Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки оси вращения

    Как известно из химии, вращение в молекулах вокруг одинарных связей приводит к появлению поворотных изомеров, т. е. молекул с различной конформацией. В белках вращение вокруг пептидной связи С—N затруднено (энергия активации вращения 40—80 кДж/моль), так как эта связь имеет на 30—40% характер двойной связи вследствие резонанса  [c.66]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Поляризация флуоресценции. Важной характеристикой фотолюминесценции является поляризация флуоресценции. Каждую молекулу можно рассматривать как колебательный контур — элементарный осциллятор, который способен поглощать и испускать излучение не только вполне определенной частоты, но и с определенной плоскостью колебания. Если на вещество падает поляризованный свет, то он преимущественно возбуждает те молекулы, в которых направление колебания осциллирующих диполей совпадает с направлением электрического вектора возбуждающего светового пучка. Поэтому несмотря на то что молекулы в растворе ориентированы хаотично, возбуждению подвергаются лишь те из них, которые обладают соответствующей ориентацией. Если.время жизни возбужденного состояния велико по сравнению со временем, необходимым для дезориентации молекул вследствие вращения, этот процесс дезориентации происходит еще до того, как появится заметная флуоресценция. Если же скорость вращательного движения мала по сравнению со временем жизни возбужденного состояния, то свет флуоресценции испускается до завершения дезориентации. При этом осцилляторы, ответственные за флуоресцентное излучение, ориентированы в той же плоскости, в которой они были ориентированы в момент поглощения, так что флуоресцентное излучение оказывается частично поляризованным. В очень вязких растворителях даже малые молекулы могут сохранять ориентацию за время испускания флуоресценции. Крупные молекулы, такие, как белки, сохраняют свою ориентацию в течение периода времени, который достаточно велик по сравнению со временем испускания флуоресценции, поэтому их флуоресценция частично поляризована. Степень поляризации флуоресценции определяется по формуле [c.56]

    У.9.63. Определить среднее значение молекулярной массы неочищенного яичного белка по экспериментальным данным Сведберга частота вращения центрифуги п = 11 ООО об/мин Т = 293 К плотность растворителя ро = = 1,007-10 кг/м удельный объем и=-0,741 10" м кг расстояния от оси вращения центрифуги и соответствующие им концентрации следующие  [c.133]

    Для проведения седиментометрического анализа кинетически устойчивых систем (золей, растворов ВМВ) с целью определения размеров и массы их частиц недостаточно силы земного тяготения. Последнюю заменяют более значительной центробежной силой центрифуг и ультрацентрифуг. Идея этого метода принадлежит А. В. Думанскому (1912), который впервые применил центрифугу для осаждения коллоидных частиц. Затем Т. Сведберг разработал специальные центрифуги с огромным числом оборотов, названные ультрацентрифугами. В них развивается центробежная сила свыше 250 ООО Современная ультрацентрифуга представляет собой сложный аппарат, центральной частью которого является ротор (с частотой вращения 60 000 об/мин и выше), с тончайшей регулировкой температуры и оптической системой контроля за процессом осаждения. Кюветы для исследуемых растворов вмещают всего 0,5 мл раствора. В ультрацентрифуге оседают не только частицы тонкодисперсных золей, но и макромолекулы белков и других ВМВ, что позволяет производить определение их молекулярной массы и размеров частиц. Скорость седиментации частиц в ультрацентрифуге рассчитывают также по уравнению (23.9), заменяя в нем g на о) х, где (О — угловая скорость вращения ротора л — расстояние от частицы до оси вращения. [c.378]


    В качестве примера на рис. 29.8 представлены зависимости П/с от с для двух разных ВМВ. Кривые / и 2 относятся к линейному полимеру (каучуку) в двух разных растворителях они имеют неодинаковый наклон, а следовательно, разные значения константы Ь, однако экстраполяция приводит к одному и тому же значению (П/с), - что дает постоянную величину молекулярной массы. Кривая 3 изображает зависимость П/с от с для глобулярного ВМВ (белка) примерно с той же молекулярной массой, что и у линейного изомера. Вследствие отсутствия вращения отдельных сегментов здесь П/с не зависит от с. [c.470]

    Существует два метода контроля раствора на разных расстояниях от оси вращения. В одном из них скорость седиментации оценивают по изменению со временем градиента показателя преломления. В другом методе, называемом абсорбционным, концентрацию определяют по оптической плотности растворов. Если изучаются растворы белков, то оптическую плотность определяют в ультрафиолетовой [c.155]

    Механизм работы переносчиков не вполне выяснен. Предполагается, что их роль выполняют специфически действующие белки их кодовые свойства проявляются в процессе узнавания субстрата. Белок, связанный с субстратом, переносит его либо путем вращения всей молекулы белка, либо посредством трансляции, а возможно, и в результате колебаний (осцилляций между двумя положениями).  [c.389]

    Очень чувствительным методом исследования конформаций белков и полипептидов является спектрополяриметрия. В неупорядоченной конформации характер оптического вращения белков определяется прежде всего аминокислотным составом, причем кривые дисперсии оптического вращения имеют плавный характер. Когда белок принимает конформацию а-спирали, то появляется большой дополнительный вклад этой спиральной структуры, дисперсия оптического вращения может стать аномальной, появляется эффект Коттона [c.637]

    Так, изучалась [14] оптическая активность поли- -глут-аминовой кислоты и оказалось, что при изменении pH от 7,0 до 4,5 происходит обратимое изменение [а]54б от —120° до —8°. Это сопоставляется с изменением оптического вращения, наблюдаемым при денатурации некоторых белков. [c.638]

    Полимеры, образованные из оптически активных мономеров, с преобладанием одного из антиподов (например, белки построены исключительно из /-аминокислот, полисахариды — из -углеводов), изменяют направление плоскости поляризации при прохождении через них поляризованного света. Вращение плоскости поляризации измеряется специальными приборами — поляриметрами. [c.362]

    Для белков удельное вращение всегда отрицательно и колеблется для различных белков от —30 до —60°. В растворах желатины удельное вращение изменяется в процессе застудневания это явление называется мутаротацией. Величина оптического вращения в значительной степени зависит от pH, состава и конфигурации полипептидной цепи, и в настоящее время измерениями удельного вращения широко пользуются для изучения процесса денатурации в полипептидах и белках. [c.362]

    Чувствительным методом исследования конфигурации белков и полипептидов в нативном и денатурированном состоянии является метод, основанный на изменении зависимости величины удельного вращения от длины волны света — дисперсии оптического вращения. [c.362]

    Условно-летальные мутанты сыграли чрезвычайно важную роль в изучении генетики бактериальных вирусов. Они были использованы также в качестве мощного метода при изучении сложных проблем, связанных с физиологией бактерий. Так, например, насколько сложно устроена система, необходимая бактерии для того, чтобы почувствовать наличие в среде питательного вещества и подплыть к нему Оказалось, что бактерии запрограммированы чувствовать градиенты концентрации химических аттрактантов и менять направление движения таким образом, чтобы оказываться в области с более высокой концентрацией [141, 143]. Было бы интересно узнать, какое количество белков необходимо для того, чтобы чувствовать аттрактант, передавать необходимый информационный сигнал жгутикам (дополнение 4-Б) и направлять движение последних, вызывая их вращение, приводящее либо к передвижению вперед, либо к беспорядочному подергиванию (гл. 16, разд. Б,7). [c.255]

    Структурной основой белков является полипептидная цепь. Геометрические параметры пептидной связи приведены на рис. 6.8, а. Все атомы пептидной связи находятся преимущественно в одной плоскости. Уровни структурной организации белков описываются аналогично другим полимерам. При жесткой пептидной связи и фиксированных геометрических параметрах конформация полипептидной цепи описывается двухгранными углами Ф, и ф, при С -атомах (рис. 6.9). Вращение вокруг амидной связи -N фактически заторможено. Пептидная связь способна к таутомерным переходам по схеме [c.341]

    Огромное чйсло взаимных сочетаний а-аминокислотных звеньев в полипептидной цепи, обусловливаюших первичную структуру белка, предопределяет возможность сушествования очень большого разнообразия белков и специфичность их функций. Однако первичная структура белка, обладающая специфическими функциональными свойствами (например, фибриллярные белки), в процессе биосинтеза воспроизводится достаточно точно, что обусловливает возможность жизнедеятельности организмов. Ранее уже отмечалось, что конформационные переходы в полипептидной цепи могут осуществляться в основном в результате вращения вокруг СН2-группы Gly, ифающей роль шарнира. [c.344]


    Принимая во внимани плоское строение пепти Щой связи, возможность свободного вращения связей у а-углеродного атома и постоянство углов и межатомньгх связей, можно прийти к двум возможным основггьгм моделям вторичной упорядоченной сгрукту]зы белков. [c.269]

    Согласно новым представлениям белки делятся на две морфологически различные группы — глобулярные и фибриллярные белки. К первым относятся кристаллические, в большей или меньшей степени растворимые в воде или солевых растворах вещества, молекулы которых по форме напоминают uiap, эллипсоид вращения, цилиндр или диск. Примерами таких белков могут служить гемоглобин и миогло-бин. Выводы о форме их молекул сделаны на основании вискозиметри-ческих, рентгенографических, осмометрическнх измерений и электронной микроскопии. [c.396]

    У.9.64. По данным Сведберга, седиментационное равновесие в растворе белка установилось через 48 ч при частоте вращения центрифуги = 6900 об/мин. Температура Т = 291К, удельный объем о = 0,745-10 м /кг плотность растворителя ро = 1,008 Ю кг/м . Определить среднюю молекулярную массу белка по следующим значениям расстояний Н от оси вращения центрифуги и соответствующим им значениям концентрации  [c.133]

    При съемке кристаллов белков, нуклеиновых кислот и других объектов с очень большими параметрами решетки, когда общее число отражений достигает нескольких десятков или сотен тысяч, а также при съемке кристаллов, нестабильных во времени или разлагающихся под действием рентгеновского излучения, возникает необходимость ускорения рентгеновского эксперимента. Один из естественных методов ускорения — повышение мощности рентгеновских трубок, в частности использование трубки с вращающимся анодом или переход к другим источникам мощного у-излучения. Второй метод — замена последовательного измерения отражений в обычных дифрактометрах одновременным измерением многих дифракционных пучков с помощью специальных устройств. В настоящее время разработаны так называемые многоканальные дифрактометры, оснащенные системой из нескольких (трех или пяти) параллельно перемещаемых счетчиков, которые регистрируют дифракционные лучи, возникающие одновременно (или почти одновременно) на разных слоевых линиях в процессе вращения кристалла. Эти приборы предназначены специально для кристаллов с большими периодами. В стадии технического совершенствования находятся в принципе более перспективные координатные детекторы, как олтномерные, так и двумерные. Одномерный координатный детектор позволяет измерять интенсивность всех дифракционных лучей одной слоевой линии (в том числе возникающие одновременно) с регистрацией угловой координаты (а следовательно, и индексов) каждого луча. Аналогичным образом двумерный координатный детектор позволяет регистрировать дифракционные лучи всех слоевых линий. [c.64]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    Как известно, все аминокислоты, за исключением глицина, имеют асимметрический атом углерода в а-положении. Все они относятся к /-аминокислотам и обладают одними и теми же заместителями у а-углерода группами —NH2 и —СООН и боковой цепью, характерной для каждой аминокислоты. Долгое время полагали, что оптическое вращение полипептидов и белков является аддитивным свойством и зависит исмючительно от доли, вносимой каждым аминокислотным остатком в отдельности. Однако значительный рост левого вращения белков при денатурации (от —50 до —100°) и при застудневании желатины приводит к выводу, что эти изменения связаны с конформационными изменениями полипептидной цепи. При исследовании эмпирическую величину удельного оптического вращения [а] заменяют на величину эффективного вращения цепи [т  [c.362]

    Это предположение основывается на том, что трипептид глута-тион в дисульфидной форме, по-видимому, также имеет циклическое строение, отвечающее формуле II, и подтверждается следующими наблюдениями. Цистин обладает максимальным молекулярным вращением вблизи изоэлектрической точки ( [М]5641=—7 85 pH = 3—7), при сдвиге в более кислую или щелочную область вращение понижается М]5641 = —613 нри pH = 2 1М]5641 = —168 при рн = 12. Горовиц (1961> пpипи ывaef большие изменения [аЬ, происходящие при расщеплении надмуравьиной кислотой дисульфидных мостиков в белках, богатых цистином, деструкции жестких цистиновых структур, образуемых за счет водородных связей. [c.654]

    Обе эти формы легко различимы по характерным значениям оптического вращения. Как и в случае нативных и денатурированных белков, беспорядочно ориентированные синтетические полипептиды имеют очень малое вращение, и то время как спирализованные полипептиды обладают большой вращательной способностью. Различие между спиральной конформацией и клубком особенно заметно при рассмотрении кривых дисперсии оптического вращения в далекой ультрафиолетовой области. Блу (1961) сообщил о вращении, измеряемом десятками тысяч градусов. Для этой цели был успешно применен новый прибор для определения спектров кругового дихроизма (Руссель — Улаф, 1961). [c.712]

    Смесь для полимеризации следует готовить в количестве, необходимом для опыта. Если используют, например, 12 трубочек, нужно приготовить 30 мл смеси. Осторожным вращением колбочки раствор перемешивают и вносят пипеткой в трубочки, укрепленные в подставке, следя за тем, чтобы пузырьки воздуха не попали внутрь полимеризуемого геля. Уровень вносимой жидкости должен находиться на расстоянии 1—1,5 см от верхнего края трубочки. Сверху осторожно наслаивают воду (0,2—0,3 мл) для образования ровной поверхности геля. Полимеризация обычно заканчивается через 20—40 мин, что определяют по образованию хорошо видимой границы между гелем и водой. По окончании полимеризации наслоенную воду удаляют фильтровальной бумагой. Трубочки снимают с подставки и ввинчивают в отверстия дна верхнего буферного резервуара (рис. 10, /). Верхний резервуар присоединяют к нижнему, предварительно заполненному электродным буферным раствором. Следят за тем, чтобы на концах трубочек не было пузырьков воздуха. На поверхность геля микропипеткой наносят растворы белков. Количество наносимого белка зависит от его гомогенности для индивидуального белка — 25—50 мкг, для гетерогенных смесей это количество может быть увеличено до 50—250 мкг. Плотность наносимых образцов белка повышают добавлением 40%-ного раствора сахарозы до конечной концентрации 0,5 М (20%,). Это необходимо для предотвращения смешивания белка с электродным буфером. Высокая ионная сила исследуемых образцов мешает четкому разделению белков, поэтому такие растворы следует предварительно обессолить. [c.96]

    Колбочки помещают в термостат аппарата Варбурга при 28° С и выравнивают температуру в течение 15 мин. В каждую колбочку добавляют по 0,1 мл густой суспензии митохондрий (6—7 мг белка) и пробы инкубируют в течение 10 мин при перемешивании. По окончании инкубации их помещают в лед и после быстрого охлаждения их содержимое осторожно наслаивают на поверхность холодного 0,88 М раствора сахарозы. Предварительно охлажденную до 0°С сахарозу разливают по 5—7 мл в четыре центрифужных стаканчика от супернасадки центрифуги ЦЛР, стоящие во льду. Пробы центрифугируют при максимальной скорости вращения 10 мин. Верхний слой отсасывают пипеткой и отбрасывают, раствор сахарозы сливают и поверхность осадков осторожно споласкивают 0,3 М сахарозой, охлажденной до 0°С. В стаканчик добавляют по 1,5 мл 1 н. хлорной кислоты, осадки хорошо размешивают стеклянной палочкой и центрифугируют при 5000 в течение 15 мин. Супернатанты собирают в пробирки и экстракцию повторяют вновь в тех же условиях. Объединенные супернатанты нейтрализуют крепким раствором МН40Н. К нейтрализованным растворам добавляют по 2 мл метилового спирта, 2,5 мл 1 М аммиачного буфера, 0,2 мл раствора цианистого калия и 0,4 мл раствора эриохро-ма черного Т в метиловом спирте. Объем доводят до 10 мл аммиачным буфером. Определяют количество Mg + в пробах, измеряя оптическую плотность при 520 нм против раствора, не содержащего Mg +. Калибровочную кривую строят одновременно с обработкой опытных проб, используя в качестве стандарта титрованный раствор Mg l2. Область концентраций, в которой сохраняется линейная зависимость между количеством Mg + и оптической плотностью, — О—0,3 мкмоль Mg2+ на пробу. [c.457]


Смотреть страницы где упоминается термин Белки оси вращения: [c.67]    [c.19]    [c.107]    [c.54]    [c.324]    [c.134]    [c.285]    [c.269]    [c.108]    [c.119]    [c.302]    [c.139]    [c.15]    [c.689]    [c.710]    [c.430]    [c.243]    [c.513]    [c.450]   
Свободные иминоксильные радикалы (1970) -- [ c.174 ]




ПОИСК







© 2025 chem21.info Реклама на сайте