Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины фтористого водорода

    Процесс алкилирования изобутана олефинами, преимущественно бутиленами, разработанный с применением в качестве катализатора серной кислоты и позднее фтористого водорода, был быстро внедрен в промышленность. Первые промышленные установки серно-кислотного алкилирования были введены в эксплуатацию в конце 30-х годов, а фтористоводородного алкилирования — в 1942 г. Целевым продуктом процесса был вначале исключительно компонент авиационного высокооктанового бензина, и лишь в послевоенные годы алкилирование стали использовать для улучшения моторных качеств товарных автомобильных бензинов. [c.80]


    И в данном случае образуется молекулярное соединение ВРз НР, которое является катализатором. Основанием такого заключения служат многочисленные наблюдения, когда каждое из этих соединений в отдельности не активирует реакцию алкилирования ароматических углеводородов олефинами, взятые вместе проявляют высокую каталитическую активность. Известно, Например, что в присутствии только фтористого водорода бензол не алкилируется этиленом. Недостаточно энергично взаимодействуют эти реагенты и с одним ВРз. При взаимодействии бензола с этиленом в молярных отношениях 1 0,2 в присутствии ВРз и НР при температуре 220° С и повышенном давлении реакция протекает очень энергично, и этилбензол получается с выходом до 86% от теоретического. Фтористый - бор в этих реакциях применяется обычно в количестве 3—6 вес. %, а НР — 5—15 вес. %. [c.86]

    Алкилирование включает реакции изопарафинов, главным образом изобутана с пропиленом, бутеном и пентенами для получения высокооктанового бензина. Реакция протекает в жидкой фазе, катализатором служит либо фтористый водород, либо серная кислота. Алкилирование при участии фтористого водорода проводят при 29—37 °С отношение количеств кислоты и углеводорода 1 5 отношение изобутана к олефину, равное 1 7, поддерживается путем рециркуляции концентрация кислоты 85—95% расход кислоты 1,4—2,3 кг/м алкилатов. [c.334]

    Схема фтористоводородного алкилирования подобна схеме сернокислотного алкилирования [153]. Исходное сырье (изобутан и олефины) смешивается с рециркулирующим изобутаном и фтористым водородом и поступает в реактор, в котором поддерживается температура 30—40°. Реакция проводится при большом избытке изобутана. [c.137]

    Реакции с катализатором фтористый водород — фтористый бор сильно промотируются следами олефина поэтому можно предположить, что настоящим катализатором является комплекс олефин — фтористый водород — фтористый бор, растворимый, по видимому, в углеводородах. [c.36]

    Перекисные катализаторы не нарушают нормального присоединения к олефинам фтористого водорода, хлористого водорода или иодистого водорода 2. [c.202]

    При алкилировании изопарафинов алкилфторидами в присутствии. фтористого водорода образуются продукты, аналогичные продуктам, получаемым при алкилировании олефинами, за исключением того, что получается больше продуктов, образующихся по реакции переноса водорода. Так, например, при периодическом алкилировании изобутана фтористым изопропилом при 37° получался алкилат (выход 226 % вес. на пропилен, который можно получить из фтористого алкила), в котором содержалось 39 % гептанов и 24% октанов от теоретического [24]. При использовании в качестве алкилирующего агента пропилена получался алкилат, содержавший 45 % гептанов и 10 % октанов. [c.334]


    Свободнорадикальные цепные реакции присоединения к олефинам фтористого водорода или иодистого водорода никогда не наблюдались. Энергетические характеристики для стадии развития цепи при присоединении различных галогеноводородов к этилену приведены в табл. I [45]. [c.178]

    Алкилирование изобутана олефинами позволяет получить из легких углеводородных фракций (бутан-бутиленовой, пропан-про-пиленовой, изобутановой) высокооктановые компоненты автомобильных и авиационных бензинов. Исследования в области алкилирования олефинов изобутаном сосредоточены в ГрозНИИ. На отечественных НПЗ в качестве катализатора применяется концентрированная серная кислота, а за рубежом—серная кислота и фтористый водород. [c.42]

    Октановое число продуктов алкилирования системы пропилен — изобутан приближается к 90, выход составляет 1,7 объема алкилата на 1 объем пропилена и 1 объем изобутана [44]. На 1 кг НГ образуется 840 л алкилата. Недостатком процесса является слабое взаимодействие фтористого водорода с олефинами (в результате [c.258]

    Алканы, особенно изоалканы, взаимодействуя с алкенами в присутствии таких катализаторов, как галогениды алюминия, трехфтористый бор, фтористый водород и серная кислота, дают высшие члены ряда. Каталитическое алкилирование, таким образом, является методом получения топлив с высокими октановыми числами из некоторых газообразных низкомолекулярных алканов, образующихся в процессе переработки нефти. Как видно из предыдущего, изоалканы, необходимые для реакции алкилирования, могут быть легко получены с помощью процессов изомеризации. Так, изобутан, имеющий наибольшее промышленное значение как алкилиру-ющий реагент, получают изомеризацией н-бутана. Олефины, необходимые для каталитического алкилирования, например пропен и бутен, являются побочными продуктами другого процесса переработки нефти — каталитического крекинга. Алкилирование приводит к довольно сложным смесям продуктов. Так, например, алкилирование нзобутана пропеном в присутствии фтористого водорода при 40°С дает следующие продукты пропан, 2,3-диметилпентан, 2,4-ди-метилпентан, 2,2,4- и 2,3,4-триметилпентаны, 2,2,3- и 2,3,3-триэтил-пентаны. Продукт реакции является, таким образом, смесью высо-коразветвленных алканов, обладающих высокими октановыми числами. Реакция представляет собой цепной процесс, инициированный протонированием олефина фтористым водородом. Изопропил-катион отрывает гидрид-ион от изобутана, давая грег-бутил-катион, который присоединяется к пропену. Образующийся при этом диметил-пентил-катион, может претерпевать внутримолекулярную перегруппировку, давая изомерные катионы, которые превращаются в диме-тилпентаны за счет отрыва гидрид-иона. Продукты состава Сз образуются в результате взаимодействия изобутена, образующегося путем элиминирования протона из грег-бутил-катиона, с пропеном. [c.157]

    Образование комплекса катализатора. Сильно непредельные соединения, образовавшиеся в результате реакции переноса водорода, включая олефины, дают с катализатором комплексы присоединения (так называемый нижний слой или осадок ). Хлористый алюминий превращается в красно-коричневую жидкость. При применении таких катализаторов, как серная кислота и фтористый водород, также образуются вязкие комплексы, окрашенные в цвета от красного до коричневого. [c.320]

    Образова.ние сложных эфиров. Сложные алкилэфиры иногда присутствуют как примеси в продукте алкилирования. Их образование связано с реакцией второй ступени цепного механизма алкилирования. Они могут также образоваться в результате присоединения катализатора (фтористый водород, серная кислота) или активатора катализатора (хлористый водород при применении хлористого алюминия в качестве катализатора) к олефину или к полимеру. В неблагоприятных условиях для водородного обмена с изопарафиновым углеводородом эфиры получаются как таковые. [c.320]

    Тот факт, что при алкилировании галоидалкилами реакции переноса водорода играют большую роль, чем при алкилировании олефинами, был подтвержден опытами, проведенными с целью доказательства, что процессы алкилирования изобутана олефинами и сложными эфирами в присутствии фтористого водорода неравноценны [28]. Опыты проводились в виде-непрерывного процесса при температуре 37,8° с пропиленом и при 36,7° с фтористым изопропилом. [c.334]

    Присоединение галоидоводородных кислот к олефинам является весьма общей реакцией, хотя имеется очень большая разница в скорости реакции олефинов разной структуры с HJ, НВг, НС1 и HF. В ряду галоидоводородных кислот иодистый водород реагирует наиболее легко, бромистый водород болео реакционноснособен, чем хлористый водород, а фтористый водород наименее реакционноснособен. Фтористый водород, является эффективным катализатором при алкилировании и применяется в промышленности для алкилирования, при этом образование алкил-фторидов идет в очень малой степени. [c.366]


    Олефины с органическими кислотами не реагируют, но в присутствии таких высокоактивных катализаторов, как серная кислота, фтористый водород или трехфтористый бор, иногда получаются хорошие выходы сложных эфиров. Известный метод Бертрама и Вальбаума, согласно которому раствор олефина в ледяной уксусной кислоте, содержащей около 1% серной кислоты, оставленный на несколько часов при комнат- [c.384]

    Такие сильные кислоты, как серная [170], фосфорная [171], фтористый водород [281] и алкилсульфоновые [261], также обладают высокой каталитической активностью особенно с олефинами [c.429]

    Хлористый, бромистый и фтористый водород также активируют изомеризацию олефинов [1, 2]. Наиболее подробно исследовано [c.88]

    Технологическая схема. Важнейшие особенности процесса иллюстрируются рис. 2.33. Осушенная жидкая смесь олефинов с изобутаном после смешения с дополнительным циркулирую-ш,им изобутаном поступает в реактор 1, где интенсивно перемешивается с фтористоводородным катализатором. Выходяш,ий из реактора поток поступает в отстойник 2. Кислотную фазу (фтористый водород), образующуюся в отстойнике, возвращают как циркулирующий поток в реактор небольшую часть ее направляют на регенерацию. Углеводородная фаза из отстойника 2 поступает в главную фракционирующую колонну 3, в которой разделяется на пропан, циркулирующий изобутан н алкилат. Стабилизация целевого алкилата с удалением н-бутана в виде бокового погона может осуществляться в колонне 3 или в дополнительно устанавливаемой бутановой колонне. Незначительные количества растворенного фтористого водорода выделяются из товарного пропана в небольшой отпарной колонне 5. Все товарные продукты подвергаются щелочной очистке. [c.173]

    Фтористоводородная кислота при взаимодействии с олефинами и особенно диенами дает фториды, частично растворимые в ней. Алкилфториды разлагаются при нагревании до - 215°С, от воды и неразлагающихся фторидов фтористый водород легко отделяется перегонкой. Используемая в процессе кислота содержит 80—90% НР и менее 1% воды. Расход фтористого водорода составляет всего примерно 0,7 кг/м алкилата и обусловлен в основном неполной регенерацией при перегонке из углеводородных потоков и выделением из них при защелачивании. [c.181]

    Существует много других примеров окисление СО на оксиде меди или на ЬОз с образованием диоксида СОз, который затем абсорбируется известью бромирование олефинов при пропускании их над углем, пропитанным бромом улавливание на угле, пропитанном иодом,—паров ртути, на угле, содержащем ацетат свинца— сероводорода, а содержащем силикат натрия — фтористого водорода. [c.181]

    Указанный тип реакций алкилирования изобутана олефинами в присутствии фтористого водорода широко используется в процессах получения изопарафинов, применяемых в качестве высокооктановых компонентов авиатоплив. [c.145]

    Синтез кислот был затем усовершенствован в том отношении, что реакцию олефина с окисью углерода проводили в присутствии 96%-ной серной кислоты или безводного фтористого водорода при температуре ниже 100° [c.196]

    При получении второго типа алкилбензола для алкилирования используют синтетический олефин — тетрамер пропилена, прибавляя последний к избытку бензола при 30—60° в присутствии хлористого алюминия. В качестве катализатора можно брать также фтористый водород. Серная кислота непригодна для этой цели, так как вызывает образование побочных продуктов. Продукты реакции нейтрализуют и очищают перегонкой, возвращая избыточный бензол обратно в реакцию. Додецилбензол, получаемый с выходом более 80%, кипит при 280—320° и содержит не менее 99% алкилбензолов [53]. Тетрамер пропилена был выбран на том основании, что он, по-видимому, дает наиболее однородно изомеризованную боковую цепь с 12 атомами углерода. Другие С г-олефины изостроения, например триизобутилен, имеют склонность к деструктивным изменениям в условиях процесса, образуя низшие алкилбензолы. [c.266]

    Исследованиями, проведенными в последнее время, установлено, что месь фтористого бора и фтористого водорода очень ускоряет реакции присоединения кислоты к олефинам. Растворяя в ледяной уксусной кислоте при охлаждении фтористый бор (3% вес. считая на реагирующие компоненты олефин и кислоту) и также при охлаждении фтористый водород (3% вес.) и подавая затем и автоклав при температуре 90—100° ншдкий пропан, [c.221]

    Чаще всего алкилирование арилсульфонатов проводят олефинами в присутствии серной кислоты, безводного хлористого алюминия или фтористого водорода в качестве катализаторов [251] (см. второй том). В 1949 г. производство арилсульфоната на основе бензола составило около 66 000 т в пересчете на 100%-ное активное вещество, а к 1953 г. оно возросло приблизительно до 250 ООО г. [c.249]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    МОЖНО алкплировать изобутан пропиленом, получая изогептаны [15, 16]. После этого кислота еще разбавляется и в таком виде используется для алкилирования изопентана С - и Ст-олефинами, а также для селективного вымывания диолефинов. После этого кислота регенерируется. Регенерация серной кислоты определяет минимальную мощность алкилирования, обеспечивающую рентабельность установки. На меньших установках выгоднее работать только с фтористым водородом [17]. (При отсутствии обработки потери катализатора в присутствии фтористого водорода значительно уменьшаются [18].) [c.256]

    Метод РЬП11р8 Ре1го1еит Со. [46—49]. Смесь олефина и изобутана турбулентно перемешивается с фтористым водородом при —20 °С (рис. 65). В ходе реакции температура в трубчатом реакторе повышается до 0—5 °С. При использовании пропилена или амиленов требуются более высокие температуры (10—32 °С). Время контакта [c.259]

    Под влиянием смеси трехфтористого бора и изопропилфторида различные жидкие парафины с разветвленной структурой претерпевали изомеризацию наряду с незначительным диспронорционированием [70]. Катализатор, состоящий из фтористого бора и фтористого водорода [32], также эффективен для превращения н-бутана в изобутан при условии, что в качестве инициатора реакции присутствовал олефин. Этот же катализатор вызывает изомеризацию и диспропорционирование н-пентана и н-гептана. [c.42]

    Для реакции замены галоида применяют также фториды свинца, ртути и кобальта [2, 18, 20]. Лучше всего их получать in situ реакцией соответствующей окиси с фтористым водородом, обычно для этого требуется применение аппарата под давлением. Наиболее высокая степень фторирования достигается при применении ртути, самая низкая — при применении марганца. Действие фторида ртути аналогично действию трехфтористой сурьмы. Лучше всего фторид ртути применять с алкилбро-мидамн, поскольку алкилхлориды реагируют очень медленно. Фториды свинца и марганца требуют проведения реакции при гораздо более высоких температурах и вообще являются неудовлетворительными агентами реакции обмена. Одпако они полезны при проведении реакции присоединения фтора к галоидированным олефинам и широко применяются для этой цели. [c.75]

    Фтористый водород. Подобно серной 1шслоте безводный фтористый водород является прекрасным катализатором алкилирования изопарафиновых углеводородов пропиленом и более высокомолекулярными олефинами [25]. И в этом случае разбавление водой и взаимодействие с сильно непредельными углеводородами, приводящее к образованию осадка, снижают активность катализатора. При использовании катализатора, содержащего 1% воды, в процессе алкилирования изобутана пропиленом при температуре 25° выход алкилата составлял 214% вес. (на пропилен) при проведении же этого процесса с катализатором, содержащим 10% воды, образовывался изопропилфторид и практически не получалось алкилата. При алкилировании к-бутилена в присутствии катализаторов, содержащих 1,0% и 10% воды, был получен алкилат с выходами 199 и 192% соответственно, в присутствии же катализатора, содергкавшего 26% воды, получался вто/)-бутилфторид и небольшое количество алкилата. [c.311]

    Каталитическое алкилирование изобутана олефинами. Этиленом. Так как 2,3-диметилбутан отличается высокими антидетонационными свойствами и хорошими показателями работы на богатой рабочей смеси, этилирование изобутана стало предметом многочисленных исследований особенно после того, как было показано [16], что реакция в присутствии хлористого алюминия и хлористого водорода при 25—35° или в присутствии фтористого бора и фтористого водорода при 0—5° дает продукты, содержащие 45% гексанов, состоящих из 70—90% 2,3-диметилбутана, 10—25% 2-метилпентана и менее 3% 2,2-диметилпентана. [c.320]

    Алкилирование сопровождается также в значительной мере побочными реакциями и при взаимодействии изопентана с пропиленом в присутствии фтористого водорода при 10° [25]. Выход алкилата, кипящего выше пентана, составлял 272% вес. на олефин (теоретический выход октанов 271 % вес. на пропилен), если же включить и изобутан, который в ходе реакции тоже образуется, то выход составит 291 %. Октаны, включая 2,3- и 2,5-диметилгексаны, были получены лишь с выходом в 26%. [c.329]

    Диалкилднсульфиды реагируют с олефинами в присутствии фтористого водорода. Так, диэтилдисульфид и этилен вступают в реакцию при 35°, давая 70% дитиоэфира [27, 34] [c.346]

    В ледяной уксусной кислоте, содержащей небольшие количества уксусного ангидрида и хлорной кислоты, нри низких температурах бутадиен дает два изомерных ацетата непредельных димеров, причем ацетат 2,6-октадиен-1-ола преобладает [17]. Очень хорошие выходы ]13онропила-цетата были получены из пропилена и уксусной кислоты (80%) при 100-110° со смесью трехфтористого бора и фтористого водорода в качестве катализатора. Другие олефины давали более низкие выходы [5, 29]. Октен-1 с салициловой кислотой и трехфтористым бором при 100° давал более высокие выходы слон ного эфира, чем его изомеры с разветвленной цепью [28]. [c.385]

    Катализаторами изомеризации олефинов в растворах являются комплексы ВРз (с фтористым водородом, диэтиловым эфиром, водой), сильные органические кислоты (хлор-, фтор- и этансульфоно вая), галогениды Ре, А1, Pd, НИ с кислотными свойствами. Как правило, эти катализаторы активируют процессы цис-транс-шош риза-ции, миграции двойной связи и перемещения алкильных групп по углеродной цепи без изменения длины цепи. [c.89]

    Минимальное отношение изобутан олефины, при котором удается проводить сернокислотное алкилирование, составляет около 3 1, при этом очень велик расход серной кислоты (до 250 кг/т алкилата). Повышение отношения изобутан олефины на границе раздела фаз непрерывно повышает выход и качество алкилата и снижает расход кислоты до очень высоких — порядка 400—700 1 — значений. Концентрация изобутана на выходе из ре-аетора не должна быть меньше - 60% масс. При применении в качестве катализатора фтористого водорода в.следствие значительно лучшей растворимости в нем изобутана требования к концентрации изобутана значительно ниже, хорошие результаты алкилирования получаются при меньших соотношениях концентраций изобутана и олефинов, но и в этом случае повышение концентрации изобутана повышает качество алкилата и его выход. [c.186]

    Впервые нео-кислоты были синтезированы в 1955 г. Кохом взаимодействием олефинов с окисью углерода и водой в присутствии концентрированной серной кислоты. Позднее был найден ряд других кислых катализаторов — фтористый водород, фосфорная кислота, смесь трехфтористого бора с фтористым водородом, НзРО ВРз и др. Катализатор не должен содержать воду. Даже при использовании 90%-ной Н2504 выходы целевых кислот резко падают. По сравнению с Н2504 катализаторы, содержащие трехфтористый бор, обнаруживают более [c.267]

    В США было сооружено 60 установок алкилирования (главн). образом во время втором мировой войны), причем в 1946 г. на 32 из них в качестве катализатора использовали серную кислоту, на 27 — безводный фтористый водород и на одной — безводный хлористый алюминий [71]. По сравнению с ] аталитической полимеризацией процесс алкилирования имеет много значительных преимуществ. Во-первых, при совместной перергботке олефинов и изопарафинов высокооктановые углеводороды получают с гораздо большим выходом сам алкилат полностью насыщен и не содержит веществ, склонных к смолообразованию. Во-вторых, приемистость по тетраэтилсвинцу алкилата значительно больпие, чем полимеризата [72]. [c.319]

    Такие ценпые реакции могут протекать с участием либо свободных радикалов, либо ионов кapбoгпIЯ . Ниже будут описэны господствующие в настоящее время представления о механизме упомянутых выше цепньлх реакций. К реакциям, протекающим с участием свободных радикалов, в первую очередь относятся такие процессы, как термическая полимеризация, термический крекииг и термическое алкилирование. В противоположность этому, реакции с участием ионов карбония являются каталитическими и протекают в присутствии сильных кислот (безводного хлористого алюминия, фтористого водорода, серной кислоты, фтористого бора, фосфорной кислоты, гидросиликата алюминия). При этом температуры реакций, как правило, невелики, за исключением температуры при каталитическом крекинге. К последним реакциям принадлежат каталитическая полимеризация, каталитическое алкилирование, каталитическая изомеризация парафиновых углеводородов и часто встречающаяся при различных превращениях олефинов побочная реакция переноса водорода от одпой молекулы олефина к другой. [c.333]

    Присоедниепио фтористого водорода к олефинам значительно облегчается в присутствии трехфтористого бора [189]. [c.425]

    Из /кидких катализаторов паилучшими оказались безводный фтористый водород и комплексное соединение фтористого бора с фосфорной кислотой [94]. Од]1ако в технике присоединение сероводорода к третичному олефину проще всего осуш ествлять пропусканием смеси реагирующих веществ над твердым катализатором под давлением и ири пизкой температуре. Наилучшим катали атором для зтой цели является силикагель, содержащий 1 — 5% окиси алюминия [95]. Температура процесса относительно низка (около 100°), давление составляет приблизительпо 70 ат. В этих условиях сероводород действует только на третичные олефины, а первичные или вторичные олефины практически не реагируют с сероводородом. [c.483]


Смотреть страницы где упоминается термин Олефины фтористого водорода: [c.108]    [c.310]    [c.89]    [c.127]    [c.303]    [c.305]    [c.327]    [c.506]   
Новые методы препаративной органической химии (1950) -- [ c.10 , c.13 , c.37 , c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Водород фтористый



© 2024 chem21.info Реклама на сайте