Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористое стекло носитель

    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]


    Пористые стекла представляют собой боросиликатные стекла с жесткой пространственной сетью соединяющихся пор. Они применяются в качестве инертных твердых носителей в газо-жидкостной хроматографии. Адсорбционные свойства пористых стекол обусловлены наличием силанольных групп, способных к образованию водородных связей с веществами, содержащими электронодонорные функциональные группы. [c.57]

    Широкопористые стекла. Геометрическая структура широкопористых стекол легко поддается изменению в желаемом направлении. Поверхность пористых стекол химически модифицируют, в результате чего получаются адсорбционно-инертные носители. Широкопористые стекла обладают большой механической прочностью. На пористое стекло рекомендуется наносить жидкой фазы от 0,1 до - 0,35%. Однако пористое стекло имеет большую плотность, чем [c.197]

    Круг использования ферментов расширяют иммобилизованные ферменты. В качестве носителя чаще всего применяют природные или синтетические высокомолекулярные вещества, используют и неорганические носители (силикагели, керамику, пористое стекло и др.). Иммобилизованные ферменты практически нерастворимы. Это новый тип катализаторов с повышенной устойчивостью, использование которых становится экономически эффективным. [c.187]

    К пористым носителям относятся силикагель, различные диатомиты (например, хромосорб), тальк, целлюлоза, крахмал, пористые стекла, и носители имеют пористую структуру и большую площадь поверхности. Достоинство [c.64]

    В молекулярно-ситовой хроматографии в основном используются в качестве носителей гели (органические полимеры, силикагели) или твердые пористые стекла, которые хотя и не относятся к гелям, но формально рассматриваются как их разновидности. [c.74]

    Э. Гриффин, 1916), но и сейчас не потеряла своего значения и стала наиболее широко распространенным способом получения иммобилизованных ферментов в промышленности. В литературе описано получение адсорбционным способом более 70 иммобилизованных ферментов с использованием главным образом таких носителей, как кремнезем, активированный уголь, графитов сажа, различные глины, пористое стекло, полисахариды, синтетические полимеры, оксиды алюминия, титана и других металлов. Последние применяются наиболее часто. Эффективность адсорбции молекулы белка на носителе определяется удельной поверхностью (плотностью центров сорбции) и пористостью носителя. Процесс адсорбции ферментов на нерастворимых носителях отличается крайней простотой и достигается при контакте водного раствора фермента с носителем (статистическим способом, при перемешивании, динамическим способом с использованием колонок). С этой целью раствор фермента смешивают со свежим осадком, например, гидроксида титана, и высушивают в мягких условиях. Активность фермента при таком варианте иммобилизации сохраняется практически на 100%, а удельная концентрация белка достигает 64 мг на 1 г носителя. [c.88]


    Поток газа-носителя должен подаваться в хроматографическую колонку непрерывно с постоянной и определенной скоростью, причем должен быть обеспечен требуемый перепад давления газа-носителя на входе и выходе из колонки. Как правило, газ-носитель подается из соответствующего газового баллона через редуктор. По выходе из редуктора газ обычно обладает постоянным давлением и скоростью. Однако для обеспечения лучшей стабилизации давления можно рекомендовать специальные стабилизаторы, например стабилизатор, изображенный на рис. 34. Этот стабилизатор состоит из отростка, в котором имеется боковое отверстие с впаянной в него перегородкой 1 из пористого стекла. К отростку, кроме того, присоединен уравнительный сосуд 2, заполненный ртутью. Во время работы уравнительный сосуд устанавливают так, чтобы большая часть пористой перегородки была закрыта ртутью. При понижении давления в системе ртуть перекрывает перегородку, при повышении — открывает. Устанавливая давление и сопротивление системы постоянными, можно поддерживать постоянной и скорость потока газа-носителя. [c.168]

    В качестве минеральных носителей используются силикагель, аэросил, песок, стекло (в виде шариков), пористое стекло и др. [c.102]

    Конденсатор водяного охлаждения. Горизонтальный сублиматор с впаянной пластинкой пористого стекла легко превратить [230] в прибор для работы иод уменьшенным давлением (рис. 23). Капилляр, через который входит носитель, должен быть изготовлен весьма тш,ательно если он слишком широк, то сублимат выносится слишком далеко если он слишком узок, вещество может сублимироваться в обратном (против тока носителя) направлении. Для многих веществ при давлении 20 мм скорость сублимации примерно в три раза больше, чем при обычном давлении и той же самой температуре. Сублимат, полученный [c.538]

    Типичные значения для нормальной температуры и малых степеней заполнения поверхности лежат в пределах 10 —10 м /с. Эти цифры относятся к физической адсорбции таких газов, как водород, азот, криптон, двуокись углерода, метан, этан, пропан и бутан на пористых стеклах, активированном угле, силикагеле, и типичных промышленных катализаторах на носителях типа окиси алюминия [18, 119, 293, 308, 323]. [c.57]

    Исследовались носители трепел, ИНЗ-600, фторопласт-4, пористое стекло, хромосорб У и целит-545. ИНЗ-600 и трепел перед нанесением на них стационарных фаз требуют длительной обработки и к тому же отличаются той или иной степенью адсорбционной способности, что приводит к размыканию пиков. Инертные носители — пористое стекло и фторопласт-4 — дают симметричные пики. [c.70]

    Наибольший интерес как носители представляют пористые стекла, которые получают выщелачиванием щелочно-боросиликатных стекол. Изменяя химический состав исходного стекла и условия предварительной термообработки, изготовляют пористые стекла с заданными размерами пор, колеблющимися в очень узких пределах [14]. Такие стекла выпускаются для газовой и гель-про-никающей хроматографии. Недавно обнаружено, что по величине емкости по экстрагенту пористые стекла не уступают другим носителям [218]. Марки стеклянных носителей и их фирмы-производители приведены в табл. 4. Некоторые фирмы производят гидрофобизированные стекла. [c.192]

    Большой интерес для газовой хроматографии в качестве адсорбентов и носителей, а также материалов для пористых капиллярных колонок представляют пористые стекла. Мы ограничиваемся здесь лишь этим напоминанием, поскольку некоторые результаты нашей работы с пористыми стеклами приводятся в одной из следующих статей этого сборника [34]. Рассмотрим вкратце некоторые вопросы применения пористых кристаллов. Обычно пористые кристаллы используются как молекулярные сита, т. е. используется лишь геометрический фактор их структуры — близость размеров отверстий каналов пористых кристаллов к размерам разделяемых молекул. Однако для тех молекул, которые способны про- [c.22]

    Методики внедрения клеток в готовые пористые структуры чрезвычайно похожи на применяемые при естественном прикреплении. Клетки свободно дифундируют в пористые структуры и, увеличиваясь в размере по мере роста, попадают в ловущку . Этот процесс может происходить на микроскопическом уровне на частицах микропористого носителя, папример, кирпича, кокса, керамики, пористого стекла или кизельгура, в которых поры соизмеримы с размерами клеток, или на макроскопическом уровне, где частицы имеют большие поры (до 0,1 мм). В настоящее время наиболее широко применяемым в лабораторной практике типом иммобилизации является внедрение клеток в пористые структуры, образующиеся in situ вокруг них. Клетки в виде густой суспензии или пасты смешивают с компонентом, который затем образует гелеобразный пористый матрикс. Условия образования последнего должны быть максимально мягкими, не влияющими на жизнеспособность клеток. Прямым примером такого внедрения в гель явилась полимеризация акриламида [c.162]

    Второй метод основан на реакции взаимодействия гидроксильных групп, имеющихся на поверхности применяемых носителей, с силанизирующими реагентами. Эта идея была впервые использована для дезактивации твердых носителей в газовой хроматографии. В ЖЖХ силанизацию производят для химического закрепления неподвижной фазы на твердом носителе. Такие системы получили название связанных фаз. Так, например, Стюарт и Перри приготовили октадецилцелит , с которого органические вещества не смывались ни одним из органических растворителей. Промышленностью выпускаются силанизированные носители, которые с успехом применяются в ЖЖХ. Например, дурапакс , в котором поверхность пористого стекла силанизирована и содержит радикалы оксидипропионитрила, полизтиленгликоля с молекулярной массой 400 или н-октана. Эти вещества и служат неподвижной фазой. [c.215]


    В жидкостной распределительной хроматографии используют два основных типа носителей пористые и поверхностнопористые. Пористые носители силикагель, диатомиты (хромосорб) и пористые стекла. Они имеют пористую структуру и большую площадь поверхности. Поверхностно-пористые носители состоят из частиц с непористой, непроницаемой сердцевиной и тонкой пористой оболочкой. При разделении на колонках с поверхностно-пористыми носителями даже при высоких скоростях подвижной фазы можно добиться высокой эффектипности колонки. Но эти носители дороги и имеют низкую емкость. [c.333]

    В качестве адсорбентов в ГАХ используют активированный уголь, силикагель, алюмогель, диоксид циркония, пористые стекла. В ГЖХ сорбент состоит из двух фаз, одна из которых— неподвижная жидкость является активным сорбентом, а другая — твердая служит носителем этой жидкости. Природа неподвижной жидкости в ГЖХ, по существу, определяет по следовательность выхода компонентов анализируемой смеси Жидкость должна обладать малой вязкостью и низким давле нием пара при рабочих температурах. Для получения хоро шего разделения жидкая неподвижная фаза должна быть рав номерно распределена на поверхности носителя и прочно им удерживаться. [c.353]

    Пористые стекла. Так в газовой хроматографии принято называть адсорбенты и носители, получаемые измельчением натрий-борсиликатного стекла. Они представляют собой белый гранулированный порошок с удельной поверхностью 10—500л< /г. Преимущество пористых стекол — устойчивость к нагреванию и действию кислот. [c.90]

    Пористые стекла. Так в газовой хроматографии принято называть адсорбенты и носители, получаемые измельчением натрий-бор-силикатного стекла. Они представляют собой белые гранулированные порошки с удельной поверхностью 10—500 м /г. Преимуществом пористых стекол является устойчивость к нагреванию и действию кислот. Адсорбаионные свойства пористых стекол обусловлены наличием групп SiOH образующих водородные связи с [c.172]

    Биоспецифическая хроматография применяется для очистки ферментов, так как она позволяв извлекать ферменты из сложных смесей в одну стадию с высокой степенью очистки и с большим выходом. В последнее время в качестве адсорбентов-носителей в биоспецифической хроматографии находят применение как макропористые неорганические адсорбенты (силикагели, силохромы, пористые стекла), так и макропористые органические сшитые сополимеры, например макропористые сополимеры глицидилме-такрилата с этилендиметакрилатом типа сферой (см. лекцию 6) со сферическими зернами разных размеров. Эти адсорбенты-носители обладают разной удельной поверхностью и крупными порами разных размеров. На рис. 18.10 представлен пример биоспецифической хроматографии химотрипсина на сфероне с иммобилизованным химической прививкой белком — ингибитором трипсина (являющегося также ингибитором химотрипсина). Из колонны, заполненной обычным макропористым сфероном без иммобилизованного ингибитора, химотрипсин выходит вместе с остальными белками, а из колонны, заполненной сфероном с привитым ингибитором, сопутствующие белки выходят приблизительно за то же время, а химотрипсин прочно удерживается. Это позволяет отделить [c.342]

    Для анализа коротких I пептидов более эффективен подход, заключающийся в их ковалентном присоединении к нерастворимому носителю. Этот принцип положен в основу твердофазного секвенатора, где реакц. сосудом служит хроматографич. колонка, с носителем к-рой ковалентно связан исследуемый пептид. Через колонку последовательно пропускают реагенты и р-рители. Носителями чаще всего служат полистирол и пористое стекло. В кач-ве функц. группы, реагирующей с пептидом, обычно использует- [c.252]

    Осн. пром. способ получения синтетич. Э.с,- прямая гидратация этилена катализатор - ортофосфорная к-та на пористом носителе (силикагель, диатомит, кизельгур, пористые стекла и др.). В качестве побочных продуктов образуются ацетальдегвд, диэтиловый эфир, кротоновый альдегид, ацетон, спирты С3-С4, метилэтилкетон, низкомол. полиэтилен. [c.502]

    Известны два гшда хроматографии газо-адсорбционная и газо-жидкостная. В [И рвом случае в качестве адсорбента применяют гели, активные у ли, молекулярные сита, пористые стекла, модифицированные сорбенты. Во втором — в качестве сорбента служит тонкая пленка растворителя, слой так назы-паемой неподвижной фазы, нанесенной на инертный твердый носитель. [c.171]

    Пористое стекло (диаметр пор 5 — 250 нм), как и наиболее широко применяемые носители иа основе агарозы, отличается низкой неспецифической сорбцией и высокой емкостью. Аффинная хроматография нашла широкое применение при разделении ферментов, полнпептидных и белковых гормонов, антител, антигенов, а также транспортных и рецепторных белков. [c.354]

    Инертность носителя имеет большое значение и при анализе одноатомных фенолов. При достаточной эффективности носитель должен обладать минимальной остаточной адсорбционной активностью, поскольку остаточная адсорбция приводит к асимметрии пиков, появлению хвостов, что затрудняет, а порой делает невоз-"можным количественный обсчет хроматограмм. Из большого числа носителей, используемых в хроматографии, этому требованию Т1ри анализе фенолов отвечают лишь немногие. К ним относится ряд диатомитов, пористое стекло и некоторые органические полимерные материалы. Диатомитовые носители, имеюшие развитую поверхность, обладают большей емкостью по отношению к жидкой фазе и обеспечивают более высокую эффективность разделения. Для уменьшения адсорбционного эффекта эти носители обычно подвергают предварительной обработке прокалке, кислотной промывке и действию гексаметилдисилазана. Проведенная сравнительная оценка [97] ряда диатомитовых носителей позволяет производить их выбор в соответствии с составом анализируемой смеси. Сравнивались одиннадцать наиболее распространенных марок носителей в различных формах обычной (МАШ), промытых кислотой (АШ) и промытых кислотой и обработанных гексаметилдисилазаном (АШ-НМВ5 или АШ-0МС5). По данным анализа смеси фенола и всех изомерных трет-бутилфенолов, оценивали эффективность разделения о- и /г-трет-бутилфенолов (трудно разделяемой пары) и фактор асимметрии пика фенола — наиболее полярного компонента (табл. 1.3,3), Число и высоту эквивалентных теоретических тарелок определяли относительна малополярного 2,4,6-три-трет-бутилфенола. Исследования проводили при 250 °С на хроматографе ЛХМ-7А с пламенно-иониза-ционным детектором и колонкой из нержавеющей стали (ЮООХ [c.54]

    Распределительная хроматография основала, на распределении веществ между двумя несмешивающимися жидкими фазами. При разделении биополимеров используют водно-органические фазы. Неподвижная жидкая фаза формируется в результате ее закрепления на пористом нерастворимом носителе силами полимо-лекулярной адсорбции. Если носитель по своей природе гидрофилен (целлюлоза, силикагель, стекло), то неподвижной является более гидрофильная жидкая фаза. Если же полимер, например силикагель, модифицирован объемистыми гидрофобными радикалами, то неподвижной является более гидрофобная фаза. В этом случае разделение называют хроматографией с обращенной фазой. [c.238]

    Оба метода легко автоматизируются в твердофазном варианте аналогично методу, предложенному для пептидного синтеза Меррифилдом. Более того, фос-фитв 1Я химия вообще чрезвычайно редко применяется в ясидкофазном варианте. В качестве носителя используют главным образом силикагель или пористое стекло. Их обрабатывают так, чтобы ввести аминогруппы, которые в дальнейшем [c.297]

    Поверхностные силанольные группы двуокиси кремния имеют слабо кислый характер, но льюисовская кислотность не обнаруживается (если образец чистый). Однако даже небольшое содержание примесей может изменять эти свойства например, льюисовские центры находят на пористом стекле викор [30], что может быть связано с присутствием примеси алюминия. Хотя высокая удельная поверхность силикагеля делает его ценным носителем, сам силикагель как катализатор весьма инертен. Он слабо активен в разложении спиртов [31], возможно из-за примеси ионов А1 +, и в большинстве случаев его значение как катализатора несущественно. Тем не менее гамма-облучение или радиоактивное облучение в ядерном реакторе придает ему некоторую каталитическую активность. Возникающие при облучении типы центров и их реакционную способность обсудил Тейлор [32]. В данном случае можно только отметить, что Р-центры, представляющие собой, вероятно, положительные дырки, захваченные анионными вакансиями, соседними с ионами А1 + (присутствующими как примесь), по-видимому, ответственны за хемосорбцию водорода и катализ обмена Нг — Ог. Если двуокись кремния хорошо обезгажена, облучение создает также кислотные центры, катализирующие реакции изомеризации двойной связи и полимеризацию олефинов. [c.53]

    Некоторая часть первых исследований поверхиости катализаторов в инфракрасной области [23] была проведена на пористом стекле, и ряд последующих экспериментаторов использовали его (марка Викор) в качестве адсорбента или носителя для металлов [6, 24—26]. Лефтин и Холл [27] использовали прозрачные массивные образцы силикагеля и алюмосиликатного катализатора и прозрачную у-окись алюминия, приготовленную Пери и Ханнаном [28]. Затруднением при изготовлении этих прозрачных образцов является то, что желаемый результат, по-видимому, достигается только методом проб и ошибок. Преимуществами этих образцов перед порошками являются большая легкость в обращении с ними и меньшее рассеяние света. Кроме того, поскольку один и тот же образец может быть использован в исследовании с несколькими адсорба-тами просто с промежуточной окислительной регенерацией между циклами опытов, возможно проведение количественного сравнения. Пропитка образцов для получения металлических катализаторов на носителе ограничена количеством металла, которого можно на-— нести не более 10 вес.%. В противном случае, как это было ука-Ср зано Эйшенсом и Плискином [1], частицы металлов приобретают тенденцию к росту, что вызывает дополнительное поглощение и рассеяние спета. [c.17]

    При изучении закисномедного катализатора для окисления СзНб в акролеин [20] найдено, что не только макроструктура, но и природа носителя (а-АЬОз, пористое стекло, карборунд) оказывает влияние на его каталитические свойства. Следует указать, что для получения количественных зависимостей влияния макроструктуры контакта на его свойства необходимы методы изучения равномерности распределения и размеров скоплений нанесенного активного вещества в толще носителя. [c.18]

    Пористые стекла. Высокосиликатные стекла (5Ю9>96%), В20з 3%, рН = 4,5—5,5) с жесткой пространственной сетью соединяющихся пор [48] применяются для фильтрации и молекулярно-ситового разделения различных веществ, в качестве инертных твердых носителей в жидкостной и газожидкостной хроматографии. Используются также адсорбционные свойства пористых стекол, так как силанольные группы способны к образованию водородных связей с веществами, содержащими электронодонорные функциональные группы. [c.49]

    Зная размеры молекул компонентов смеси, подбирают необходимый тип и ионообменную форму цеолита для выделения из нее того или иного компонента. Цеолиты термостойки до т-ры 800—900° С, не взрывоопасны, не корродируют аппаратуру. Общий принцип синтеза цеолитов заключается в гидротермальной кристаллизации геля соответствующего состава. Разделительную способность цеолита улучшают заменой обменного катиона одного размера на катион другого размера или предварительной адсорбцией (нредсорбцией) на цеолите небольшого количества полярных молекул, изменяющих размеры окон. Цеолиты применяют для глубокой осушки и тонкой очистки газов и жидкостей, разделения смесей, получения мономеров высокой чистоты. Кроме того, их исполь.зуют для получения высококачественных бензинов, осушения холодильных смесей (фреонов), в качестве геттеров (для создания высокого вакуума), катализаторов и катализаторов носителей (см. также Цеолиты). Кроме цеолитов, к М. с. м. относятся пористые стекла, мелкопористые угли и некоторые металлы (палладий, тантал). Пористые стекла образуются при травлении спец. стекол к-тами, мелкопористые угли получают из пром. формальдегидных смол. Материалы такого типа имеют вид зерен, порошков, гранул, мембран или пленок. Пленки изготовляют из пористого стекла, кварца или металла [c.838]

    В подавляющем большинстве случаев неподвижную фазу можно раооматривать как пленку органического зюстрагента на поверхности не взаимодей1ст1вующего с ним носителя. Выводы из такого рассмотрения сделаны в гл. 1, и есть основания предполагать, что гипотеза оправдана для колоночных хроматографических систем с политетрафторэтиленом, политрифторхлорэтиленом, полиэтиленом, кизельгуром, силикагелем, пористым стеклом в качестве носителей, а также, возможно, для бумаж(ной хро(матографии. [c.100]

Рис. 2. Хроматограмма смеси 3% СН4 ), 5% СгНе (2) и 8% С2Н4 (3) в азоте, полученная при 20° С на пористом стекле. Условия получения пористого стекла термообработка при 550° С в течение 20 час., травление ЗЛГНС при 50° С в течение часа, колонка Юх 0,45 сл , объем пробы < 0,02 мл, скорость газа-носителя (водород) 43 мл/мип, скорость диаграммы 2400 л1. /час, шкала самописца ЗООлв Рис. 2. Хроматограмма смеси 3% СН4 ), 5% <a href="/info/351447">СгНе</a> (2) и 8% С2Н4 (3) в азоте, полученная при 20° С на <a href="/info/3865">пористом стекле</a>. Условия <a href="/info/1491224">получения пористого стекла</a> термообработка при 550° С в течение 20 час., травление ЗЛГНС при 50° С в течение часа, колонка Юх 0,45 сл , <a href="/info/426654">объем пробы</a> < 0,02 мл, <a href="/info/39446">скорость газа-носителя</a> (водород) 43 мл/мип, <a href="/info/24326">скорость диаграммы</a> 2400 л1. /час, шкала самописца ЗООлв
    С целью определе1[ия оптимальных условий хроматографического разделения на пористом стекле было определено влияние зернения и линейной скорости на высоту теоретической тарелки Л. На рис. 5 приведены эти зависимости к от линейной скорости газа а. Высота теоретической тарелки уменьшается с уменьшением зернения от 0,25—0,5жл до0,14—0,18лгж в 3 раза минимальная высота теоретической тарелки для зернения 0,14—0,18 мм равна 0,6 мм. Линейная скорость газа-посителя, соответствующая минимальной теоретической тарелке, с уменьшением зернения увеличивается, причем наклон ветви кривой, соответствующей размыванию в колонке, связанному с кинетикой адсорбции, уменьшается с уменьшением зернения. Это показывает, что для быстрых анализов выгоднее использовать меньшее зернение, так как при меньших зернениях минимальная высота теоретической тарелки слабее зависит от линейной скорости газа-носителя. [c.64]


Смотреть страницы где упоминается термин Пористое стекло носитель: [c.95]    [c.198]    [c.354]    [c.372]    [c.268]    [c.47]    [c.47]    [c.64]    [c.129]    [c.76]    [c.212]    [c.715]    [c.66]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.146 , c.149 , c.154 , c.155 , c.159 , c.178 , c.183 , c.263 , c.269 , c.470 , c.476 ]




ПОИСК





Смотрите так же термины и статьи:

Носители пористость

Пористые стекла



© 2024 chem21.info Реклама на сайте