Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы измерения МБР гель-хроматография

    Кислые компоненты высококипящих дистиллятов американских нефтей (370—535 и 535—675°С) исследовались [36] с помощью ИК-, масс- и флуоресцентной спектроскопии определены карбоновые кислоты, фенолы, карбазолы и амиды. В ИКС обнаружены все характерные ПП 1750—1730 (С=0 мономера) и 1700—1710 (С=0 димера) карбоновых кислот 3585 и 3540 (О—Н) фенолов двух типов, 3460 (N—Н) карбазолов, 1700—1650 (С=0 мономера и димера) амидов. Для расчета относительных количеств каждого типа соединений предварительно были рассчитаны групповые молярные коэффициенты экстинкции из ИКС модельных соединений (табл. 1). Для всех типов соединений молекулярная масса принята равной 350. Для количественных определений предложены два ИК-метода. По первому снимались ИКС отдельных подфракций после гель-хроматографии кислого концентрата, измерялись площади под соответствующими ПП п вычислялось содержание каждого типа соединений в граммах. Затем строилась кривая весового распределения этого типа в подфракциях. Содержание каждого типа соединений в суммарном кислом концентрате определялось измерением площадей под кривыми весового распределения типов и сравнением их с площадью под кривой весового распределения кислого концентрата по подфракциям. Второй ИК-метод предусматривал запись ИКС всего кислого концентрата, определение интегральных интенсивностей для каждого типа соединений в концентрате и расчет концентраций в образце. Основная трудность состояла в правильном разрешении (рис. 2) сложных контуров поглощения в областях 3600—3400 (фенолы и карбазолы) и 1800—1600 см (карбоновые кислоты, амиды, ароматические кольца). Преимущество второго способа — в быстроте определения. [c.28]


    Для общих испытаний светостойкости обычно используются образцы промышленных полимеров. При их изучении до и после фотолиза применяют обычные методы химии полимеров, в частности проводят разделение методами центрифугирования, гель-хроматографии и характеризуют такими параметрами, как молекулярная масса, выход гель-фракции, характеристическая вязкость -растворов и т. п. В исследованиях механизмов фотопревращений полимеров применяют, как правило, очищенные и хорошо охарактеризованные образцы. В данном случае стараются выделить различные факторы и изучить влияние каждого в отдельности. Для этого используют весь арсенал физико-химических методов органической химии и фотохимии, и особенно спектральные. Например, люминесцентные измерения позволяют установить мультиплетность и природу излучательных состояний и в целом охарактеризовать фотофизические процессы в полимере с их участием. Чаще всего при фотолизе используется монохроматический свет известной интенсивности, что позволяет (зная количество поглощенного света) находить квантовые выходы фотохимических реакций. [c.141]

    Проникающая гель-хроматография. Этот метод довольно трудоемок при измерении размеров пор, если кремнезем применяется в качестве материала для набивки хроматографической колонки. Метод основан на определении глубины проникновения в кремнезем молекул или полимеров различных размеров, которое происходит до тех пор, пока не начнут препятствовать такому проникновению эффекты поглощения порами [184]. [c.691]

    Наиболее употребительные относительные методы основаны на измерении подвижности биополимеров в какой-либо системе зонального фракционирования. Для нативных белков используется гель-хроматография. Из-за гетерогенности пор в таких гелях в достаточно широком диапазоне молекулярных масс объем V , в котором выходит биополимер, возрастает с уменьшением молекулярной массы М, поскольку возрастает число пор, доступных для биополимера. При этом достаточно хорошо выполняется зависимость [c.268]

    Чаще всего используют водород, азот и гелий ввиду того, что они обеспечивают наибольшую чувствительность прибора для определения плотности газа, пламенных и ионизационных детекторов, а также катарометров. Так как водород и гелий по сравнению с органическими соединениями обладают значительно более высокой теплопроводностью, эти газы преимущественно используют в качестве подвижных фаз при дифференциальном методе измерения теплопроводности. Чем больше различие в теплопроводности, тем больше изменение температуры и, следовательно, сопротивления и тем больше чувствительность измерительного устройства. Обычно при газо-жидкостной хроматографии применяют скорости потока газа-носителя порядка 10—100 мл мин. [c.55]


    В биохимических исследованиях используются все методы колоночной хроматографии, однако чаще — ионообменная и гель-хроматография. Обзор периодической литературы показывает, что для измерения радиоактивности обычно применяют сбор элюата по фракциям с последующим жидкостным сцинтилляционным счетом. Основная причина этого, вероятно, заключается в том, что при использовании указанных хроматографических методов, дающих невысокую эффективность разделения, собирают сравнительно большие фракции (часто 10— [c.192]

    Измерение МВР изотермических образцов, их смесей и образцов, полученных по ступенчатому режиму, было проведено методами хроматографического фракционирования, гель-хроматографии, скоростной седиментации и температурного осаждения. Скорректированные результаты показали достаточно хорошее совпадение с расчетом для области изученных температур (табл. III.2). [c.137]

    Наиболее простой и доступный вариант метода — это анализ с применением углекислого газа в качестве подвижной фазы и прямым объемным определением компонентов анализируемой смеси. Для анализа газов, содержащих пары жидких углеводородов, и для анализа смесей углеводородов С5 используют более сложный вариант метода газо-жидкостной хроматографии с применением гелия или водорода в качестве подвижной фазы и с определением компонентов анализируемой смеси путем измерения теплопроводности. Газы, в состав которых наряду с углеводородами входят водород, окись углерода, азот и кислород, анализируют методами, сочетающими газо-жидкостную и адсорбционную хроматографию. [c.142]

    Контроль за процессом синтеза обычно проводят, измеряя вязкость и содержание сухого остатка реакционной смеси, главным образом для того, чтобы знать степень конверсии. В этих процессах уже практически невозможно после начала полимеризации управлять молекулярной массой. Во многих случаях для завершения реакции требуется дополнительно вводить одну или несколько порций инициатора. Молекулярную массу полимера можно определять методом гель-хроматографии или рассчитывать из данных измерений его приведенной вязкости в разбавленных растворах в дихлорэтане. [c.54]

    Гель-проникающая хроматография (ГПХ) стала широко принятым методом измерения размеров молекул полимеров. Принцип измерения основан на рассмотрении молекулы полимера как частицы определенного размера, а молекулярно-массовые распределения калибруются относительно стандарта — молекулярной массы полистирола, соответствующего данному объему. Метод широко используется для определения молекулярных масс через молекулярные объемы [41, 42]. Мы не предлагаем обсуждать этот подход, так как свернутая молекулярная цепь, составляющая частицу , не является частицей в контексте настоящей главы. Существует много отличных серийных приборов и много книг и статей по этому вопросу. Приборы для ГПХ дороги, и нет необходимости в применении этого метода для определения моле- [c.185]

    В настоящее время сведения о ДЦР ПЭВД чаще всего получают с помощью метода гель-проникающей хроматографии (ГПХ) в сочетании с измерением характеристической вязкости исследуемого образца [c.130]

    При газоадсорбционном методе хроматографии в качестве газа-носителя применяют воздух, гелий, азот и другие газы, в качестве адсорбента — твердые измельченные вещества активированный уголь, оксид магния, силикагель, алюмогель и др. Для измерения массы потока вещества подвижной фазы используют ротаметр. [c.320]

    Опыты проводили в изотермических условиях при температурах 164, 184, 204, 224 и 250 °С. Эксперимент при каждой температуре повторяли в среднем 8 раз. Исходный вес образца около 5 г. Приблизительно 0,5 г из остатка, который не продавливался через капилляр, брали из резервуара и подвергали анализу методом гель-проникающей хроматографии. Это позволяет исключить возможные эффекты деструкции в резервуаре, которые могут явиться следствием вторичных течений, возникающих непосредственно вблизи плунжера, или любых других причин. Измерения показали, что действительно материал, непосредственно прилегающий к плунжеру, в некоторой степени подвергается деструкции. Из дальнейшей обработки также исключали начальную часть экструдата длиной примерно 50 мм. При необходимости повторить опыт с ранее деформировавшимся материалом струю разрезали на мелкие гранулы, которые вновь закладывали в резервуар вискозиметра. От каждого образца отделяли небольшие порции для хроматографического анализа. Эти порции растворяли в тетрагидрофуране. [c.193]

    Изучение гидродинамических свойств разбавленных растворов полимеров является одним из основных способов определения молекулярных характеристик цепных молекул. Это связано как с доступностью экспериментального оборудования и сравнительной легкостью измерения, так и с наличием теоретических соотношений, количественно описывающих экспериментальные закономерности. В этой главе даются основы теории гидродинамического поведения изолированной цепной молекулы. Методы определения коэффициентов седиментации, диффузии, характеристической вязкости, объема элюирования в гель-проникающей хроматографии приведены в главах 4—6. [c.36]


    Непосредственное определение среднечисловой функциональности из отношения Мп/М или хроматографич. разделение макромолекул по содержанию в них функциональных групп с последующим измерением Л/ и фракций и расчетом / и /щ, исходного олигомера. Оба метода применимы к олигомерам всех трех типов. Точность первого метода в лучшем случае составляет 4—5% и зависит от точности измерения Л/ и М . Из хроматографич. методов для исследования РТФ используют адсорбционную и гель-проникающую хроматографию. [c.406]

    Измерение А (и с° или с ЕС) нельзя произвести непосредственно. Его оценивали методами 1) удерживаемых объемов, наблюдаемых при хроматографировании методом гель-проникающей хроматографии растворов неэлектролита вместе с амфифильным соединением (водный N проникает в гель, мицеллярный N - нет) 2) равновесного диализа систем мицелла - солюбилизат 3) кинетики реакции в условиях, когда реакционная способность мицеллярного N значительно отличается от реакционной способности водного N 4) изменения рН буферных растворов, обусловленного сорбцией слабой кислоты неионными мицеллами. Полученные величины К сведены в табл. 3.13. Результаты, полученные с помощью методов (1) и (2), были проанализированы в рамках моделей 1 или Г. Однако в этих измерениях [c.578]

    В последнее десятилетие развитие инструментальной базы представило возможности в полной мере удовлетворить запросы науки и промышленности в определении ММ и ММР. Это связано со становлением нового экспресс-метода определения ММ и ММР — гель-проникающей хроматографии [192, с. 247 193, с. 81]. Современные жидкостные хроматографы позволяют автоматизировать процесс измерения, применять ЭВМ. При серийных измерениях результаты можно получить за 10—30 мин. [c.174]

    В настоящей работе определение углерода проводили методом сжигания образца в потоке кислорода, а одновременное определение газов — восстановительным плавлением в потоке гелия. Использованные методы отличаются от ранее описанных аппаратурным оформлением и условиями проведения экстракционной стадии анализа. Для измерения количества примесей использовали газовую хроматографию. [c.153]

    Из большого арсенала разработанных к настоящему моменту методов наиболее адекватную информацию о состоянии НДС тяжелого состава можно получить лишь при помощи неразрушающих методов, не связанных с добавлением растворителей или наложением интенсивных механических нагрузок на исследуемые нефтяные системы. Методы типа гель-нроникающей хроматографии, фотоколориметрии, седиментационные, реологические и другие методы являются малопригодньп и для точного измерения сфуктурных характеристик НДС и определения точек фазовых переходов. Они частично разрушают надмолекулярную структуру исследуемых систем, изменяют толщину и химический состав сольватных оболочек, а также приводят к диссоциации, либо рекомбинации части соединений, существенно искажая характеристики исследуемых нефтяных систем. Использование разрушающих методов, по словам некоторых исследователей, является лишь первым пробным шагом в изучении структурных превращений в НДС. Наиболее приемлемыми в этом отношении являются некоторые спектральные методы, а также различные виды микроскопии, которые, конечно же, не могут удовлетворить весь спектр исследований в области нефтяных дисперсных систем, но вполне достаточны для целей данной работы. [c.9]

    Важно отметить, что степень набухания глобул, измеренная этим методом, практически совпала с результатами препаративного центрифугирования. Эти данные свидетельствуют о том, что плотность сетки химических связей в глобулярном геле фторкаучуков относительно невелика (типична для глобулярных микрогелей, полученных при эмульсионной полимеризации). Однако при умеренных температурах она возрастает вследствие влияния вклада физических узлов сетки, связанных с сильным межмолекулярным взаимодействием во фторкаучуках. Поэтому общая плотность сетки возрастает, и глобулярные образования приобретают высокую устойчивость. Близкие к приведенным в табл. 1.3 результаты получены в работе [5]. С помощью методов гель-хроматографии определена молекулярная масса высокомолекулярной фракции каучука СКФ-26, равная 2-10 и число узлов разветвления на такую молекулу , равное 5-10 Завыщен-ная степень сшивания, очевидно, связана с заниженным размером элюируемой частицы (глобулы), равным 50 нм, который определяли расчетным путем с учетом ряда допущений. На основании полученных данных авторами работы [5] разработан новый количественный метод определения гель-фракции СКФ-26 с помощью ГПХ-анализа растворов СКФ-26. [c.30]

    Колоночная хроматография является макрометодом. Применение зто-го метода для проведения микро- и полумикроопределений связано с использованием чувствительных детекторов, имеющихся лишь для некоторых веществ, действие которых основано, например, на измерении радиоактивности. За последние два десятилетия колоночная хроматография потеряла прежнее значение. В области аналитической химии ее вытеснили такие методы, как бумажная и тонкослойная хроматография. Однако колоночную хроматографию можно применять в области препаративной химии. Эта тенденция развития не характерна для ионообменной и гель-хроматографии. [c.354]

    При создании точных функциональных полимерных мембран с помощью радиационно-индуцированной полимеризации и контроля процесса прививки весьма полезно знать молекулярно-массовое распределение в прививке. В частности, длина и плотность полимерных цепей, привитых на микрофильтровальные мембраны из триацетатцеллюлозы, определяют проницаемость жидкости и адсорбцию молекул на созданной мембране. Например, молекулярно-массовое распределение метилметакрилата, привитого на триацетатцеллюлозу, было найдено с помощью кислотного гидролиза подложки. Молекулярно-массовое распределение определялось также методом гель-проникающей хроматографии [71]. Этот метод эффективен только если можно разрушить подложку. Например, при прививке натурального каучука обработка озоном является очень удобным процессом для разрушения сегментов каучука с оставлением цепи пластполимера нетронутыми [72]. Альтернативой является окисление надбензойной кислотой [73]. Осмометрию или измерение вязкости раствора можно использовать для определения молекулярной массы изолированной некаучуковой фракции. [c.221]

    Ранее нами проводились исследования по разделению хлорси-лапов методом газо-жидкостной хроматографии [4]. Настоящее сообщение является дальнейшим развитием указанной выше работы. Исследования проводились в изотермических условиях, на установке [4], где газом-носителем был гелий, детектором — катарометр. Плечевые элементы катарометра сделаны из остеклованной платины с сопротивлением 30 ом каждый. Чувствительность 600 мв-мл1мг. Анализируемую пробу в ампулах вводили в колонку в потоке газа-носителя. Идентификацию хлорсиланов проводили по удельному и относительному объемам удерживаипя. Содержание разделяемых компонентов определяли путем измерения площадей И.ЛИ высот пиков способом нормирования с учетом коэффициентов стандартизации [5]. [c.277]

    Важнейшей характеристикой стабильности полимерного материала является скорость его окислительной деструкции, измеряемая числом разрывов полимерной цепи в единице массы, происшедших в течение единицы времени (разрывы на килограмм полимера). Выше (см. гл. 2) была выведена формула, связывающая число разрывов цепи с изменением среднечисловой молекулярной массы ls = 6,02-10 (ЛII —Мпо), определенной, например, методом гель-хроматографии. К сожалению, наиболее простые методы измерения молекулярной массы дают не среднечисловую, а среднемассовую или близкую к ней средневязкостную величину. В этих случаях использовать формулу (2.101) можно только, если известно отношение Мт/М для неокисленного полимера. [c.227]

    Например, Виллокс с сотр. [32] в исследованиях метаболизма анилина у пауков хроматографировал водорастворимые метаболиты на сефадексе G-15, проводя элюирование водой. В этом случае, при отборе фракций по 15 мл, жидкостный сцинтилляционный счет показал наличие двух основных метаболитов. Гель-хроматография часто используется для анализа высокомолекулярных комплексов. Игл [33] анализировал экстракты, содержащие индолуксусную кислоту, связанную с белком из растений, на колонках с сефадексом G-25 или G-50. Элюат собирали по фракциям объемом около 2 мл и для измерения активности отбирали пробы по 0,2 мл. Нельсон с сотр. [34] использовал сефадекс G-10 для разделения продуктов, которые образовались при инкубировании микросом печени в присутствии [ С] ацетилгид-)азина. Они собирали фракции по 2 мл. Клейн с сотр. 35] хроматографировал на сефадексах G-I00 и G-200 55]гепаран-сульфат и также использовал метод со сбором фракций. Гель-хроматографию применяют и для разделения полисахаридов. Пример разделения меченых В-глюканов приведен в работе Говарда с сотр. [36]. [c.193]

    Одним из чрезвычайно интересных новых областей приложения масс-спектрометрии, которые активно изучается в настоящее время, является биохимия, или, точнее, определение параметров белков. Это является результатом внедрения таких методов, как MALDI и ионизации электрораспылением, которые обеспечивают экспрессное и точное определение средних молекулярных масс белков при малом количестве материала (на уровне пикомолей или ниже). Определяют среднюю молекулярную массу белка, так как для разделения различных изотопных пиков потребовалось бы спектральное разрешение по массе свыше 10000. В сравнении с другими, более традиционными биохимическими методами для определения молекулярной массы биологических макромолекул, такими, как SDS-PAGE и гель-проникающей хроматографии, масс-спектрометрия обеспечивает быстрое и легкое измерение, требующее малых количеств материала и обеспечивающее непревзойденную точность. Однако масс-спектрометрия является деструктивным методом, и использованный образец нельзя восстановить для последующих экспериментов. [c.307]

    Газовая хроматография предложена как метод Джеймсом и Мартином в 1952 г. как метод химического анализа ГХ отличается особо высокой производительностью. Благодаря высокой скорости потока подвижной фазы (газообразные водород, гелий, азот и аргон) достигается быстрое установление фазового равновесия. В качестве стационарной фазы применяют чаще всего силикон, полиэфир или полигликоль на таких носителях, как цеолит, хромосорб, стерхамол и др. Длина колонки при обычных разделениях колеблется от 1 до 6 м, при разделениях энантиомеров на капиллярных колонках их длина достигает 150 м. Идентификация разделенных веществ производится высокочувствительными детекторами — пламенноионизационным (10 моль), электронзахватывающим, а также работающими на основе измерения теплопроводности (10 моль). Предел обнару- [c.61]

    Из других методов применяют электрофорез, катионообменную хроматографию и хроматографию на полиамиде и других адсорбентах [57, 59, 62, 166, 275, 2891. Из некоторых результатов следует, что, по крайней мере, часть выделенных лигнин-полисахаридных комплексов может представлять собой липJь ассоциаты фрагментов лигнина и полисахаридов. По данным гель-проникающей хроматографии, ультрацентрифугирования и эбулиоскопических измерений молекулярная масса выделенных комплексов находится в интервале от 600 до 15 ООО [12, 57, 58, 59, 139, 2741. [c.137]

    Метод Нелсена и Эггертсена достаточно прост, производителен, не требует применения вакуумной системы, поэтому он привлек внимание многих исследователей и получил дальнейшее развитие [71]. Так, например. Рот и Элвуд [72] приспособили промышленный газовый хроматограф для адсорбционных исследований и упростили методику определения и вычисления величин удельной поверхности. В частности, применив заранее приготовленные смеси гелия и азота и проведя калибровку десорбционных пиков, они показали, что в этом случае не требуется измерения абсолютных скоростей потока. Экспериментальные результаты для трех образцов одного и того же адсорбента [c.382]

    Пахомова и Чумаченко [11] предложили метод определения азота, в котором система разложения и хроматограф связаны при помощи мембранного переключателя потока гелия, позволяющего герметично закрывать реакционную систему в момент разложения вещества. Разложение осуществлялось в кварцевой пробирке (длина, 160 мм, диаметр И мм), закрывающейся металлической пробкой, имеющей два капилляра для ввода газа-носителя и вывода продуктов сгорания. Авторы рекомендуют применять в качестве окислителя органических соединений (в атмосфере гелия) окись никеля, нагретую до 900—1000° С. При этом образуются только СО2, Н2О и N2. Дл разделения применялась колонка, заполненная активированным углем марки БАУ-2. Скорость гелия 30 мл1мин. Содержание азота вычислялось по калибровочной кривой,-построенной на основании измерения высот пиков при тридцати определениях карба-зола. Среднее отклонение при определении азота составляло 0,2—0,3%. [c.108]

    В последние годы газо-жидкостная хроматография (называемая также парофазной хроматографией) открыла новые возможности анализа летучих веществ. О важности газо-жидкостной хроматографии (ГЖХ) можно судить на основании того факта, что с ее помощью легко проанализировать любые смеси соединений, структуры которых приведены на рис. 1-1 (большинство из них представляет собой низкокипящие жидкости). Обычный метод ГЖХ состоит в том, что несколько микролитров анализируемой жидкости вводится в испаритель и уносится потоком газа (обычно гелия) в длинную нагретую колонку, которая заполнена каким-либо пористым твердым веществом (например, измельченным огнеупорным кирпичом), пропитанным нелетучей жидкостью или маслом. Происходит распределение вещества между газом и жидкостью, причем небольшие различия в таком распределении для компонентов смеси могут быть резко увеличены вследствие большого числа повторных распределений, происходящих в длинной колонке. Детектирование обычно производится путем измерения изменений теплопроводности газа на выходе. Схематическое изображение аппаратуры для ГЖХ и типичный пример разделения с его помощью представлены на рис. 1-8 [c.30]

    Бассет и Хэбгуд [8] первыми указали на возможность применения импульсного метода для определения скоростей реакций. По их мнению, действительные скорости реакций на поверхности катализатора можно вычислить, если с помощью хроматографа измерить степень адсорбции, происходящей в условиях реакции. В своей статье они провели анализ кинетики реакции первого порядка на новерхности катализатора (изомеризация циклопропана до пропилена на молекулярном сите 13Х) по экспериментальным данным, полученным с помощью импульсного метода в условиях хроматографического элюирования. В качестве реактора они использовали П-образную трубку диаметром 3 мм из стекла пирекс. Катализатор в количестве около 0,1 г удерживался в трубке двумя пробками из стеклянной ваты. Реактор нагревали в небольшой печи блочного типа. В качестве газа-носителя использовали гелий, объем пробы в каждом эксперименте был равен 0,20 мл. Продукты, выходящие из реактора, улавливали в аналогичной П-образной трубке, содержащей то же количество молекулярного сита и охлаждаемой сухим льдом после ввода очередной пробы и окончания процесса в реакторе ловушку быстро нагревали, и десорбированные продукты в потоке газа-носителя поступали в хроматограф. Константы адсорбции для реагентов вычисляли на основании измерения удерживаемых объемов. В статье приведены уравнения, по которым, зная состав продуктов реакции и константы адсорбции, можно вычислить константы скорости реакции на поверхности катализатора и энергию активации. [c.36]

    Измерения Срфр можно проводить с помощью химических, спектральных или других известных методов анализа функциональных групп [18]. Для измерения Мп обычно используют эбуллиоскопию, осмометрию, паровую осмометрию (метод ИТЭК) и гель-проникающую хроматографию [1]. [c.242]

    Ошибка в значении среднечисловой функциональности при этом определяется точностью, измерений Мл и Л1э и в лучшем случае составляет 5—6%. Метод применим для олигомеров всех классов и его точность может быть повышена при использовании новейших методов исследования. Например, применение гель-проникаю-щей хроматографии позволяет снизить ошибку до 1—2% при 1име-рении Мп олигомеров [19]. Возможная точность измерений Мп и Л1э различными методами для ряда конкретных случаев и систем обсуждается в работах [1, 5]. [c.243]

    Наиболее эффективным методом исследования РТФ является хроматографическое разделение олигомеров по типам функциональности с пос. едующим измерением Мп и Мэ отдельных фракции и расчетом fл и /а, и функций РТФ. При этом выбор того или иного варианта хроматографического метода зависит от класса исследуемых олигомеров. В настоящее время для разделения олигомеров используют колоночную адсорбционную хроматографию, тонкослойную хроматографию и гель-проникающую хроматографию. Колоночая адсорбционная хроматография может проводиться в различных режимах элюирования, отличаться способами загрузки образца, подготовки насадки — силикагеля, анализа элюата и масштабностью фракционирования. Впервые колоночная хроматография на силикагеле с использованием диоксана в качестве элюента была применена для исследования молекулярпо-массового распределения олигомеров. [c.244]


Смотреть страницы где упоминается термин Методы измерения МБР гель-хроматография: [c.174]    [c.116]    [c.242]    [c.22]    [c.56]    [c.299]    [c.44]    [c.163]    [c.196]    [c.382]    [c.150]    [c.54]    [c.110]   
Кинетический метод в синтезе полимеров (1973) -- [ c.120 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Гель-хроматография

Измерение хроматограф

Хроматография методы



© 2024 chem21.info Реклама на сайте