Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также как эффектор фермента

    Помимо активного центра, в молекуле фермента может присутствовать также аллостерический центр (или центры) (от греч. alios—другой, иной и steros-пространственный, структурный), представляющий собой участок молекулы фермента, с которым связываются определенные, обычно низкомолекулярные, вещества (эффекторы, или модификаторы), молекулы которых отличаются по структуре от субстратов. Присоединение эффектора к аллостерическому центру изменяет третичную и часто также четвертичную структуру молекулы фермента и соответственно конфигурацию активного центра, вызывая снижение или повышение энзиматической активности. Ферменты, активность каталитического центра которых [c.125]


    Количество определенного фермента в клетке может регулироваться на нескольких уровнях на этапе транскрипции, трансляции, а также в процессе сборки и разрушения ферментного белка (см. рис. 28). В иерархии регуляторных воздействий наиболее сложный механизм, контролирующий количество ферментов в клетке, связан с процессом транскрипции. Специфические химические сигналы могут инициировать или блокировать транскрипцию определенного участка ДНК в иРНК. В случае индукции образованная иРНК участвует в определенной последовательности реакций, называемой трансляцией и заканчивающейся синтезом полипеп-тидных цепей. Регуляция белкового синтеза на уровне трансляции может осуществляться на любом из ее этапов, например на этапе инициации, элонгации и др. Не исключена также возможность изменения времени жизни иРНК под воздействием разных эффекторов, в том числе конечных продуктов метаболических путей. Хотя механизмы регуляции синтеза белка на уровне трансляции еще точно не установлены, ясно, что на этом этапе имеются широкие возможности для регуляции скорости синтеза различных белков. [c.117]

    Аллостерические ферменты имеют каталитический и регуляторный (аллостерический) центры, пространственно разобщенные, но функционально тесно взаимосвязанные. Каталитическая активность фермента меняется в результате связывания с его регуляторным центром определенных метаболитов, называемых эффекторами. Кроме конечных продуктов данного пути, эффекторами могут быть субстраты ферментов, а также некоторые конеч- [c.115]

    В более общем случае лигандами служат ингибиторы, а также эффекторы, не затрагивающие при связывании активный центр фермента. Весьма специфическим ингибитором иногда может служить иммобилизованный субстрат. Выбор того или иного ингибитора полностью зависит от соотношения скоростей его ассоциации и диссоциации с ферментом, что определяет условия проведения адсорбции и десорбции. [c.189]

    В качестве аффинных лигандов для ферментов (а они, пожалуй, представляют наибольший практический интерес) могут выступать субстраты соответствующих ферментативных реакций и их аналоги, продукты этих реакций, ингибиторы и коферменты, аллостерические эффекторы, ионы металлов, а также специфические для каждого из ферментов антитела. [c.361]

    В качестве аффинных лигандов можно использовать любые соединения, прочно, специфично и обратимо связывающиеся с выделяемым веществом. Химическое строение аффинных лигандов может быть самым различным. Поскольку в настоящее время метод аффинной хроматографии применяется главным образом для выделения ферментов и их ингибиторов [89J, мы рассмотрим примеры, взятые из этой области. Как уже упоминалось, при выделении фермента аффинными лигандам1И могут служить его ингибитор, аналогичный субстрату, а также эффектор, кофактор и в отдельных случаях даже субстрат. Это справедливо и для фермента, требующего длл реакции два субстрата, но способного достаточно сильно связываться только с одним из них. Субстрат также можно использовать для адсорбции фермента в таких условиях, когда фермент связывается, но сам не способен катализировать реакцию (например, в отсутствие ионов металлов, необходимых для реакции), а также когда константа Михаэлиса зависит от pH или температуры. Аффинный адсорбент для выделения белков обычно трудно получить из аффинного лиганда, если константа диссоциации его комплекса с белком превышает (0,5—1,0)-Ю [16]. Однако Стире и сотр. [84] показали, что очень эффективный адсорбент для р-галактозидазы можно получить даже из такого относительно слабого ингибитора, как н-аминофенил-р-о-тиогалактопирано-зид (/i , 5-10 ). Этого удается достигнуть, повышая концентрацию нерастворимого аффинного лиганда и увеличивая расстояние между аффинным лигандом и матрицей носителя, что приводит к максимальной доступности аффинного лиганда, для белка в растворе.  [c.9]


    Любой фактор, влияющий на скорость реакции, участвующей в процессах биосинтеза или распада любого компонента клетки, должен оказывать прямое нли опосредованное воздействие на общую картину метаболизма. Таким образом, можно уверенно утверждать, что любая химическая реакция, которая вносит хотя бы незначительный вклад в метаболизм, может играть роль регулятора. Поскольку молекулы могут взаимодействовать друг с другом самыми разнообразными путями, число реакций, оказывающих регуляторное влияние на метаболизм, очень велико. Маленькие молекулы действуют на макромолекулы в качестве эффекторов, изменяющих конформацию и реакционную способность биополимеров. Ферменты взаимодействуют друг с другом, следствием чего может явиться их расщепление, окисление, а также образование агрегатов с поперечными связями. Трансферазы присоединяют фосфатную, гликозильную, метильную и другие группы к разным ак- [c.502]

    Подобные типы ингибирования конечным продуктом и активирования первым продуктом свойственны аллостерическим (регуляторным) ферментам, когда эффектор, модулятор, структурно отличаясь от субстрата, связывается в особом (аллостерическом) центре молекулы фермента, пространственно удаленном от активного центра. Следует, однако, иметь в виду, что модуляторами аллостерических ферментов могут быть как активаторы, так и ингибиторы. Часто оказывается, что сам субстрат оказывает активирующий эффект. Ферменты, для которых и субстрат, и модулятор представлены идентичными структурами, носят название гомотропных в отличие от гетеротропных ферментов, для которых модулятор имеет отличную от субстрата структуру. Взаимопревращение активного и неактивного аллостерических ферментов в упрощенной форме, а также конформационные изменения, наблюдаемые при присоединении субстрата и эффекторов, представлены на рис. 4.25. Присоединение отрицательного эффектора к аллостерическому центру вызывает значительные изменения конфигурации активного центра молекулы фермента, в результате чего фермент теряет сродство к своему субстрату (образование неактивного комплекса). [c.156]

    Для любого специалиста в этой области — работает ли он в основном с ферментами или с рецепторами — трудно отличить одну модель от другой. В случае нейромедиаторов интерпретация экспериментальных данных даже более затруднена, так как антагонист всегда ингибирует связывание агониста. Он может также ингибировать одну из стадий процесса, протекающую после связывания, например транспорт ионов через открытый канал, закрыв его как пробка в трубке, или сопряжение между связывающим центром медиатора и ионным каналом, т. е. открывание канала. Первый механизм, по-видимому, лежит в основе действия многих местных анестетиков, тогда как второй относится к некоторым эффекторам адренэргических рецепторов (см. ниже). [c.248]

    Фосфофруктокиназа — один из ключевых ферментов, регулирующих процесс гликолиза в целом. Активной формой фермента является тетрамер, состоящий из 4 субъединиц с молекулярной массой 83 000 Да каждая. В зависимости от условий тетрамеры могут превращаться в высокополимерные агрегаты или диссоциировать на неактивные димеры и мономеры. Фосфофруктокиназа является аллостерическим ферментом. К числу аллостерических эффекторов относятся субстраты (АТФ, фруктозо-6-фосфат) и продукты реакции (АДФ, фруктозо-1,6-дифосфат), а также такие метаболиты, как АМФ, цАМФ, цитрат, фруктозо-2,6-дифосфат, фосфокреатин, 3-фосфоглицерат, 2-фосфо-глицерат, фосфоенолпируват, ионы МН4+, К+, неорганический фосфат и др. [c.238]

    Аффинными лигандами для выделения ферментов могут быть конкурентные ингибиторы, субстраты и их аналоги, продукты, кофакторы и аллостерические эффекторы, а также антитела или соединения, которые содержат ионы металлов или SH-группы, (см. табл. 11.1). [c.108]

    Кроме каталитической активности не- которые ферменты обладают также и регуляторной активностью. Они служат как бы дирижерами , задающими темп метаболическим процессам. Некоторые регуляторные ферменты, называемые аллостерическими, регулируют скорость реакций путем обратимого нековалентного присоединения специфических модуляторов, или эффекторов, к регуляторному, или аллостерическому, центру фермента. Такими модуляторами могут быть либо сами субстраты, либо какие-то промежуточные продукты метаболизма. К другому классу относятся регуляторные ферменты, способные изменять свою активность путем ковалентной модификации содержащихся в них специфических функциональных групп, необходимых для активности фермента. Некоторые ферменты существуют в нескольких формах, называемых изоферментами, которые различаются по своим кинетическим характеристикам. Многие генетические заболевания человека обусловлены нарушением в результате мутаций функционирования одного или нескольких ферментов. [c.268]

    Примером регулирующего влияния субклеточных структур в клетке является гликолитическая система, основные компоненты которой размещены в различных клеточных пространствах. Коферменты и эффекторы находятся в субклеточных структурах, а ферменты — в цитоплазме. Обособленная локализация коферментов и апоферментов гликолиза в клетке дает предпосылки для тончайшей функциональной согласованности. Действие цикла обеспечивается механизмами, вызывающими перемещение коферментов гликолиза из митохондрий и ядра в гиалоплазму — гликолитическое пространство клетки. Одновременно через наружную плазматическую мембрану внутрь клетки поступают субстраты гликолиза и окисления, а также гормоны, управляющие активностью некоторых ферментов. Метаболиты, циркулирующие между митохондриями и гликолитическим пространством клетки, обеспечивают согласованную деятельность дыхательного и гликолитического фосфорилирования. [c.439]


    В скелетной мускулатуре фосфорилаза находится в двух формах Ь и а. Активность фосфорилазы Ь можно определить только в присутствии АМФ фосфорилаза а активна в отсутствие АМФ. Для обеих форм фермента АМФ является положительным аллостерическим эффектором. Молекула фосфорилазы Ь представляет собой димер, фосфорилазы а — тетрамер. Молекулярная масса субъединицы фермента равна 97 400 Да. Обе формы фермента могут находиться в состоянии равновесия между димерными и тетрамерпыми молекулами. На переход димеров в тетрамеры и обратно оказывают влияние компоненты ферментативной реакции, активаторы, ингибиторы, а также pH, ионная сила раствора, температура и др. Наиболее активными являются димеры обеих форм. Взаимопревращение фосфорилазы Ь и фосфорилазы а осуществляется ферментативно с помощью киназы фосфорила- [c.219]

    Очень важное свойство ферментов, окончательно установленное лишь сравнительно недавно, состоит в том, что их каталитическая активность подвержена регуляции. Эта регулируемость ферментной активности-одно из возможных объяснений гармоничного протекания всех метаболических продессов в клетке. По крайней мере некоторые ферменты (хотя бы по одному в каждом специфическом пути биосинтеза) подвергаются регуляторным воздействиям. Такие ферменты с помощью своего каталитического центра распознают субстрат, а с помощью другого центра-конечный продукт данной цепи реакций или иные низкомолекулярные вещества, определенным образом влияющие на их активность. У этих ферментов имеется второй связываюпщй участок-регуляторный центр. Связывание конечных продуктов или других метаболитов, называемых также эффекторами, влияет на каталитический центр, изменяя его активность. Конечные продукты действуют как отрицательные эффекторы. Положительные эффекторы повышают активность фермента. Таким образом, концентрации метаболитов, играющих роль эффекторов, определяют активность фермента, а тем самым [c.217]

    Цитрат-синтаза A inetoba ter Iwoffi также является ферментом с большой молекулярной массой (М = 240 ООО), но с неизвестной четвертичной структурой. Коферменты НАД-Н и АТФ действуют на этот фермент как аллостерические эффекторы, являясь соответственно включающим и выключающим сигналами. Роу и Вейцман [12] обнаружили, что в присутствии [c.218]

    Успехи в изучении етруктуры белков, н в частности лизоцима, в кристаллическом состоянии методами рентгеноструктурного анализа неизбежно повлекли за собой вопрос о том, насколько третичная структура фермента, и в особенности его активно1 о це1гтра, в кристалле близка к таковой в растворе. С одной стороны, можно было бы ожидать близкое сходство, если не идентичность, между структурами фермента в данных двух физических состояниях, поскольку по меньшей мере одна треть объема для большинства кристаллических белков занята водой [35], причем по данным ЯМР эта вода имеет жидкую структуру [36]. С другой стороны, определенные ограничения в подвижности фермента в кристалле, а также взаимные стерические влияния молекулы в кристаллической решетке (возможно, различные для разных полиморфных модификаций кристаллического фермента) могут, вообще говоря, сказываться на топографии активного центра, доступности его по отношению к молекулам субстрата и эффекторов и в целом на механизме ферментативного катализа. [c.155]

    Скорость превращения веществ в альтернативных метаболических путях, а значит и их предпочтительная направленность решающим образом зависят от особенностей функционирования ферментов субстратного цикла. Для таких ферментов характерна, как правило, реци-прокная регуляция с участием аллостерических эффекторов. В случае рассматриваемого субстратного цикла эффекторами являются АМФ — ингибитор фруктозо-1,6-дифосфатазы и активатор фосфофруктокиназы, а также цитрат-ион, являющийся активатором фруктозо-1,6-дифосфатазы и ингибитором фосфофруктокиназы. [c.354]

    Как правило, чувствительность определения ферментов, коферментов и эффекторов выше, чем чувствительность определения субстратов. Напр., возможно определение 0,001 пМ содержания АТФ, 0,1 нМ ионов Си , 2п , 0,1 мкМ тиомочевины и меркаптоэтанола. Однако ряд субстратов определяют также при очень малых содержаниях, особенно при хеми- или биолюминесцентной (см. ниже) регастрации аналит. сигнала 0,1 нМ Н2О2, 0,01 1 мочевины. Чувствительность опредмения мн. в-в Ф. м. а часто более высока, чем чувствительность определения этих, же компонентов любыми др. методами. [c.79]

    РИС. 6-15. Некоторые механизмы контроля метаболических реакций. На всех приведенных в книге рисунках модуляция активности фермента аллостерическими эффекторами, а также модуляция активности генов (транскрипция и трансляция) обозначается пунктирными линиями, отходящими от соответствующего метаболита. Линии заканчиваются знаком минус в случае ингибирования идерепрессиии знаком плюс в случае активации и депрессии. Кружки соответствуют прямому действию иа ферменты, а квадратики — репрессии или индукции синтеза ферментов. (Подобная схема представлена в работе [66а].) [c.64]

    Этот фермент катализирует превращение АТР в циклический АМР (циклический аденозинмонофосфат, или сАМР). Химические аспекты этой реакции обсуждаются в гл. 7, разд. Д, 8. Циклический АМР иногда называют вторым посредником ( se ond messenger ), поскольку он переносит сообщение (message), доставленное клетке первым посредником (гормоном). Циклический АМР быстро гидролизуется до АМР фосфодиэстеразой (стадия б на схеме см. также гл. 7, разд. Д, 8). Однако пока сАМР существует, он действует как аллостерический эффектор по отношению к протеинкиназам (стадия в на схеме), которые катализируют такие реакции модификации, как фосфорилирование гликогенсинтетазы (см. предыдущий раздел, а также гл. 11, разд. Е, 3). [c.70]

    Различают индуцибельные и репрессибельные опероны. Опероны, управляющие катаболизмом лактозы, галактозы и арабинозы, являются индуцибельными, т. е. максимальная частота их транскрипции достигается только тогда, когда в питательной среде присутствует внешний эффектор-лактоза, галактоза или арабиноза. Внешние эффекторы называют также внешними индукторами. Синтез ферментов индуцибельных оперонов включается посредством индукции. Наоборот, опероны, управляющие синтезом аргинина, гистидина или триптофана, являются ре-ирессибельными, т.е. максимальная частота транскрипции достигается только при отсутствии в клетке соответствующих низкомолекулярных эффекторов-аргинина, гистидина и триптофана (или в том случае, если их концентрация ниже критического порогового уровня). [c.482]

    Помимо своей функции кофермента, PLP выступает в роли специфического ингибитора и, возможно, аллостерического эффектора в отношении ряда ферментов различных классов (к ним относятся, например, альдолаза, глутаматдегидрогеназа и гексокиназа). PLP избирательно связывается также со многими другими бедками [45]. [c.222]

    В случае белков не существует разработанных общих принципов конструирования лигандов, специфичных к определенным областям белка. Поэтому конструирование реагентов для аффинной модификации белков чаще всего основывается на знании их специфических лигандов. Таким образом получают производные или аналоги соответствующих субстратов для аффинной модификации каталитических центров ферментов. Также используют аналоги эффекторов для модификации регуляторных центров ферментов. Аналогии прозводные гормонов и нейромедиторов, снабженные реакционноспособными группами, применяют для аффинного мечения соответствующих рецепторов, как, например, реакционноспособные производные и аналоги АТФ, представленные ниже, которые были использованы для аффинной модификации АТФ сиЕ1тазы (см. 8.5)  [c.329]

    Циклические нуклеотвды 3, 5 -аденозинмонофосфат (цАМФ) и 3, 5 -гуано-зинмонофосфат (цГМФ) являются внутриклеточными посредниками различных внеклеточных сигналов (гормонов, нейромедиаторов и т. д.). Они образуются под действием ферментов (циклаз), активность которых регулируется различными эффекторами, в том числе и гормонами, и осуществляют регуляцию внутриклеточного метаболизма. Существующие также циклические соединения 2, 3 -АМФ и 2, 3 -ГМФ являются промежуточными продуктами распада нуклеиновых кислот и не имеют самостоятельного функционального значения  [c.176]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Пунктирными линиями обозначены пути регуляции активности ферментов аллосте-рическими эффекторами, а также активности генов (транскрипция и трансляция). Знак минус указан в случае ингибирования и репрессии. Знак плюс - в случае активации и репрессии. Кружки соответствую прямому действию на ферменты, квадратики - репрессии или индукции синтеза ферментов. [c.461]

    ФЕРМЕНТАТИВНЫЙ АНАЛИЗ, количественный хим. анализ с использов. ферментов. Достоинства методов Ф. а. обусловлены избирательностью действия ферментов и их высокой активностью, позволяющей проводить анализ в мягких условиях. С помощью Ф. а. определяют в-ва, к-рые влияют яа скорость ферментативных р-ций субстраты (т. е. в-ва, претерпевающие хим. превращение), эффекторы (ингибиторы или активаторы р-ции) и сами ферменты (в первую очередь при анализе биол. жидкостей в клинич. лабораториях). Концентрацию в-ва устанавливают по абс. значению или по изменению скорости ферментативной индикаторной р-ции в присут. определяемого в-ва (кинетич. методы) концентрацию субстрата можно также рассчитать по кол-ву образовавшегося продукта после завершения р-ции или достижения равновесия (Стехиометрич. методы). Ферментативные индикаторные р-ции в зависимости от числа участвующих ферментов подразделяют на индивидуальные и сопряженные в последнем случае использ. последовательные р-ции, как правило, биферментные, когда продукт первой (вспомогательной) служит субстратом для второй (индикаторной), в к-рой образуется легко детектируемый продукт. Контроль за скоростью р-ции осуществляют электрохим., спектрофотометрич., люминесцентными и др. методами. [c.617]

    Поскольку нет никакого подобия между четырехуглеродной алкильной группой в цепи алкилагарозы и известными субстратом или эффектором фосфо-рнлазы Ь и поскольку в тех же условиях на этом типе колонок связываются также и другие белки, то такое взаимодействие с носителем, по-видимому, объясняется не только связыванием в каталитическом или регуляторном центрах. Тот факт, что некоторые ферменты сохраняют свою каталитическую активность даже после сорбции на гидрофобном сорбенте, также согласуется с этим предположением. [c.153]

    Ферменты, присоединенные к хорошо охарактеризованным носителям, могут служить простыми. моделями биологических систем, которые находятся в живых клетках. Действительно, синтетические полимерные матрицы точно не воспроизводят ситуацию in vivo, однако исследование таких моделей является важным этапом в рассмотрении ферментативного катализа как гетерогенного процесса [38]. Преж де всего они механически более устойчивы. Хорошо определенная химическая структура матриц иозволяет изучать влияние только одного параметра, такого, как влияние гидрофобности или влияние заряженных частиц на ферментативное действие. Можно также изучать влияние микроокружения матрицы, а также эффекты, возникающие благодаря различным локальным концентрациям субстрата, продукта, протонов эффекторов. и т. д. Эти различия в локальных концентрациях возникают в результате каталитической активности ферментов или влияния соседних молекул ферментов. Влияние микроокружения на активность и стабильность иммобилизованных ферментов детально обсуждается в разд. 12.2 и 12.3. Влияние, оказываемое матрицей, с трудом можно отличить от влияния микроокружения, создаваемого в результате собственно ферментативной реакции как самого фермента, так и других окружающих ферментов. [c.439]

    Мутанты с измененной чувствительностью к эффектору. Мутантов, у которых изменена чувствительность какого-нибудь аллостерического фермента к эффектору, можно также выделять с помощью совершенно иного принципа, а именно как ревертантов к ауксотрофии. При этом поступают следующим образом. Сначала вьщеляют мутантов с дефектом регуляции, ауксотрофных в отношении метаболита, который хотят получить как конечный продукт, накапливающийся в среде. Затем среди этих ауксотрофных мутантов отбирают таких, у которых неспособность к синтезу данного метаболита обусловлена дефектом в аллостерическом ферменте соответствующего пути биосинтеза После этого из полученной мутантной популяции выделяют прототрофных ревертантов, которые не нуждаются в этом конечном продукте, так как сами спо-собнь его синтезировать. Среди ревертантов отбирают тех, которые выделяют нужный продукт в среду. Их можно выявить биоавтографиче-ским методом (разд. 10.2.2) или распознать по росту сателлитных колоний. О таком мутанте, полученном в результате двукратного отбора, можно составить себе следующее представление. У него после первой мутации перестал функционировать каталитический центр одного из аллостерических ферментов. Вторая мутация затронула структуру (конформацию) всей белковой молекулы, в результате чего каталитическая активность фермента восстановилась, но аллостерическая чувствительность оказалась утраченной. Как в этом, так и во многих других случаях для выделения желательного мутанта необходим ряд этапов, включающих мутагенез и отбор. [c.500]

    Другим аспектом действия полифенолов на ферменты, который также заинтересовал нас, является вопрос о способности полифенолов выступать в качестве аллостерических эффекторов. Этот вопч рос мы изучали на примере двух ферментов лактатдегидрогеназы (ЛДГ) и D-глицеральдегид-З-фосфатдегидрогеназы (ФГАД). [c.146]

    В процессе биосинтеза глюкозы фруктозо-1,6-дифосфатаза (5) катализирует ключевую реакцию, и соответственно зффект, который оказывают на нее АМФ и АТФ, противоположен тому, который они оказывают на фосфофруктокиназу, а именно фермент 5 активируется АТФ и ингибируется АМФ. Ацетилкофермент А является положительным эффектором пируваткарбоксилазы (6). В этом нет ничего неожиданного, поскольку этот фермент способствует синтезу углеводов, когда ацетилкофермент А накапливается в избытке. Здесь мы также имеем пример того, как соединение, являюш,ееся продуктом расщепления липидов, посылает сигнал механизмам углеводного обмена. Фермент 6 также чувствителен к величине отношения АТФ/АДФ, поскольку он ингибируется АДФ. [c.62]

    Теперь рассмотрим связь полиплоидии с белками, активность которых зависит от концентрации эффекторов в клетке, т.е. с аллостери-ческими ферментами. Ферменты, связанные с мембраной, можно в некотором смысле также считать аллостерическими, потому что их конформация и активность зависят от того, связаны ли белки с мембраной. [c.101]

    При такой постановке эксперимента непрерывная регистрация каталитической активности достигается благодаря сопряжению образования ADP, катализируемого глутаминсинтетазой, и окисления NADH+, катализируемого пируваткиназой и лактатдегидрогеназой в присут-ч твии фосфоенолпирувата (последние три компонента добавляют в избытке). Этот удобный, чувствительный и прямой метод, позволяющий осуществлять различные т инетические измерения, не пригоден, однако, для анализа ингибирования по типу обратной связи, так как на активность ферментов могут также влиять различные эффекторы. [c.404]


Смотреть страницы где упоминается термин также как эффектор фермента: [c.219]    [c.132]    [c.617]    [c.132]    [c.147]    [c.278]    [c.252]    [c.10]    [c.66]    [c.493]    [c.58]    [c.238]    [c.241]    [c.127]    [c.45]    [c.194]   
Метаболические пути (1973) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

также Ферменты



© 2025 chem21.info Реклама на сайте