфальтены, смолы и полициклические ароматические углеводороды, которые растворяются в смеси крезолов и фенола в результате совместного действия полярных и дисперсионных сил. Крезол обладает высокой растворяющей способностью по отношению к ароматическим угле- [c.103]

    Химические методы основаны на взаимодействии веществ, загрязняющих нефтяные масла, и реагентов, вводимых в эти масла. В результате протекающих реакций образуются соединения, легко удаляемые из масла. К химическим методам очистки относятся кислотная очистка, щелочная очистка, осушка с помощью соединений кальция, осушка и восстановление гидридами металлов. Применение химических методов очистки позволяет удалять из масел асфальто-смолистые, кислотные, некоторые гетероорганические соединения, а также воду. [c.111]

    Физико-химические методы основаны главным образом на использовании коагулянтов и адсорбентов. Применение коагулянтов способствует укрупнению и выпадению в осадок асфальто-смолистых веществ, находящихся в масле в мелкодисперсном состоянии, близком к коллоидному. Адсорбционные методы очистки основаны на способности некоторых веществ избирательно поглощать органические и неорганические соединения, находящиеся в масле. Этими методами из масла можно удалять асфальто-смолистые и кислотные соединения, эмульгированную и растворенную воду. [c.111]

    На качество деасфальтизации влияют количество пропана и его чистота, а также температура процесса. Смолы и асфальтены наиболее полно выделяются, когда объем пропана превышает объем очищаемого масла в 5—8 раз при дальнейшем увеличении количества пропана эффективность очистки не повышается. Наличие в пропане примесей этана увеличивает количество осаждаемых асфальто-смолистых веществ, но одновременно способствует осаждению некоторых высокомолекуляр- [c.127]

    При промывке масла водой после нейтрализации его раствором щелочи могут образовываться устойчивые трудноразрушаемые эмульсии, а также происходит гидролиз образовавшихся солей (мыл). Поэтому при очистке масел (особенно относительно высоковязких) нейтрализацию кислого масла щелочью нередко заменяют обработкой отбеливающими глинами. При этом масло смешивается с мелкоразмолотой отбеливающей глиной. При контакте с горячим маслом глина адсорбирует на своей поверхности асфальто-смолистые вещества, остатки серной кислоты и кислого гудрона. После этого глину отделяют при помощи фильтров. Очистка масла с обработкой серной кислотой и отбеливающей глиной путем контактного фильтрования носит название кислотно-контактной очистки. [c.137]

    Эмульгаторами обычно являются полярные вещества нефти, такие, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные органические примеси. Установлено, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды, как парафины и церезины нефтей. Тип образующейся эмульсии в значительной степени зависит от свойств эмульгатора эмульгаторы, обладающие гидрофобными свойствами, образуют эмульсию типа В/Н, то есть гидрофобную, а эмульгаторы гидрофильные — гидрофильную эмульсию типа Н/В. Следовательно, эмульгаторы способствуют образованию эмульсии того же типа, что и тип эмульгатора. В промысловой практике чаще все1о образуется гидрофобная эмульсия, так как эмульгаторами в этом случае являются растворимые в нефти смолисто-асфальтеновые вещества, соли органических кислот, а также тонкоизмельченные частицы глины, окислов металлов и др. Эти вещества, адсорбируясь на поверхности раздела нефть—вода, попадают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды. Наоборот, хорошо растворимые в воде и хуже в углеводородах гидрофильные эмульгаторы типа щелочных металлов нефтяных кислот (продукт реакции при щелочной очистке) адсорбируются в поверхностном слое со стороны водной фазы, обволакивают капельки нефти и таким образом способствуют образованию гидрофильной нефтяной эмульсии. При на ичии эмульгаторов обоих тигюв возможно обращение эмульсий, то есть переход из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий. [c.147]

    Одной из особенностей процесса депарафинизации в растворах дихлорэтан-бензоловой смеси является возможность перерабатывать малоочищенное и даже совсем неочищенное сырье дистиллятного и остаточного происхождения. Эта особенность обусловливается, с одной стороны, использованием в качестве растворителя хлорпроизводных, относительно хорошо растворяюпщх асфальто-смолистые вещества, и, с другой стороны, применением центрифугирования, которому не препятствует выделение из раствора вместе с парафином некоторого количества смолистых веществ. При депарафинизации же фильтрацией выделение из раствора такого же количества асфальто-смолистых веществ сделало бы раствор совершенно не фильтрующимся. При дихлорэтан-бензоловой депарафинизации присутствие асфальто-смолистых веществ в ряде случаев даже улучшает центрифугирование в той мере, в какой оно способствует образованию плотных дендритных кристаллов выделяющегося парафина. Поэтому на некоторых зарубежных заводах процесс дихлорэтан-бензоловой депарафинизации предшествует очистке. Такую же схему предполагалось осуществить но первоначальному проекту и на грозненском заводе. Указанная выше последовательность процессов дихлорэтан-бензоловой депарафинизации и очистки при переработке тяжелого цилиндрового дистиллята вязкостью 30—45 сст нри 100° описана И, И. Нюренбергом [299] в работе по обобщению опыта применения дихлорэтан-бензоловой депарафинизации на некоторых зарубежных заводах, а также и в других источниках [24] для остаточного сырья. При выборе последовательности депарафинизации и очистки нужно иметь, в частности, в виду, что очистка в большинстве случаев повышает температуру застывания очищаемого продукта вследствие увеличения концентрации в нем парафина. Поэтому температуру депарафинизации, если этот процесс проводят перед очисткой, устанавливают более низкую, чем при обычной последовательности данных процессов. [c.205]

    Очистке остаточных продуктов одиночными растворителями, например фурфуролом или фенолом, обычно предшествует деасфальтизация пропаном, так как эти растворители не экстрагируют асфальт, находящийся в большинстве остаточных продуктов. При деасфальтизадии пропаном раствори- [c.192]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Нужно вспомнить, что общепринятая сернокислотная очистка всегда причиняла значительные неудобства. Смолистые и асфальтовые вещества, некоторые реакционноспособные соединения серы и азота и углеводороды не могут быть выделены в чистом виде. Кроме того, сброс продуктов реакции и извлечение отработанной кислоты затруднителен и дорог. При сольвептной экстракции, однако, продукты с высоким содержанием парафинов противостоят окислению и сравнительно свободны от коксообразующих веществ, которые извлекаются в виде экстракта, пригодного для дальнейших превращений, например в асфальт или котельное топливо. Экстракция используется в таких процессах, как обработка газойлей и керосиновых дистиллятов для получения высококачественных реактивных и дизельных топлив и для повышения качества исходного сырья каталитического крекинга [61]. Выделение ароматических углеводородов высокой концентрации этим методом применяется в больших масштабах. Он стал особенно важным в военных условиях 1940—1945 гг. для производства нитротолуола и для других химических производств [62, 63]. [c.275]

    Установлено опытом, что при очистке остаточных масел одним растворителем необходимо перед экстракцией удалить асфальт, осаждая его пропаном. В Дуосол-ироцессе [87 ] обе цели осуществляются одной операцией. Пропан, который поступает в один конец системы, осаждает асфальт, избирательно растворяет более иарафинистые компоненты и перемещает их в рафинатную часть системы. Смесь фенола и крезола избирательно растворяет асфальтовые смолистые и ароматические компоненты и перемещает их в экстрактную часть системы. Процесс обычно проводится при 43—77° С.2 Выбор растворителя зависит от ряда факторов, таких как возможность применения для обработки масла, гибкость по отношению к различным маслам, стоимость, токсичность, возможность последующего удаления, растворимость, селективность и легкое разделение фаз. Ниже приводятся данные по мировому производству растворителей для очистки масел в 1950 г. в тыс. сутки [89] [c.282]

    Далее следует иметь в виду, что некоторые примеси мешают кри-сталлнзатдаи парафина. Среди них находятся смолы и асфальты. В само деле, было отмечено, что после удаления из парафинистых масел асфальтов и смол — серной кислотой или флоридином, в маслах появляются более объемистые кристалла парафина, нежели то имело место до очистки. Следовательно мы можем считать, что эти соединения играют в отношении парафина роль защитных коллоидов. [c.128]

    Очистка керосина или сырой нефти серной кислотой имеет еще целью пе1ревести в кислые смолы асфальто- и смолообразные продукты, находящиеся в них во взвешенном состоянии. [c.184]

    Это можно объяснить следующими соображениями. Можно предполагать, что введение кислоты в нефть приводит к целой серии реакций не только действия кислоты на асфальты, но таиже и взаимодействия образующихся продуктов с избытком этой кислоты. Таким образом часть кислоты расходуется на бесполезные для хода очистки Вторичные реакции. С другой стороны, образовавшиеся кислые отбросы разбавляют концентрацию кислоты и таким образом понижают ее активность. [c.186]

    Гольде 1 Предлагает применять просто один легкий бензии, а Кёт-ниц2 — этил-ацетат. Если, наоборот, желают растворить асфальтьь не растворяя самой нефти, то применяют ацетон. Сименс и Шукерт применяли данный растворитель для очистки трансформаторных масел. / [c.208]

    Большой ошибкой, однако, былО бы считать, что одна какая-нибудь теория в соса1оянии объяснить все явления, происходящие при очистке нефтей адсорберами. Наряду с определенными химическими сое Динения1ми, как например этиленовые. лЬ леводороды и сернистые соединения, адсорбция которых, вероятно, следует обтцим правилам, в нефти содержатся enie суспензии асфальтов и омол, самая природа которых еще недостаточно изучена. Можно предполагать, что действие адсорбера на те и другие соединения, имеющее результатом и обесцвечивание и удаление серы, слагается из целого ряда различных реакций. [c.218]

    Асфальто-смолпстые вещества очень плохо растворяются в пропане, а асфальтены практически не растворяются. При температурах обработки выше 40° С они начинают незначительно растворяться в пропане. Это свойство п позволяет применять пропан в качестве деасфальтирующего и обессмоливающего растворителя для очистки масляных фракций желательные углеводороды перехпттяд. в раствор, а нежелательные выделяются. Процесс деасфальтизации гудрона или полугудрона основан на различной растворяющей способности жидкого пропана по отношению к жидким углеводородам и асфальто-смолистым веществам. [c.212]

    Искусственные асфальты можно разбить на две большие группы, довольно легко отличимые одна от другой. Во-первых, это могут быть остатки от перегонки нефти, после того как из нее удалены все легкие дестиллаты и масла, во-вторых, аофальтообразные, точнее смолистые продукты, вырабатываемые из кислотных отбросов от очистки смазочных и, особенно, машинных масел. [c.353]

    Однако глубокая деасфальтизация (см. главу 1) протекает с малой избирательностью и сопровождается большими потерями с асфальтом денных компонентов масла. Адсорбционная же очистка отличается большей избирательностью, поэтому для получения рафината заданного качества с хорошим выходом целесообразно направлять на адсорбционную очистку деасфальтизаты после неглубокой деасфальтизации, что и подтверждается практикой (см. табл. 48). Эти деасфальтизаты имеют повышенную коксуемость, в частности деасфальтизат второй ступени [18, 19], отличающийся от деасфальтизата первой ступени также большей молекулярной массой смол, серосодержащих соединений и полициклических ароматических углеводородов, входящих в его С01С-тав. Адсорбционной очисткой деасфальтизата Второй ступени можно получить 50—54% рафината, который после депарафинизации обладает относительно высоким ИВ (75—77), коксуемостью не более 1,6% и цветом 2—3 марки (по МРА). Эти свойства при высокой ВЯЗ1К0СТИ (36—45 мм /с при 100 С) делают такие масла [c.270]

    Кислотная очистка заключается в обработке масла концентрированной серной кислотой и позволяет удалить асфальто-смолистые соединения и другие продукты окисления, а также компоненты, способствующие возникновению в масле этих продуктов, — непредельные углеводороды и часть ароматических, Серная кислота вступает в реакции с загрязнениями, имеющими наибольшую реакционную способность, — со смолами, ас-фальтенами, карбоновыми и оксикислотами, фенолами и другими веществами. Процесс химической очистки сопровождается физико-химическими явлениями, так как серная кислота для некоторых веществ — растворитель. [c.113]

    Деасфальтизация мёсел пропаном заключается в осаждении асфальто-смолистых веществ из пропа-нового раствора очищаемого масла. Эта операция осуществляется только на нефтеперерабатывающих предприятиях в качестве первой стадии очистки масел (перед селективной очисткой). При растворении углеводородов масла в пропане асфальто-смолистые вещества, находящиеся в масле в коллоидном состоянии и имеющие довольно высокую плотность, выпадают в осадок вследствие разрушения коллоидного раствора после введения пропана. [c.127]


Смотреть страницы где упоминается термин Асфальт, очистка его: [c.18]    [c.67]    [c.549]    [c.98]    [c.125]    [c.217]    [c.27]    [c.106]    [c.112]    [c.70]    [c.82]    [c.87]    [c.424]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Асфальт, очистка его в маслах

Асфальт, очистка его с серой

Асфальтиты

Асфальты



© 2025 chem21.info Реклама на сайте