Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки содержание в ядре

    Обычные пределы колебаний содержания других обязательных элементов белка составляют для углерода 51—55%, кислорода—21—23%, водорода —6—7%, серы —0,3—2,5%, хота имеются отдельные исключения (например, у некоторых гисто-нов — белков клеточного ядра). В целом же элементарный состав, взятый независимо от других характеристических особенностей, не позволяет надежно отличить белок от ряда других азотсодержащих соединений биологического происхождения. [c.8]


    Прямое экстрагирование масла из ядер с высоким содержанием липидов. Возможность получать хорошо вылущенные ядра семян с высоким содержанием липидов (рапс, подсолнечник, арахис и др.) появилась сравнительно недавно. Технология извлечения масла из этой ядровой массы отжимом находится в самом начале своего развития. Вследствие такого недостаточного знания о явлениях и потребности в богатом белками и не-денатурированном сырье была попытка распространить технику прямого экстрагирования липидов на обрушенные семена других культур, помимо сои. [c.385]

    В области видимого спектра растворы важнейших аминокислот практически не поглощают, а в УФ-области поглощают растворы только тех аминокислот, которые содержат в молекуле бензоидные фрагменты или гетероциклические ядра ароматического характера - фенилаланин, тирозин, гистидин, триптофан. Относительно интенсивное поглощение при X = 260-290 нм характерно для тирозина и триптофана. Высокая мольная экстинк-ция тирозина при 280 нм используется для определения содержания белка в растворах. [c.455]

    Гистоны, также обладающие основным характером, имеют более сложный состав и больший молекулярный вес, чем протамины, приближаясь тем самым к обычным белкам. И у этих белков основность обусловлена высоким содержанием аргинина. Они растворимы в воде и осаждаются аммиаком при нагревании они свертываются только в присутствии электролитов и то частично. Гистоны гидролизуются пепсином. Они находятся в ядрах клеток, связанные, как и протамины, с нуклеиновыми кислотами в виде нуклеопротеидов (они получаются легче всего из богатых ядрами органов, например щитовидной железы), [c.446]

    Оба эти показателя характеризуют прочность связи ДНК с белками и упаковку ее в хроматине. Определение содержания ДНК в ядре необходимо проводить в препаратах с максимальным проявлением реакции Фельгена. Фотометрируют реакцик> при 546 ммк. [c.146]

    Для оценки состояния ДНК в клеточном ядре важно знать состав белковых компонентов хроматина. При этом особый интерес представляют содержание основных белков, соотношение [c.189]

    Мысль о том, что какой-то вид РНК несет генетическую информацию для биосинтеза белка, была первоначально высказана на основании того, что у эукариот почти вся ДНК сосредоточена в ядре, в то время как синтез белка протекает главным образом в цитоплазме на рибосомах. Следовательно, какая-то макромолекула, отличная от ДНК, должна переносить генетическую информацию от ядра к рибосомам. Логическим кандидатом на эту роль была РНК, поскольку ее обнаружили и в ядре, и в цитоплазме. Было также отмечено, что начало синтеза белка в клетке сопровождается увеличением содержания РНК в цитоплазме и увеличением скорости ее обновления. Эти и другие наблюдения привели Френсиса Крика к предположению (ставшему частью центральной догмы молекулярной генетики), что РНК вьшолняет функцию переноса генетической информации от ДНК к рибосомам, где происходит биосинтез белка. Позже, в 1961 г., Франсуа Жакоб и Жак Моно предложили название матричная РНК для той части клеточной РНК, которая переносит генетическую информацию от ДНК к рибосомам, т. е. к месту, где эти молекулы-переносчики служат матрицами для биосинтеза полипептидных цепей с определенной последовательностью аминокислот. [c.910]


    Что касается природы белков, связанных с нуклеиновыми кислотами, то на этот вопрос исчерпывающего ответа мы дать пока не можем. Однако известно, что в ядрах и рибосомах нуклеиновые кислоты связаны с белками щелочного характера, содержащими много основных аминокислот (белки типа ги-стонов, протаминов или глобулинов с высоким содержанием основных аминокислот). Кроме щелочных белков, в образовании связей с нуклеиновыми кислотами могут принимать участие и другие белки. [c.237]

    Ценность семян масличных культур определяется в основном содержанием жиров. В них важное пищевое и кормовое значение имеют также белки. Средний химический состав семян масличных культур представлен в таблице 23. Семена масличных культур содерл ат много жиров и белков. На долю этих веществ приходится 40—60% веса семян или 80% веса ядра. Высокое содержание белков, которых в семенах масличных обычно в 172—2 раза больше, чем в злаках, значительно повышает ценность этих культур. [c.402]

    Количество жиров в семенах особенно резко изменяется в зависимости от уровня азотного и фосфорного питания в период цветения и созревания семян. Мы указывали, что содержание белка в семенах зерновых культур увеличивается при повышенном азотном питании в период созревания семян. Аналогичные процессы идут и у масличных культур. Однако при усиленном синтезе белков уменьшается количество углеводов, из которых образуются жиры, поэтому снижение содержания масла в семенах в этих условиях особенно заметно. В вегетационных опытах, проведенных на кафедре агрохимии Сельскохозяйственной академии имени К- А. Тимирязева, при увеличении дозы азота в период цветения с 25 по 150 м-экв. на сосуд содержание жиров в семенах подсолнечника снижалось с 54 до 39%. При умеренном азотном питании фосфорные удобрения способствуют синтезу углеводов в большей степени, чем синтезу белков при повышении фосфорного питания, особенно в период цветения и созревания семян, количество жиров в семенах увеличивается. Имеются также данные о том, что усиление питания растений магнием при повышенном количестве фосфора еще больше способствует образованию жира в семенах. Однако не следует полагать, что азотные удобрения не нужны при выращивании масличных культур. При недостатке азота наблюдается слабый рост растений и недостаточное развитие ассимиляционной поверхности, в результате чего в период созревания в растениях образуется мало углеводов, урожай бывает пониженный, с малым количеством жира в семенах. В этом отношении показательны вегетационные опыты с подсолнечником, проведенные в Воронежском сельскохозяйственном институте. Без внесения азота вес сухой массы листьев одного растения составлял 6,8 г, а содержание жира в ядре во время уборки 55,1%. При внесении 0,5 г азота на сосуд вес сухих листьев был 13,8 г, а количество жиров в ядре увеличилось до 61,8%. Однако при более высоких дозах азота масличность семян снижалась. Поэтому на почвах с малым количеством подвижного азота надо вносить умеренные дозы азотных удобрений. [c.412]

    Спектроскопия ядерного гамма-резонанса (мессбауэровская спектроскопия) позволяет обнаружить слабые возмущения энергетических уровней ядер железа окружающими электронами. Этот эффект представляет собой явление испускания или поглощения мягкого у-излучения без отдачи ядер. Интересующий нас ядерный переход с энергией 14,36 кэВ -происходит между состояниями / = % и / = 1/2 мессбауэровского изотопа Те, где I — ядер-ное спиновое квантовое число. Для регистрации спектров Месс-бауэра обычно требуется 1—2 мкмоля Те, содержание которого в природном железе составляет 2,19%. Для белка с молекулярным весом 50 ООО, который связывает 1 атом железа на молекулу, и в отсутствие изотопного обогащения это соответствует весу образца 2,5 г. Рассматриваемые здесь многоядерные белки содержат гораздо больше железа и вполне подходят для исследования методом ядерной гамма-резонансной спектроскопии. Широко исследуются четыре возможных типа взаимодействия между ядром Те и его электронным окружением изомерный сдвиг, квадрупольное расщепление, ядерные магнитные сверхтонкие взаимодействия, ядерные зеемановские взаимодействия. Применение мессбауэровской спектроскопии для изучения железосодержащих белков, относящихся к гемовым и железосерным, обсуждается в опубликованном недавно обзоре [78]. [c.347]

    Белки. Среднее содержание белковых веществ в семенах отдельных масличных культ ф изменяется от 16 до 28%. ОднакО колебания в количестве белка в семенах могут быть значительно ббльщими. В целых семенах подсолнечника белок может составлять 9—23%, в ядрах 21—30%, в семенах льна 15—34%, в семенах горчицы 19—42% и т. д. Отдельные белковые фракции семян масличных культур в настоящее время хорошо изучены. Исследования показали, что большая часть белковых веществ масличных приходится на долю глобулинов. По данным А. М. Голдовского, при общем содержании белков в ядре подсолнечника 22,9% на долю отдельных белковых фракций приходится следующее количество белков. [c.405]


    При местном внесении 20 кг Р2О5 (1 ц суперфосфата) на гектар количество жиров увеличилось более чем на 4%, а общий сбор жира с гектара — на 1,6 ц. Азотные удобрения при местном внесении снижали урожай и содержание жиров в семенах, а под действием калия количество жиров в семенах значительно увеличивалось. Мы отмечали, что содержание жиров и белка в семенах масличных культур изменяется в обратной зависимости. Эта закономерность сохраняется и при различных условиях выращивания растений. Кроме того, суммарное содержание жиров и белка в семенах всех культур остается величиной постоянной и практически не изменяется в зависимости от условий выращивания растений. Это подтверждено многими опытами. Например, в длительных опытах с подсолнечником, проведенных во Всесоюзном селекционно-генетическом институте на южном черноземе, соотношение между количеством жиров и белка в ядрах семян было следующим (табл. 28). [c.413]

    Для контроля степени очистки и для оценки качества конечного препарата необходимы прежде всего надежные методы количественного определения белка. Широкое распространение получило определение белка по количеству азота в осадке, образующемся при добавлении трихлоруксусной кислоты (ТХУ). В 10%-ной ТХУ происходит полное осаждение подавляющего большинства белков. Следует лишь иметь в виду, что при очень низких концентрациях белка (например, менее 1 мг1мл) не всегда удается количественно определить и без потерь промыть осадок. Азот белка можно определять либо непосредственно в осадке, либо по разности содержания азота в растворе до и после осаждения белка с помощью ТХУ. Последний, косвенный , вариант пользуется большей популярностью, так как позволяет избежать трудностей, связанных с собиранием и промыванием малых по объему осадков. Однако он малопригоден при наличии в растворе больших концентраций азотсодержащих веществ, не осаждаемых ТХУ. Само определение азота ведется по классическому методу Къельдаля или с помощью его модификаций (микроварианты, метод Конвея и др.). Метод сводится к кипячению белка с концентрированной серной кислотой и сульфатом калия в присутствии катализаторов (сульфат меди, соли селена или ртути) до полного перехода азота в сульфат аммония с последующим превращением его в аммиак (добавлением щелочи), отгонкой и количественным определением последнего (титрометрически или с помощью цветных реакций). Подробное описание метода можно найти во многих практических руководствах по биологической химии. Здесь заметим лишь, что необходима осторожность в расчете количества белка по количеству обнаруженного азота. Применяемый для этого пересчетный коэффициент 6,25 является средней величиной. Как уже указывалось выше, для ряда белков наблюдаются существенные отклонения от среднего уровня содержания азота. Особенно велики они у основных белков клеточного ядра — расхождения в этом случае могут быть более чем двукратными. Как правило, однако, отклонения не превышают 5—10%. [c.33]

    Первые три из указанных белков относятся к группе протаминов и отличаются весьма высоким содержанием аргинина. В целом в белках содержание аргинина сильно колебалось. В окончательном варианте гипотеза о протаминовых ядрах могла быть сформулирована следующим образом протамины образуются в результате присоединения незначительного числа различных, но строго определенных аминокислот к комплексному соединению аргинина неспецифической природы, общему или весьма близкому для всех видов белков. Усложнение молекулы белка происходит в результате присоединения большого числа самых разнообразных аминокислот, а наиболее сложные белки образуются в результате присоединения к протаминовому ядру не только различных аминокислот, но и некоторых специфических крупных структурных единиц. [c.55]

    Высокую активность ззз гистоауторадиографически установили р1гке1 и соавт. (1963) в ЖКТ, легких, надпочечниках и коже крыс в период от 5 до 30 мин после внутрибрюшинного введения меченого цистамина в дозе 100 мг/кг. Моп(1оу1 и соавт. (1962) определяли 8-цистамин в растворимых белках и субклеточных структурах большинства органов крыс после внутривенного введения протектора. Высказано предположение, что степень защиты отдельных тканей связана с концентрацией цистамина в их субклеточных структурах. Уже через 5 мин после внутривенного введения цистамина и АЭТ Владимиров (1967) обнаруживал их присутствие в митохондриях клеток селезенки и печени мышей. Тотальное гамма-облучение мышей (6 Гр) не влияло на распределение цистамина в субклеточных структурах. Через 30 мин после внутрибрюшинного введения цистамина мышам и крысам его внутриклеточное распределение у этих видов животных существенно не отличалось. Увеличение дозы цистамина у мышей приводит к повышению его содержания во всех субклеточных фракциях селезенки и печени, особенно в ядрах клеток [Владимиров, 1968]. Довольно быстро, в течение 5 мин, [c.45]

    ГИСТ0НЫ (от греч. Mstos-ткань), группа сильноосновных простых белков (р/ 9,5-12,0), содержащихся в ядрах клеток животных и растений. Различают пять осн. групп Г., каждую из к-рых составляют белки с близкими св-вами, выделенные из разных организмов. Группы Н2А, Н2В, НЗ и Н4 имеют мол, м. от 1 до 14 тыс. (т. наз. низко молекулярные Г.), группа Н1 -ок. 22 тыс. Для первичной структуры Г. характерно высокое содержание остатков лизина и аргинина, а также отсутствие триптофана. Г. одной и той же группы, полученные из разл. источников, имеют очень сходную первичную структуру. Так, Г. из тимуса быка и проростков гороха, относящиеся к группе Н4, отличаются расположением только двух аминокислотных остатков. Во вторичной структуре преобладают а-спирали Р-стоуктура появляется только при необратимой агрегации Г. Третичную структуру образует глобула (80-100 аминокислотных остатков), содержащая гл. обр. гидрофобные и кислые аминокислотные остатки N-концевая (10-25 остатков), а в ряде случаев и С-концевая часть (5-10 остатков) не структурированы, подвижны и обогащены аргинином и особенно лизином. Группа Н1 отличается от др. групп значительно более длинным (ок. 100 остатков) подвижным N-концом. [c.574]

    Биосинтез белков в клетках листьев зависит от экспрессии генетической информации трех различных геномов ядра, хлоропластов и митохондрий. Эта генетическая информация проявляется через три генетические системы, включающие ДНК, ДНК-полимеразу, РНК-полимеразу и аппарат белкового синтеза (рибосомы, транспортные РНК, ферментный набор...). Ядерные гены подчиняются закону двуродительского наследования, тогда как гены органелл имеют исключительно материнское наследование. Именно эти носители генетической информации с их собственными законами передачи определяют структуру и свойства белков листьев, а также содержание в них белков, липидов, волокон и т. п. Более подробные сведения о передаче и проявлении генетической информации в хлоропластах можно получить из литературных источников [25, 27, 1П , как и по тем же вопросам применительно к митохондриям [67]. [c.237]

    Сапонины — это гликозилированные стероиды или тритерпе-ны. Стерическая громоздкость их алифатического ядра аналогична таковой стеринов. Они могут препятствовать ассимиляции холестерина и, таким образом, оказывать угнетающее действие на рост молодых животных (см., например, [43]). Их содержание в препаратах зеленых белков зависит от содержания сапонинов в растении и от условий выделения белков [69] (табл. 6В.13). [c.252]

    Ядра семян хлопчатника в большинстве случаев содержат железки госсипола (это железистые сорта существуют также безжелезистые разновидности с пониженным содержанием госсипола). Они имеют размеры в пределах 50—400 мкм, разрушаются под действием полярного растворителя, но остаются ин-тактными в присутствии неполярного растворителя, например гексана. Это обстоятельство стимулировало возобновление давних исследований [174]. Обезвоженные ядра семян хлопчатника измельчают в гексане, чтобы отделить клетки, окружающие железки. После разбавления полученную суспензию разделяют в гидроциклоне. Нижняя фракция гидроциклона содержит железки госсипола. Твердые частицы этой фракции отделяются от мисцеллы фильтрованием и представляют собой шрот кормового назначения. Верхнюю фракцию фильтруют, что позволяет собрать мелкие частицы в виде суспензии в растворителе и таким образом получить муку (. высоким содержанием белков, предназначенную для питания человека. [c.388]

    Была предложена технология выработки жирового концентрата из ядра соевых семян [78], которую впоследствии усовер-щенствовали [40] для приготовления продукта с пониженным содержанием фитатов, которые могут служить экономически выгодным заменителем молока. С этой целью муку из вылущенных ядер соевых семян смещивают на холоде с подкисленным раствором хлористого кальция. Затем полученную суспензию нагревают до закипания для разрушения липоксигеназы, а после охлаждения отделяют при центрифугировании. Полученную массу трижды промывают и отжимают центрифугированием при 1500 . При концентрации хлористого кальция 2,5М и при pH 5—5,5 выход (степень рекуперации) превосходит 92 % по белку и 99 % по липидам, а выход сухого вещества составляет около 75%. Получаемый влажный жировой концентрат в расчете на сухое вещество содержит в среднем 32 % липидов, 56,2 % белков и фитинового фосфора 400 частей на 1 млн. по сравнению с содержанием этих компонентов в муке соответственно 25,4 %, 47,5 % и 4000 частей на 1 млн. [c.398]

    В ядрах клеток дрожжей, насекомых, червей содержится в 5—10 раз, а у млекопитающих в несколько сотен раз больше ДНК, чем в клетке Е. соИ. Содержание ДНК в расчете на гаплоидный геном в целом увеличивается с возрастанием сложности организма. У амфибий и растений оно сильно варьирует от вида к виду и может значительно (в 10 раз и более) превышать количество ДНК в клетках млекопитающих. Однако было бы неверным считать, что прогрессивная эволюция, как правило, сопровождается увеличением содержания ДНК в расчете на гаплоидный геном. Известны также случаи, когда достаточно близкие виды содержат количество ДНК, различающееся в несколько раз. Это явление описано как парадокс содержания ДНК (англ. С value paradox), который до сих пор не получил достаточно определенного объяснения. Таким образом, размеры геномов не коррелируют с тем количеством ДНК, которое предназначено для выполнения функции кодирования белков. [c.185]

    Гистоны также являются белками основного характера. В их состав входят лизин и аргинин, содержание которых, однако, не превышает 20—30%. Молекулярная масса гистонов намного больше нижнего предела молекулярной массы белков. Эти белки сосредоточены в основном в ядрах клеток в составе дезоксирибонуклеопротеинов и играют важную роль в регуляции экспрессии генов (см. главы 2 и 3). [c.73]

    Под влиянием нистатина и амфотерицина В в изолированных ядрах почек собак наблюдаются (Асиновская, 1976 Аси-новская и др., 1976 Асиновская, Оксман, 1976) изменения в составе белков ядерных мембран, выражающиеся в элиминации ряда фракций с низкой электрофоретической подвижностью и уменьшение их количественного содержания. Авторы отмечают более выраженный эффект амфотерицина В по> сравнению с эффектом нистатина и объясняют изменения фракционного состава белков ядерных мембран усилением- [c.188]

    Увеличение содержания общего белка и альбуминов в сыворотке крови. Определенный гипогликемический эффект. В печени крыс усиливался анизонуклеоз, увеличилось количество ядрышек в ядре, количество апоптозньк клеток (дозозависимый характер). [c.515]

    Все типы существующих клеток делят на два основных класса прокариотические и эукариотические. Наиболее замечательная особенность последних заключается в наличии специальной внутриьслеточной структуры — ядра, которое содержит преобладающую часть ДНК и, следовательно, наследственную информацию. Ядро отдедено от внутреннего содержания клетки — цитоплазмы — ядерной мембраной. Кроме ДНК ядро содержит ряд белков, в первую очередь тех, которые участвуют в репликации и транскрипции, а также необходимы для деления клеток. В ядре эукариотических клеток ДНК существует в форме специальных органелл — хромосом. Эти органеллы можно увидеть в световом микроскопе на определенной стадии деления клетки. [c.23]

    Для повышения скорости диффузии десорбируемой воды желательно увеличивать поверхность анализируемой пробы за счет уменьшения объема частиц. Однако в процессе измельчения могут измениться механические и термические свойства воды. Например, при измельчении каменного угля [189, 25] и других природных продуктов происходит заметное уменьшение содержания исходной влаги. Даже в ядрах земляного ореха истинное содержание воды может быть определено за приемлемое время только с помощью двухступенчатого высушивания [180] (см. разд. 3.1.3.1, табл. 3-8). Например, в подвергнутых лиофильной сушке гидрозолях, коллоидах и гидрогелях в основном содержится свободная и связанная вода, причем полностью воду можно удалить только при высушивании гидрозолей в термостате в течение нескольких часов при ПО—150°С [157]. Силикагель, например, прогретый в вакуууме в течение нескольких часов при 300 °С, еще содержит не менее 4,8% воды [263] это остаточное количество воды удаляется при температуре выше критической температуры воды, причем не происходит заметного разрушения структуры силикагеля и изменения его адсорбционных свойств. В белках остается 2—7% воды даже носле высушивания в обычном термостате до постоянной массы [298]. В белке эдестине, содержащем 12,3% воды, после [c.76]

    ДНК рассматривают как главный и, возможно, единственный генетический материал (исключение составляют только некоторые вирусы, в частности вирусы растений). По-видимому, ДНК является всеобщей составной частью хромосом. За немногими исключениями ее содержание в ядрах отдельных видов постоянно для данной степени плоидности. В растениях большая часть ДНК найдена в хромосомах в тесной связи с белками. Типичные белки ядер растений — гистоны — представляют собой низкомолекулярные основные белки. В самых различных растительных тканях повышение содержания гистонов совпадает с синтезом ДНК. [c.472]

    Из других тканей ядра иногда выделяют следующим образом хорошо размельченную ткань обрабатывают слабой кислотой, например лимонной, затем подвергают дифференциальному центрифугированию и осадок промывают очень разбавленной кис.по-той (фото 2). Напомним, что Мишер изолировал ядра из клеток гноя, пользуясь для этого разбавленной уксусной кислотой. Существует еще и метод с использованием лимонно кислоты, развитый и улучшенный Даунсом [142, 143], а также Мирским и Поллистером ]144], в чьих работах и можно найти его подробное описание. Изолировав при помощи лимонной кислоты ядра при различных значениях pH, Даунс [142] установил, что ядра, полученные при pH значительно ниже 3,0, несомненно, теряют большую часть содержащегося в них гистона. Поэтому при анализе всей такой ядерной массы данные о содержании нуклеиновых кислот и липидов бывают завышенными. Ядра же, изолированные при pH 6,0—6,2, оказываются лишенными некоторого количества нуклеиновой кислоты и, но-видимому, белков. В большинстве случаев для получения изолированных ядер, свободных от цитоплазматических остатков, применяют повторное промывание ядерной фракции разбавленным раствором хлористого натрия или лимонной кислоты. Не удивительно поэтому, что, как показали Мирский и его сотрудники [224], химическое определение белка всей массы изолированных таким путем ядер дает значительно более низкие величины, чем анализ ядер, выделенных в безводной среде. Впервые выделение ядер в безводной среде было осуществлено Беренсом [145]. Измельченную и лиофили-зированную ткань подвергали седиментации в колонках с градиентом плотности органических растворителей. В дальнейшем этот метод был модифицирован и улучшен [144—147]. Преимуще- [c.136]

    По мнению Поллистера [179], при использовании обычных методов выделения ядер происходит значительная потеря белка, поскольку содержание белка, определяемое количественными спектрофотометрическими методами, значительно выше, чем в изолированных ядрах [146]. Поллистер считает, что ядро клетки печени млекопитающих в состоянии интерфазы содержит 9% ДНК, 1% РНК, 11% гистона, 14% остаточного белка (стр. 143) и 65% других негистонных белков. [c.140]

    Ядра фотометрируют или в ультрафиолетовом, или в видимом свете в последнем случае используют предварительную покраску ядер либо метиловым зеленым, либо по Фёльгену [72—75]. Эти методы имеют ряд серьезных ограничений [76] и всегда дают величины относительные, а не абсолютные. Однако они, бесспорно, пригодны для получения сравнительных данных. В отдельных случаях их удается использовать для определения абсолютного количества ДНК в ядрах [73, 74]. Результаты фотометрических анализов свидетельствуют о том, что количество ядерной ДНК варьирует в очень узких пределах, хотя величина ядер и содержание белка в них могут очень сильно различаться [76]. [c.307]

    При гепато-лентикулярной дегенерации (болезнь Вильсона) наблюдается генерализованная аминоацидурия, связанная с поражением печени [87—89]. Однако аминоацидурия может появиться до развития признаков заболевания печени существенное повышение уровня аминокислот в крови обычно отсутствует. Имеются также указания на экскрецию пептидов с мочой при этом заболевании [89]. Особый интерес представляют данные о том, что у таких больных нарушен обмен меди [90—95]. Наблюдается отложение меди в чечевицеобразном ядре мозга, печени и роговице с мочой выделяются необычно большие количества меди в виде клешневидных комплексов с пептидами дикарбоновых аминокислот. В нормальной сыворотке крови медь связана с одним из а-глобулинов, церулоплазмином. Концентрация этого белка снижена при болезни Вильсона, однако общее количество меди в сыворотке крови соответствует норме или превышает ее [93, 95]. Между экскрецией аминокислот и экскрецией меди имеется параллелизм — например, повышенное выделение аминокислот, вызванное пищевым рационом с высоким содержанием белка, сопровождается повышенной экскрецией [c.469]


Смотреть страницы где упоминается термин Белки содержание в ядре: [c.309]    [c.55]    [c.29]    [c.329]    [c.223]    [c.84]    [c.389]    [c.191]    [c.33]    [c.196]    [c.390]    [c.87]    [c.100]    [c.139]    [c.573]    [c.509]    [c.185]    [c.110]   
Биохимия нуклеиновых кислот (1968) -- [ c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Белки содержание



© 2025 chem21.info Реклама на сайте