Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды механизм окисления

    МЕХАНИЗМ ОКИСЛЕНИЯ ЛИПИДОВ В ТКАНЯХ [c.288]

    Механизм окисления липидов в тканях [c.390]

    Механизм окисления липидов в тканях. .................390 [c.429]

    Разрушительному действию подвергаются ДНК, липиды, нуклеиновые кислоты. Основой биологического механизма, выполняющего защитные функции, служит фермент супероксиддисмутаза. Изучение этого фермента началось еще в 1938 г., когда из крови вола был выделен белок сине-зеленого цвета, содержащий медь. Позже выяснилось, что он содержит также цинк и обладает ферментативной активностью ио отношению к реакции окисления супероксид-радикала. Предполагают, что реакция идет по схеме [c.190]


    Кроме того, реакции с белками происходят, когда липиды находятся в нативном состоянии, а также после гидролиза и окисления их компонентов. Эти продукты гидролиза и окисления сами являются липидами, а иногда природными метаболитами. Поэтому вначале представим механизмы гидролиза и окисления, а уж затем рассмотрим во всей совокупности взаимодействия между белками и различными категориями липидов. [c.287]

    Таким образом, липиды в процессе окисления реагируют посредством многих механизмов с белками, которые с ними ассоциированы. Эти реакции нередко влекут за собой видоизменения необратимого характера, последствия которых для питательной ценности и функциональных свойств явно отрицательные. К ним относятся уменьшение растворимости, образование пигментов, сохранение неприятных запахов и вкуса, снижение переваримости. Разумеется, окисления липидов следует избегать или замедлять его во время получения или использования растительных белковых веществ. ,,  [c.306]

    Согласно данным К. Яги, существует прямая связь между степенью недостаточности рибофлавина у животных и накоплением в крови продуктов перекисного окисления липидов (ПОЛ), развитием атеросклероза и катаракты. Эти нарушения, по мнению автора, указывают на важную роль флавопротеинов в молекулярных механизмах синтеза и распада продуктов ПОЛ. [c.224]

    Следует отметить, что, если первый этап аэробного окисления углеводов — гликолиз является специфическим процессом катаболизма глюкозы, то два последующие — окислительное декарбоксилирование пирувата и ЦТК относятся к общим путям катаболизма (ОПК). После образования пирувата (Сз фрагмент) и ацетил-КоА (С2-фрагмент), образующихся при распаде не только глюкозы, но и липидов и аминокислот, пути окисления этих веществ до конечных продуктов происходят одинаково по механизму реакций ОПК. [c.261]

    Существуют различные теории, объясняющие механизм поступления питательных веществ в клетку. Так, Джонсон предполагает [167], что проникновение углеводородов в клетку происходит при участии липидов клеточной оболочки и длинная парафиновая цепь углеводородной молекулы становится частью фосфолипидной мицеллы клеточной мембраны. Это объяснение является весьма общим. Имеется предположение о том, что первоначальное окисление парафина протекает вне клетки [1681. В этом случае некоторые ферменты должны были бы выделяться клеткой в среду. Многие авторы с этим не соглашаются [169]. Все больше и больше фактов свидетельствуют о том, что фермент для [c.84]


    Участие отдельных витаминов в регуляции обмена веществ рассмотрено в главе 7. В условиях мышечной деятельности витамины выполняют важную регуляторную роль, так как обеспечивают высокую скорость метаболических и окислительных процессов, связанных с механизмами энергообразования, биосинтеза белка и углеводов, процессами перекисного окисления липидов, обмена минеральных веществ и т. д. Поэтому недостаточное обеспечение организма спортсмена отдельными витаминами приводит к снижению физической работоспособности. При этом снижаются как анаэробные, так и аэробные энергетические возможности спортсменов. [c.456]

    Наряду с нормальными процессами метаболизма липидов, а именно а-, Р- и ю-окислением жирных кислот, в организме могут протекать свободнорадикальные реакции окисления как жирных кислот, так и остатков жирных кислот в составе липидов под действием активных форм кислорода. Рассмотрим механизмы образования активных форм кислорода, инициирующих процессы пероксидного окисления липидов. [c.432]

    Изложите основные особенности процессов пероксидного окисления липидов и механизмов действия антиоксидантов. [c.441]

    Роль эндогенных продуктов перекисного окисления липидов в развитии и модификации лучевого поражения. Рассмотрению этого вопроса посвящена значительная часть раздела, в котором анализируются пусковые физико-химические механизмы опосредованного действия радиации (см. г. 224). Здесь же подчеркнем, что продукты перекисного окисления липидов всегда имеются в небольших концентрациях в интактных клетках и тканях. Их исходный стационарный уровень играет важную роль в зарождении и развитии первичных процессов лучевого поражения. Об этом свидетельствует способность продуктов перекисного окисления липидов осуществлять непрямой механизм первичного действия ионизирующей радиации и, таким образом, усиливать действие радиации на различные биологические системы и объекты. Препараты и воздействия, повышающие устойчивость животных к действию радиации, значительно снижают уровень продуктов перекисного окисления липидов в органах-и тканях к моменту, когда их противолучевое действие наиболее выражено. В этом случае облучение биологических объектов совершается в условиях невысокого содержания промоторов окислительных реакций. Это создает благоприятный биохимический фон, на котором замедляется развитие первичных лучевых окислительных процессов. [c.292]

    В метаболизме природных липидов, содержащих ПНЖК, велика роль окислительных процессов, происходящих по механизмам как авто-, так и фотоокисления В биологических системах одной из причин перекисного окисления липвдов является взаимодействие субстрата с окислителем в присутствии фотосенсибилизаторов. [c.47]

    Известно, что токоферолы выполняют в организме две главные метаболические функции. Во-первых, они являются наиболее активными и, возможно, главными природными жирорастворимыми антиоксидантами разрушают наиболее реактивные формы кислорода и соответственно предохраняют от окисления полиненасыщенные жирные кислоты. Во-вторых, токоферолы играют специфическую, пока еще не полностью раскрытую роль в обмене селена. Селен, как известно, является интегральной частью глутатионпероксидазы-фермента, обеспечивающего защиту мембран от разрушающего действия пероксидных радикалов. Биологическая роль витамина Е сводится, таким образом, к предотвращению аутоокисления липидов биомембран и возможному снижению потребности в глутатиониероксидазе, необходимой для разрушения образующихся в клетке перекисей. Участие токоферолов в механизме транспорта электронов и протонов, как и в регуляции процесса транскрипции генов, и их роль в метаболизме убихинонов пока недостаточны выяснены. [c.220]

    Многочисленные патологические состояния живых организмов, обусловленные гипоксией различной этиологии, токсическими воздействиями, воспалительными процессами и др., связаны с повреждением клеточной мембраны. Одним из механизмов повреждения клеток является свободнорадикальное окисление липидов их мембран. Поэтому вещества, обладающие антиоксидантной и мембраностабилизирующей активностью, к которым относятся и многие фенилпропаноиды, могут препятствовать ряду патологических состояний. [c.53]

    Элементарная сера, по данным Г. И. Каравайко с сотрудниками [11], растворяется липидами, выделяемыми бактериями во внешнюю среду, и в коллоидном состоянии поступает в периплаз-матическое пространство клетки. Сера окисляется на поверхности цитоплазматической мембраны и во внутриклеточной мембранной системе. Считают, что механизм синтеза АТФ при этом окислении такой же, как и при окислении железа (II). [c.151]

    Механизм действия О3 определяется его свойствами сильного окислителя, образованием свободных радикалов и перекисным окислением липидов. Токсичность О3 обусловлена образованием промежуточных продуктов — озонндов и гипероксидов. [c.454]


    Появление сигнала ЭПР со структурой, отвечающей феноксиль-ному радикалу, не может быть отнесено за счет окисления ингибитора, так как в случае замены облученного белка на интактныи сигнала не возникает. Полученные данные доказывают наличие реакций обменного взаимодействия радикалов белка с ингибитором, подобно механизму ингибирования в химических процессах. Очевидно, что свободно-радикальные процессьс могут развиваться в организме после облучения, затрагивая не только белки, но и нуклеиновые кислоты, липиды, углеводы. [c.319]

    Механизмы ингибирующего действия кислорода исключительно многообразны. Его связывают с образованием перекиси водорода, с самоокислением цитохромов и с окислением тиоло-вых групп, с инактивированием ферментов, переокислением липидов, накоплением свободных радикалов. Нередко ингибирование метаболизма кислородом происходит через подавление процесса синтеза ферхментов. [c.250]

    Механизм внутриклеточного переноса углеводородов полностью не выяснен. Однако известно, что углеводороды аккумулируются в микрогелах или липидных включениях клеток, где локализованы ферменты, катализирующие окисление алканов до органических кислот. Поэтому содержание липидов в клетках микроорганизмов, растущих на углеводородах, значительно выше по сравнению с их содержанием в клетках микроорганизмов, растущих на глюкозе. Причем уже в момент внесения микроорганизмов в среду с углеводородами содержание в них липидов удваивается. [c.251]

    Механизм активирующего действия адреналина на фосфоролиз состоит в активировании фермента аденилатциклазы и стимулировании превращения неактивной фос-форилазы б в активную форму а. Усиливая фосфоролиз, адреналин активирует гли-когенолиз и связанный с ним процесс аэробного окисления углеводов, повышая тканевое дыхание и газообмен. Он повышает также обмен белков и липидов. [c.265]

    Хотя процессы, в которых происходит окисление жирных кислот в присутствии кислорода, исследовались довольно широко [4,5], лшпь сравнительно недавние работы по изучению перекисного окисления липидов при различных заболеваниях [ 6 - 83 и при радиационном распаде биомолекул показали, что значительнь1й интерес представляет детальное понимание молекулярных параметров, определяющих характер и глубину протекания перекисного окисления. Было показано, что под действием ионизующей радиации в определенных условиях при распаде жирных кислот в присутствии кислорода количество образующихся продуктов, выраженное в молях, значительно превосходит количество первоначально образовавшихся радикалов [ 11]. Этот факт говорит о цепном характере процесса, общий механизм которого по аналогии с описанным для перекисно— го окисления олефинов может быть предложен и для ненасьшенных жирных кислот [12]- Под Н ниже подразумевается а-метиленовый атом водорода, связанный с ненасыщенным фрагментом. В систе-ких с несопряженными связями это, вероятно, аллильный водород при центральном атоме углерода. [c.328]

    Общий источник энергии, приводящий в движение все молекулярные механизмы клетки, — это клеточное дыхание, сводящееся к окислению липидов (жиров) и сахаров кислородом. Окисление этих веществ до Og и HgO расчленено на огромное число стадий, что предотвращает потери энергии и исключает непродуктивную передачу энергии водной среде клетки. Процессы окисления представляют собой окислительное дробление липидов, полисахаридов и, что еще важнее, дробление небольших молекул типа глюкозы. В длинных последовательностях элементарных стадий дробления огромную роль играют стадии фосфорилирования, т. е, присоединения фосфатного тетраэдра. Реакции фосфорилирования осуществляются в клетке специальными ферментами — киназами и фосфорилазами. Эти ферменты переносят и присоединяют ортофосфорную группу в точке дробления молекулы. Их активные центры действуют по принципу образования неустойчивого активированного комплекса с пятью связями Р—О. Образование этих комплексов стимулируется предварительно протекающим возникновением донорно-акцепторных связей между кислородными атомами ортофосфатной группы и двухзарядными катионами. [c.442]

    Защитная функция соединений кислорода. В живых организмах происходит восстановление кислорода. В частности, в белых кровяных клетках — лейкоцитах — молекулярный кислород Og восстанавливается до надпероксид-ионов О , пероксида водорода HgOg и гидроксильных радикалов ОН. Главная функция этих частиц — защита организма от вторгающихся микробов. Кроме того, лейкоциты используют HgOg для окисления хлорид-ионов в хлорноватистую кислоту Н0С1, которая также служит средством для уничтожения бактерий. Подобные защитные механизмы действуют не только у млекопитающих, но и у растений, насекомых и простейших организмов. К сожалению, реакционноспособные соединения кислорода и хлора не только убивают проникающие микроорганизмы, но могут наносить ущерб и тканям организма-хозяина, повреждая важные биомолекулы, такие, как липиды, белки и ДНК. [c.470]

    Установлено, что недостаток селена ведет к уменьшению концентрации фермента глутатионпероксидазы, в результате чего усиливаются процессы окисления липидов и серосодержащих аминокислот. Селен входит в состав активных центров нескольких ферментов. Например, в активном центре глутатионпероксидазы содержится остаток необычной аминокислоты — селеноцистеина (см. главу 1). Глутатионпероксидаза защищает клетки от разрушающего действия органических пероксидов КООН и пероксида водорода Н2О2. Вероятно, в механизме действия этих ферментов селенгидрильная группа обладает определенными преимуществами перед сульфгидрильной. [c.190]

    При дефиците инсулина развивается сахарный диабет — одно из распространенных заболеваний (в мире насчитывается около 100 млн больных диабетом). Причиной дефицита инсулина является снижение скорости его синтеза, что, в свою очередь, может быть спровоцировано различными эндокринными нарушениями, механизм которых во многом еще не изучен. При сахарном диабете катаболические пути обмена преобладают над анаболическими, в результате чего в крови возрастает содержание глюкозы, которая плохо усваивается тканями. Вследствие этого в организме мобилизуются липиды, ускоряются процессы окисления жирных кислот, вьщеляется большое количество кетоновых тел, понижающих pH крови, что в итоге может привести к гибели организма. При пониженном содержании инсулина в крови диагностируется инсулинозависимый диабет, или диабет I типа, который поддается лечению инсулином. Но есть формы диабета, при которых содержание инсулина в крови находится в пределах нормальных значений, это так называемый инсулинонезависимый диабет, или диабет И типа. Эта форма диабета, по-видимому, вызвана нарушением не синтеза инсулина, а повреждениями в других звеньях инсулиновой регуляции. [c.299]

    Многие природные мембраны функционируют в условиях, когда к ним приложена высокая (250-300 мВ) разность электрических потенциалов (см. гл. XXIV), что резко сокращает время жизни БЛМ, хотя кратковременное воздействие электрического поля на БЛМ приводит к увеличению фоновой проводимости и появлению флуктуаций проводимости (см. 5 гл. XXI). Это указывает на возможность формирования простейших каналов под действием поля, тем более что их появление на БЛМ удается регистрировать и при других модификациях липидов (фазовые переходы при нагревании, введение продуктов перекисного окисления см. 1-2 гл. XVI). Поэтому механизмы электрического пробоя БЛМ представляют несомненный интерес для понимания их функционирования. [c.30]

    Процесс перекисного окисления липидов является фотосенсибилизированным, так как ненасыщенные жирные кислоты, не обладая способностью поглощать свет в средневолновой и длинноволновой области УФ-спектра, подвергаются перекис-ному фотоокислению при облучении в данной области спектра. Наиболее вероятными фотосенсибилизаторами могут быть продукты собственного окисления липидов (прежде всего гидроперекиси), которые практически всегда присутствуют в мембранах животных клеток и их органелл. Механизм сенсибилизации липидов к УФ-излучению собственными продуктами окисления состоит в фотоинциировании цепей окисления ненасыщенных жирных кислот свободными радикалами, генерируемыми из гидроперекисей (см. 4 гл. XVI). [c.452]

    Процессы УФ-индуцированно-го окисления приводят к образованию гидроперекисей жирных кислот—первичного относительно стабильного продукта реакции. Образование диеновых и триеновых гидроперекисей при УФ-облучении сопровождается возникновением новых максимумов поглощения при 233 и 270 нм соответственно (рис. 50). Квантовый выход такой реакции значительно превышает единицу—например, 90 для этиллинолеата (Н. М. Эмануэль и др.). Это означает, что механизмы фотоокисления и хорошо изученного цепного, свободнорадикального автоокисления липидов близки. Их единство вытекает также из сходства кинетики авто- и фотоокисления ненасыщенных жирных кислот, отмеченного Бейтманом и Ги. На основании этого фотоокисление липида можно представить в виде определенной последовательности реакций [c.272]

    Гибелыклетки не связана с повреждением уникальных мишеней энергией ионизирующей радиации, а происходит в результате дисперсного поражения, которое может развиваться за счет физико-химических механизмов усиления. Например, во множественных участках мембран излучение инициирует цепи перекисного окисления липидов. Развитие окислительных процессов принимает автокаталитический характер, происходит массовая деградация мембран и связанных с ней ферментативных ансамблей, нарушается ионный гомеостаз клетки, накапливаются токсические продукты, высвобождаются ферменты из мест специфической локализации и т. д. Такой механизм не исключает наличия в клетке уникальных мишеней, поражение которых имеет ведущее значение для жизнедеятельности, однако в отличие от первых двух гипотез предполагается не прямое, а опосредованное поражение этих критических структур. В этом случае вероятностный характер инактивации клеток объясняется вероятностью зарождения соответствующих физико-химических процессов усиления. Сигмоидальный характер кривых доза — эффект может соответствовать необходимости какого-то критического числа событий абсорбции энергии клеткой для развития физико-химических процессов усиления. Неодинаковую радиочувствительность различных типов клеток можно связать с генетически детерминированными особенностями строения, облегчающими или затрудняющими развитие физикохимических процессов усиления начального поражения, например неодинаковым уровнем естественных ингибиторов и активаторов перекисного окисления липидов биологических мембран. Повысить или понизить радиочувствительность клеток могли бы такие агенты, которые способны модифицировать развитие первичных физико-химических реакций. [c.134]

    Значительное число исследований было посвящено анализу механизмов образования липидных радиотоксинов и их роли в лучевом поражении организмов. У облученных животных было обнаружено значительное возрастание уровня продуктов перекисного окисления липидов в радиочувствительных органах — костном мозге, семенниках, селезенке. Накопление липидных перекисей было зарегистрировано в органеллах клеток печени облученных животных — в лизосомах, микросомах, митохондриях и ядрах (Таппел, 1962 Кудряшов, 1962 Виллс, 1966 Данилов, Козлов, 1973 и др.). Большой интерес представляет обнаруженное в митохондриях радиационное нарушение процессов перекисного окисления липидов, так как продукты перекисного окисления липидов, накапливаясь в митохондриях, способны разобщать окислительное фосфорилирование (Кудряшов и др., 1964 Ленинджер, 1964), инактивировать тиоловые ферменты, окислять сульфгид- [c.222]

    Исследуя возможности непрямого действия радиации через водные радикалы, радиобиологи еще не уделяли внимания важнейшей для жизнедеятельности клетки липидной фазе и системам, связанны.м с ней. В середине 50-х гг. был достигнут значительный прогресс в понимании структурной организации и биологической роли субклеточных мембранных структур. В этот и последующий периоды накапливается обширный экспериментальный материал о роли липидов мембран в функционировании липопротеидных ферментативных комплексов, в функциональной активности субклеточных структур. Появились первые работы, посвященные физико-химическим процессам в липидной фазе облученных клеток, липидным радиотоксинам, начались исследования механизмов перекисного окисления липидов под действием ионизирующей радиации. Так, в 1954 г. Б. Н. Тарусов сделал предположение о решающей роли цепных окислительных реакций в развитии пусковых процессов лучевого поражения. Это предположение было обосновано анализом кинетических закономерностей развития лучевого поражения при низких и средних летальных дозах и сравнением их с критерием цепных реакций. Инициирование цепей в результате распада молекул на радикалы осуществляется неодинаково для различных молекул и систем. И. Н. Семенов (1958) придавал большое значение наличию в сложных гетерогенных системах веществ ( примесей ), облегчающих развитие цепных реакций. Такие вещества легко образуют свободные атомы и радикалы. Например, радикалы перекисей являются наиболее универсальными инициаторами цепей. Анализируя реакционную способность различных субстратов и развивающихся цепных реакций, Б. Н. Тарусов и др. (1957— 1966), Н. М. Эмануэль и др. (1958—1976) установили, что наиболее вероятной для развития первичных лучевых процессов является реакция окисления липидов — структурных элементов клеточных мембран. О важнейшей роли окисления биосубстратов в пусковых химических процессах лучевого поражения свидетельствуют также работы А. М. Кузина (1962—1973). В развива- [c.226]

    Иллюстрацией взаимодействия биогенных аминов с липидными перекисями и связанного с этим снижения их сенсибилизирующего действия могут служить эксперименты с облученными растворами каротина в олеиновой кислоте. Как указывалось ранее, липидные перекиси, присутствующие в растворе, усиливают радиолиз каротина за счет непрямого механизма поражения. Добавление в эту систему аминов, например серотонина и дофамина, в значительной степени предотвращает радиосенсибилизирующее действие липидных перекисей. В опытах с микросомами было показано, что биогенные амины препятствуют накоплению продуктов перекисного-окисления липидов в процессе окисления, протекающего в микросомах слизистой тонкой кишки, т. е. в радиочувствительной системе. Это касается как НАДФН, так и аскорбат-зависимого перекисного окисления липидов. Дальнейший анализ показал, что в этих условиях биогенный амин — серотонин — ингибирует НАДФН-цитохром с-редуктазу, т. е. начальное звено в цепи НАДФН-зависимого транспорта электронов. [c.294]

    Бурлакова Е. Б. Свободнорадикальиый механизм регуляции клеточного метаболизма и его связь с другими регуляторными системами. — В кн. Свободнорадикалыюе окисление липидов в норме и патологии. М., Наука, [c.300]


Смотреть страницы где упоминается термин Липиды механизм окисления: [c.331]    [c.13]    [c.293]    [c.617]    [c.550]    [c.470]    [c.101]    [c.687]    [c.403]    [c.573]    [c.630]    [c.143]    [c.181]    [c.454]    [c.455]   
Биологическая химия Издание 3 (1960) -- [ c.288 ]

Биологическая химия Издание 4 (1965) -- [ c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды

Окисление липидов



© 2025 chem21.info Реклама на сайте