Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиррол определение

    Гетероциклические соединения [79, 81, 154] могут присутствовать и в группе соединений основного характера и в группе соединений остаточного азота. Для качественного определения азотных гетероциклов в инфракрасной области можно пользоваться табл. 68 [79, 207]. Гетероциклические соединения с атомом азота в кольце, как правило, имеют характер вторичных аминов или иминов (пирролы, пиридины, хинолины). В их спектрах поглощения присутствуют полосы поглощения вторичных аминов или иминов, отличающихся, как уже говорилось, повышенной интенсивностью. Кроме того, присутствуют интенсивные полосы поглощения, соответствующие скелетным колебаниям кольца, валентным колебаниям замещенных колец, валентным и деформационным колебаниям водородного атома кольца. [c.134]


    Рациональная номенклатура для гетероциклов очень схожа с номенклатурой ароматических соединений. В этом случае за основу берут название определенного гетероцикла — фурана, тиофена, пиррола, пиридина и т. д., а положения заместителей в них обозначают цифрами или буквами греческого алфавита. Так, в пятичленных гетероциклах положение 2(5) обозначают буквой а(а ), а положение 3(4) —р( 5 ). В шестичленных гетероциклах положения 2(6), 3(5) и 4 обозначают соответственно буквами а(а ). Р(Р ) и у. При этом нумерацию начинают с гетероатома (если их несколько, то нумеруют в порядке О, 5, ЫН, Ы). Например  [c.353]

    По рациональной номенклатуре за основу берут название определенного гетероцикла (фурана, тиофена, пиррола, пиридина и т. д.), а положения заместителей в них обозначают цифрами или буквами греческого алфавита. Так, в пятичленных гетероциклах положение 2 (5) обозначают буквой а (а ), а положение 3X4) — Р (Р ). В шестичленных гетероциклах положения 2 (6), 3 (5) и 4 обозначают соответственно [c.179]

    Для построения пространственной структуры белка пептидные цепи должны принять определенную, свойственную данному белку конфигурацию, которая закрепляется водородными связями, возникающими между пептидными группировками отдельных участков молекулярной цепи. По мере образования водородных связей пептидные цепи закручиваются в спирали, стремясь к образованию максимального числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации. Но образованию правильной спирали часто мешают силы отталкивания или притяжения, возникающие между группами аминокислот, или стерические препятствия, например за счет пирроли-диновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориен- тируются в пространстве, принимая в некоторых случаях достаточно [c.373]

    Пиррол X, как известно, характеризуется определенной ароматичностью (хотя она выражена не так сильно, как в случае бензола или пиридина) и не проявляет свойств сопряженного диена. [c.91]

    Строение сульфокислот пиррола определялось двумя путями окислением бромной водой и при помощи окислительной полярографии. Аналогично производным фурана, а- и р-сульфокислоты пиррола ведут себя при окислении различно ос-сульфогруппа отщепляется при действии окислителей с образованием серной кислоты, и в результате окисления может быть выделен не содержащий серы малеинимид при наличии р-сульфогруппы окисление происходит без отщепления сульфат-иона и с образованием содержащих сульфогруппу малеинимидов. Для определения строения пиррольных и индольных соединений был успешно применен метод окислительной полярографии. [c.275]


    В области биохимии (см. гл. 28) два важнейших вешества—гемоглобин и хлорофилл — представляют собой координационные металл-органические соединения. У этих веществ есть определенное сходство гемоглобин представляет собой хелат железа (гем), связанный с белком (глобином), а хлорофилл—хелат магния. Оба хелата содержат четыре кольца-пиррола, координированных к центральному иону металла и связанных между собой мостиковыми группами —СН—. В результате образуется так называемая порфириновая структура, которой [c.422]

    Необходимо понять, что энергию резонанса очень трудно измерить или рассчитать. Основная сложность заключается в определении энергии гипотетических неароматических структур. Трудности возникают уже при переходе от бензола к нафталину и еш е больше возрастают для таких простых гетероциклов, как пиридин, пиррол, фуран и т. п. Поэтому нет ничего удивительного в том, что для каждого гетероцикла опубликовано большое число значений энергии резонанса. [c.12]

    Пирролы, как правило, легко атакуются окислителями, часто подвергаясь при этом полному расщеплению. Если же кольцо пиррола сохраняется при окислении, продуктами реакции почти всегда оказываются производные малеинимида. Ранее эта окислительная реакция широко использовалась при определении строения порфирина в качестве окислителей применялась водная смесь серной кислоты с хромовым ангидридом или дымящая азотная кислота [c.228]

    С позиций метода валентных связей фуран рассматривается как резонансный гибрид канонических структур (1) — (5). Направление диполя в молекуле фурана (0,72 Д) в противоположность распространенным ошибочным взглядам таково, что отрицательный заряд сосредоточен на атоме кислорода, который, таким образом, индуктивно оттягивает электроны кольца. То же наблюдается в случае тиофена, но не в случае пиррола [3]. Для фурана было выполнено много расчетов по методу МО, но их результаты расходятся в широких пределах [4]. Значения энергии резонанса фурана, определенные термохимическими методами, составляют 66—96 кДж/моль [5]. Валентные углы и длины связей для тиофена, пиррола и фурана были определены методом микроволновой спектроскопии. В качестве критерия ароматичности было использовано соотношение длин 2,3- и 3,4-связей, но обоснованность этого подхода подвергалась сомнению. [c.117]

    Для сравнения ароматичности бензола, тиофена, пиррола и фурана был использован также ряд методов, основанных на спектроскопии ЯМР [5] определение индуцированного кольцевого тока, определение химических сдвигов, обусловленных разбавлением [6] и заменой растворителя, а также определение экзальтации магнитной восприимчивости. На основе этих данных было установлено, что ароматичность изменяется в ряду бензол > тиофен > > пиррол > фуран. [c.117]

    Таким образом, реакции между магнийорганическими соединениями и соединениями с подвижным атомом водорода имеют важное значение. Они используются для качественного и количественного определений функциональных групп, содержащих подвижный атом водорода, для получения углеводородов из галогенпроизводных и магнийорганических соединений ряда ацетилена, флуорена, пиррола, индола и т. п. [c.261]

    Начиная изучение относительной реакционной способности пирролов и фенолов к декарбоксилированию, мы обнаруживаем, что относящиеся сюда данные не являются, строго говоря, сравнимыми. Легкость декарбоксилирования заметно зависит от присутствия катализаторов, от способа нагревания,. а также от агрегатного состояния вещества в момент декарбоксилирования.. Исследование тщательно очищенных веществ в гомогенной системе при строго сравнимых условиях могло бы дать значительно более ценные сведения, о характере этой своеобразной реакции. Не имея таких сведений, мы можем лишь провести сравнение грубо установленных данных, которые имеются в нашем распоряжении и которые определенно указывают на большие качественные отличия. [c.233]

    Дипольный момент пиррола определен с помощью ряда методов, причем его величина зависит от условий измерения [8в]. Так, в неполярных растворителях, таких как циклогексан и бензол, величина дипольного момента составляет около 1,80 О при 25 °С. С другой стороны, у чистой жидкости он равен примерно 1,55 О, а в растворителях, с которыми возможно образование водородных связей, может значительно повышаться. В диоксане, например, дипольный момент пиррола равен 2,1 О, а в триэтил-амиие 3,0 О. Направление диполя всегда постоянно — от атома азота внутрь кольца, тогда как у насыщенного аналога, пирроли- [c.334]

    Наиболее принято определение кислот и оснований, предложенное Бренстедом. Согласно этому определению кислотой называется любая частица, способная отдавать протон, а основанием — любая частица, способная принимать протон. Кислотами являются соединения, у которых атом Н связан с элементом, существенно превосходящим его по электроотрицательности. Это прежде всего все галоге-новодороды Н—Hal, а также гидриды элементов шестой группы, главной подгруппы — HjO, H2S, HaSe, HgTe. Эти соединения — более слабые кислоты, чем соответствующие галогеноводороды, Одна-. ко способность ОН-группы передавать свой протон усиливается, если кислород участвует в р — л-сопряжении, что происходит у большинства кислородных кислот. При участии ъ р — я-сопряже-нии атома азота кислые свойства проявляет и связь N — И, как то, например, наблюдается в молекуле пиррола [c.232]


    Если принять вместе с указанными авторами, что тип и механизм реакции сульфирования диеновых углеводородов имеет скрытно-ионный, а не радикальный характер и близок, следовательно, к реакциям замещения у бензольных углеводородов, то имеются все основания распространить этот взгляд на фуран и другие пятичленные гетероциклы. В таком случае получается непрерывный ряд от диеновых углеводоров через пятичленный гетероцикл к бензолу. Большая легкость подобных реакций у диенов дает все основания принять за тип именно их, как более простую систему, а не бензол, и рассматривать реакции замещения у бензола, как частный случай винильного замещения. Что касается пятичленных гетероциклов, то А. П. Терентьев и А. В. Домбровский (115) приходят к следующему выводу Нам представляется более правильным при описании общих свойств и реакций таких гетероциклических соединений, как фуран, тиофен, пиррол, индол, сравнивать их не с бензолом ( ароматический характер ), а с дивинилом ( винильный характер ). Этот вывод согласуется и с другими свойствами фурановых веществ, часть которых рассмотрена выше таким образом устраняется путаница, существовавшая ранее в определении характера фурана, проистекавшая из сопоставления реакции замещения у него с бензольными, а не винильными соединениями. [c.16]

    Изложенный в этом разделе материал показывает, что реакции между магнийорганическими соединениями и соединениями с подвижным атомом водорода имеют весьма важное значение они используются как метод качественного н количественного определения функциональных групп, содержащих подвижный водород, как препаративный метод получении углеводородов нз галоидопроизводных и, наконец, как метод получения реакциоиноспособных магнийоргаиическнх соединений ряда ацетилена, циклопентадиепа, иидена, флуо-рена, пиррола, индола. [c.235]

    Пиррол и его производные с[И)собпь1 к ряду интересных и отчасти весьма ссоеобразныл явлений, которые у аналогично построенных соединений (фурана и тиофе ш) наблюдаются редко. По и сам пиррол отличается с пек пто/)Ых отноше[шпх от сыоих производных, часто весьма заметно, особом редакционной инертностью, а пместе с тем, в некоторых случаях, повышенной реакционной способностью, всегда зависящ нми ог определенней реакционной среды. [c.23]

    Хлорофиллы. Зеленые пигменты растений - хлорофиллы имеют определенное родство с гемом (гемином) - красньпл пигментом крови. И гем и хлорофиллы откосятся к порфиринам. Порфирины - важнейшие органические компоненты биологических систем, имеющие в качестве основной структурной единицы гетероцикл пиррола (схема 14.15). Порфирины содержат в молекуле макроцикл порфина - циклическую тетрапиррольную структуру с метиленовыми мостиками. Порфирины различаются боковыми заместителями и способны образовывать комплексы (хелатные соединения) с металлами. Хлорофилл - зто М -порфириновый комплекс, а гем - Ре-порфириновый. Биологическая активность порфиринов зависит как от металла, образующего комплекс, так и от набора и расположения заместителей - метильных, этильных, виниль-иых групп и, главным образом, остатков пропионовой кислоты. [c.531]

    Винильная группа, связанная с шестичленным гетероциклом, будет иметь иную полярографическую активность, нежели группа, связанная с пятичленным гетероциклом. Пятичленные гетероциклы (тиофен, фуран, пиррол) можно рассматривать как производные бензола, у которого группа —СН = СН— замещена гетероатомом (5, О, Ы), способным поставлять, благодаря гибридизации два электрона в ароматический секстет. Это обусловливает относительно высокие значения энергии сопряжения (в кДж/моль) у тиофена—117, у пиррола 100, у фу-рана — 52. Так как в этих гетероциклах неподеленная пара электронов гетероатома участвует в сопряжении с двойной связью —С = С, то пониженная плотность электронного облака наблюдается на гетероатоме (по сравнению с С-атомами). При этом а-углеродный атом имеет большую электронную плотность, чем находящиеся в -положении по отношению к гетероатому. Особенности распределения электронной плотности в пятичленных гетероциклах сказываются определенным образом и на полярографической активности винильной группы в их винилзамещенных. Винилтиофен и винилфуран на фоне 0,05 М N( 2H5)4I в диметилформамиде образуют волны с - 1/2=—2,312 и —2,449 В соответственно [179]. При сравнении потенциалов полуволн а-винилфурана и а-винилтиофена видно, что винильная группа в первом восстанавливается труднее, чем во втором. Из эффектов, влияющих на полярографическую активность органических молекул, тут следует учитывать, по крайней мере, два а) индукционный эффект самого гетероцикла, определяющего статическую полярность молекул и, в первую очередь, состояние электронного облака на винильной группе б) подвижность я-электронной системы в винильном производном, что связано со степенью ароматичности соответствующего гетероцикла, и способность молекул поляризоваться в электрическом поле электрода. [c.127]

    Пиррол при этом методе иодирования количественно переходит в тетраиодпиррол, так что этот метод может служить для иодометрического определения пиррола [c.440]

    Процесс полимеризации пиррола, катализируемый минеральными кислотами, представляет собой совокупность целой серии реакций Манниха. При определенных условиях пиррол может быть превращен в тример, который может быть вьщелен и который, вероятно, служит интермедиатом реакции полимеризации. Образование такого тримера становится понятным, если предположить, что в качестве электрофильной частицы, присоединяющейся к молекуле пиррола, выступает наименее стабильный, но более реакционноспособный Р-протонированный катион. Промежуточно образующийся димер представляет собой енамин и обдадает слишком высокой реакционной способностью, чтобы быть вьщеленным, в то время как тример в виде соли в дальнейшие превращения вступает медленно [56]. [c.320]

    Пирролы, как правило, легко атакуются сильными окислителями и при этом часто происходит полное разложение цикла. В том случае, если гетероцикл сохраняется, практически всегда образуются производные малеинимида, даже при окислении 2- или 5-алкилзамещенных пирролов. Такое окислительное расщепление пиррольного цикла ранее имело важное значение при определении структуры порфиринов, при котором в качестве окислителей обычно использовали триоксид хрома в водной серной кислоте или дымящую азотную кислоту. Более селективно пиррол окисляется пероксидом водорода, превращаясь с высоким выходом в таутомерную смесь пиролин-2-онов (разд. 13.17.1). [c.321]

    Индолы, так же как пирролы и фураны, вступают только в очень немногие реакции нуклеофильного замещения. Для осуществления таких взаимодействий, как известно, необходимы определенные условия так, например, при наличии нитрогруппы в бензольном кольце, а также в отсутствие водорода при атоме азота происходит викариозное нуклеофильное замещение (разд. 2.3.3) [96]. [c.429]

    Прямая реакция Эрлиха основана на превращении сиаловых кислот в производные пиррола, дающие окрашенные соединения при взаимодействии с /г-диметиламинобензальдегидом. Метод пригоден для определения любых производных сиаловых кислот, в том числе и гликозидов, но неприменим непосредственно к неочищенным биологическим препаратам, так как они могут содержать производные пиррола. [c.338]

    Содержание нейтральных гетероатомных соединений колеблется от 4,5 до 16,4/й мае. Содержание гетероэлементов в этих фракциях довольно высоко и взаимосвязано между собой. Большее содержание азота связано с относительно небольшим содержанием кислорода и серы (нейтральные ГАС гудронов котуртепинской нефти и нефти Нефтяные камни). В нейтральных ГАС гудронов сернистых нефтей (арланской и самотлорской) содержится меньшее количество азота и соответственно большее - кислорода и серы. Результаты определения элементного состава подтверждаются данными, полученными по ИК-спектрам нейтральные ГАС малосернистых остатков представлены в основном амидами и бензологами пиррола нейтральные ГАС сернистых остатков -кётонами возможно, тиофенами и сульфидами. [c.94]

    Многие соединения фуранового ряда могут быть открыты по характерной окраске, которую их пары придают сосновой лучинке, смоченной соляной кислотой. Соединения ряда фурана обычно окрашивают лучинку в зеленый цвет, однако это не всегда бывает так. Рейхштейн [8] установил, что многие соединения фуранового ряда дают зеленую окраску, но многие другие соединения ряда фурана дают красную окраску, не отличимую от окраски, даваемой пирролом. Нельзя сформулировать определенного правила для открытия фурановых соединений при помощи этих проб. Все моноалкилированные фураны дают зеленую окраску. Наличие водорода в а-положении играет некоторую, хотя и незначительную роль в окраске, появляющейся при пробе. Так как проба с л-диметиламинобензальдегидом ррлих), обычно применяемая для соединений ряда пиррола, получается и с некоторыми производными фурана, то очевидно, что при оценке результатов таких цветных проб должна быть проявлена осторожность. [c.96]

    В своем обзоре по химии пиррола в 1904 г. Чамичан [76] совершенно определенно установил, что метильные группы пиррольного кольца усиливают основные свойства , а электроноакцепторные группы усиливают кислотные свойства пиррольной системы. Это наблюдение имело фундаментальное значение для понимания реакционной способности, а также кислотности и основности пиррола. Электроноакцепторные группы в цикле понижают скорость реакций электрофильного замещения, в то время как электронодонор-ные группы, подобно метилу и этилу, повышают скорость этих реакций. Обычные электроноакцепторные группы, которые изучались в ряду пиррола, представляют собой карбэтоксиальдегидную, нитрильную, нитро-,бром- и ацетильную группы. В качестве обычных электронодонорных групп изучались метил и этил. Именно с этими группами, связанными в различных сочетаниях с циклом пиррола, мы будем иметь дело в большинстве рассматриваемых нами случаев реакционной способности. [c.232]


Смотреть страницы где упоминается термин Пиррол определение: [c.31]    [c.124]    [c.672]    [c.361]    [c.99]    [c.144]    [c.96]    [c.129]    [c.144]    [c.312]    [c.35]    [c.66]    [c.18]    [c.319]    [c.322]   
Фотометрический анализ издание 2 (1975) -- [ c.59 , c.86 , c.174 , c.197 , c.199 , c.277 , c.297 , c.323 ]

Фенолы и основания из углей (1958) -- [ c.4 , c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Пиррол



© 2024 chem21.info Реклама на сайте