Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защитные покрытия механические свойства

    Коррозию металлических изделий можно предотвратить с помощью различных защитных покрытий металлических (меднение, серебрение, лужение, цинкование, никелирование и др.), более стойких в условиях эксплуатации, чем защищаемый металл химических (прочные пленки оксидов, фосфатов и др.) неметаллических (лаки, краски, смолы, эмали и т. д.). Общее защитное действие всех пленок обусловлено тем, что они изолируют металл от окружающей среды и тем самым предотвращают его контакт с агрессивными компонентами среды — кислородом воздуха, водой и др. Поэтому важнейшее значение при выборе покрытия для конкретных условий эксплуатации машин, оборудования, изделий и т. д. приобретают механические свойства защитных пленок и их адгезия на металле. [c.228]


    Физико-механические свойства полимерных липких лент для защитных покрытий трубопроводов приведены в табл. 5.7. [c.89]

    Контактный способ покрытия состоит в погружении стального изделия в раствор соли соответствующего металла (медь, олово, серебро, золото, платина). При этом происходит реакция вытеснения металла железом, и металл осаждается на поверхности изделия. Применение контактного способа ограничено лишь покрытием мелких деталей ввиду невысоких защитных и механических свойств покрытия, нанесенного этим способом. [c.81]

    В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повыщаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон. [c.78]

    Поверхностные тонкослойные защитные покрытия, получаемые электрохимическим методом. Перечислите виды покрытий. Охарактеризуйте их защитные и механические свойства. [c.287]

    Акриловые сополимеры являются одним из наиболее перспективных видов водорастворимых полимеров Покрытия на их основе обладают хорошими декоративными свойствами — блеском, низкой грязеемкостью, высокими защитными и механическими свойствами, присущими всем акриловым сополимерам [c.228]

    Нанесение защитных покрытий — один из наиболее распространенных методов борьбы с коррозией. Покрытия не только защищают поверхность от коррозии, но и придают ей ряд ценных физико-механических свойств твердость, износостойкость. [c.462]

    В настоящее время ВНИИГазом разработан способ ингибирования газопроводов с помощью одинарного поршня, проталкивающего перед собой раствор ингибитора коррозии со скоростью 8—10 м/с. В результате продолжительных исследований при трехлетней эксплуатации газопроводов было установлено, что эффективность защитного действия ингибитора И-1-А от общей коррозии достигает 80 %, а образцы, изготовленные из трубы французской поставки и стали 20 и покрытые пленкой ингибитора, при напряжениях до 0,9 От не изменили механических свойств за 120 сут. экспозиции в газопроводе. [c.165]


    Пассивирование цинковых покрытий. Для усиления защитных свойств цинкового покрытия применяется операция пассивирования путем обработки цинкованных деталей в растворах хромовой кислоты или ее солей. При этой обработке происходит частичное растворение цинка с образованием пленки хроматов цинка и соединений трехвалентного хрома, придающих пленке характерные цвета побежалости радужных оттенков. Толщина пленки до 0,5 мкм. Хроматные пленки не допускают нагрева их до температуры выше 335 К, так как при этом происходит дегидратация, вследствие чего снижаются защитные и механические свойства пленок. Операции пассивирования (хроматирования) обычно предшествует операция осветления, которая выполняется в растворе азотной кислоты концентрацией 10—30 г/л. Температура раствора — комнатная, время выдержки 5—15 с. [c.97]

    Эпоксидные смолы, особенно смолы жидкой консистенции ЭД-5 и ЭД-6 (ГОСТ 10587—63), широко применяются в промышленности для антикоррозионных защитных покрытий. Ценными свойствами этих смол являются высокая адгезия к металлическим и другим поверхностям, хорошее совмещение со многими синтетическими смолами, малая усадка при отверждении. Покрытия из эпоксидных смол обладают высокими механическими и электроизоляционными свойствами, значительной эластичностью и химической стойкостью к сильным и слабым щелочам, смазочным маслам, некоторым кислотам и растворителям. [c.31]

    В технологическом регламенте дается последовательное, подробное описание всех стадий производства, его аппаратурно-механического оформления и в том числе материалов, из которых изготовлены аппараты, оборудование, арматура, трубопроводы, применяемые защитные покрытия описываются качество, физико-химические, взрывоопасные и токсические свойства сырья, полупродуктов и готовой продукции, время, отведенное для отдельных операций, объемы и тоннаж загрузки аппаратов, и скорости их загрузки. [c.152]

    Многие полимеры и покрытия на их основе обладают лучшими ко сравнению с битумными физико-механическими защитными и технологическими свойствами. Поэтому с каждым годом увеличивается применение полиэтилена, поливинилхлорида и эпоксидных смол с различными добавками для защиты от коррозии металла. [c.107]

    Воздействие повышенной температуры обычно имитируют в воздушном термостате. При этом образцы исследуемого материала в виде двухсторонних лопаток выдерживают в воздушном термостате при температуре 70 2°С или 100+2 С в течение 24, 48, 72, 96, 144 или 240 ч (в зависимости от материала), а потом определяют степень старения материала по изменению их физико-механических свойств. Очевидно, что такие условия испытаний образцов резко отличаются от реальных условий, в которых работают изоляционные покрытия на подземных трубопроводах, вследствие чего возможна существенная погрешность в оценке его защитной способности. [c.36]

    Из металлов подгруппы цинка (2п, С(1, Нд) наиболее широко в гальванотехнике используют цинк, в меньшей степени —кадмий. Область применения кадмиевых и цинковых покрытий в значительной степени определяется защитными и физико-механическими свойствами цинка и кадмия. Основной областью использования цинковых и кадмиевых покрытий является защита стальных деталей от коррозии. Несмотря на относительно высокий нормальный потенциал —0,76 В, металлический цинк является довольно коррозионностойким в атмосферных условиях. Так как потенциал цинка имеет более отрицательное значение, чем потенциал железа, то при контакте цинка с железом и наличии влаги образуется гальванический элемент, в котором железо служит катодом. Таким образом, покрытие цинком защищает сталь не только механически, но и электрохимически. В случае повреждения цинкового покрытия на небольшом участке железо корродировать не будет. [c.280]

    Конструкция битумно-резиновых и битумно-полимерных защитных покрытий нормального и усиленного типов приведена в табл. 44. Физико-механические свойства и температурные условия применения битумно-резиновых изоляционных мастик даны в табл. 45. [c.56]

    Соотношение отдельных составляющих может изменяться в зависимости от требований к применению и обеспечению стойкости против коррозии под действием окружающей среды, оттенка, глянца, непрозрачности, стойкости к механическим повреждениям, резким изменениям температуры и т. д. Эмаль представляет собой тонкое защитное покрытие, обычно двухслойное, где первый слой обеспечивает адгезию, а второй — требуемые свойства, например кислотоупорность и др. В обычных атмосферных условиях срок службы эмалей составляет несколько десятков лет. Чаще всего эмалируют штампованные изделия из специальных низкоуглеродистых стальных полос, прокатанных в холодном состоянии, толщиной 0,6—1,5 мм. С учетом высоких температур отжига (более 800° С) необходимо, чтобы штамповки имели хорошо армированные утонения и т. д. Из-за различных коэффициентов термического расширения эмали и стали радиус граней должен быть более 4,5 мм, а радиус у углов — более 6 мм, чтобы предотвратить самопроизвольное отслаивание эмали. Кислотоупорные эмали отличаются исключительной стойкостью против большинства неорганических кислот, за исключением фтористоводородной и фосфорной. Для щелочных растворов эмаль непригодна. Кислотоупорная эмаль выдерживает температуру до 350° С. Хорошо эмалируются автоклавы, реакторные котлы, вакуумные аппараты, теплообменники, оборудование для дистилляции и другие аппараты химической промышленности, узлы из листовых сталей для силосных башен, трубопроводы, запорные устройства. [c.88]


    Новый тип этого материала хайпалон-40 обладает лучшими технологическими, а также механическими свойствами, как сопротивление разрыву и раздиранию, стойкость к абразивному износу, удлинение и остаточная деформация при сжатии [40]. Можно ожидать, что более низкая стоимость приведет к более широкому использованию этого материала в таких областях, как производство покрышек с белыми стенками, защитные покрытия, промышленные лакокрасочные материалы и цветные верха автомобилей. [c.217]

    В настоящей главе рассматриваются то химические свойства парафинов и циклопарафинов, которые пс вошли в предыдущие главы. В фи-зиологич( ском отношении парафины и циклопарафины, как правило, инертны и не оказывают раздражающего действия. Циклопропан применялся как анестезирующее вещество, концентрация же пропана, необходимая для оказания анестезирующего действия, слишком велика, чтобы его можно было использовать [9]. У рабочих, имеющих дело с парафином в процессе его получения, иногда развивается определенная форма рака, которая рассматривалась как профессиональное заболевание, одпако в настоящее время известно, что прямогонные и особенно крекинговые смазочные масла содержат небольшие количества веществ, которые раздражают кожу и являются канцерогенными [3]. Это справедливо также и в отношении высококипящих масел, получающихся в качестве побочного, продукта при каталитическом крекинге. Канцерогенное действие приписывается некоторым ароматическим углеводородам, содержащимся в этих маслах [23а]. Мягкий парафин, плавящийся приблизительно около 45°, широко применяется как защитное покрытие при лечении тяжелых ожогов [81]. На отсутствие токсического и раздражающего действия тщательно очищенного американского белого медицинского масла указывает широкое применение его в качестве механического слабительного средства. При производстве белого медицинского масла содержащие ароматические кольца углеводороды удаляются путем сульфирования крепкой дымящей серной кислотой. Непредельность таких масел также практически равна нулю (йодные числа, определенные по методу Хэнаса, меньше 1,0). [c.88]

    Необходимо сразу же оговориться, что метод модифицирования лакокрасочных покрытий ингибиторами коррозии отличается от метода повышения защитных свойств покрытий посредством введения в их состав антикоррозионных пигментов. Ингибиторы позволяют в широких пределах регулировать концентрацию пассивирующего агента, они активно взаимодействуют с пленкообразующим, изменяя физико-механические свойства пленок (твердость, пластичность, скорость отверждения и т.п.). Адсорбируясь на инертных пигментах и наполнителях, ингибиторы придают им пассивирующие свойства. [c.169]

    Потребность в термодинамически стабильных защитных покрытиях, способных к длительной службе при высокой температуре, а также в особо агрессивных технологических средах привела к использованию в качестве таких покрытий оксидных систем. Известно, что многие виды оксидной керамики по своей жаростойкости и химической стойкости намного превосходят металлы. Кроме того, керамика обладает целым рядом теплофизических, механических и диэлектрических свойств, не свойственных другим материалам. [c.158]

    За меру химической стойкости неметаллических материалов, применяемых в качестве герметиков, плакирующих защитных покрытий, часто принимают величину их набухания в рабочей среде. При использовании тех же материалов в качестве конструкционных или для футеровки крупногабаритного оборудования таких данных недостаточно. В этом случае за критерий работоспособности материала необходимо принимать данные о его физических и, в частности, механических свойствах в рабочей среде. [c.82]

    Цинк как самостоятельный конструкционный материал находит крайне ограниченное применение, так как по совокупности механических свойств и химической стойкости он не превосходит стали, но значительно дороже. В связи с тем, что электродный потенциал цинка отрицательнее, чем основных конструкционных металлов, его используют в качестве материала для протекторов. Цинк широко применяется также в качестве защитного покрытия стальных конструкций, подверженных воздействию воздуха или природных вод. [c.89]

    Одним из направлений при создании долговечных и надежных элементов технологических систем является применение оборудования со стеклоэмалевыми защитными покрытиями. При этом достигается стойкость к воздействию химически активных сред, в том числе и при повышенных температурах, к эрозионному износу, неподверженность воздействию микроорганизмов. В качестве защитных покрытий при изготовлении упомянутого оборудования применяют различные по своим параметрам стекловидные стеклоэмалевые, стеклокристаллические, стеклокерамические (в дальнейшем стеклоэмалевые) покрытия. Наряду с комплексом ценных свойств эти покрытия обладают недостатками, к числу которых относят недостаточно высокую устойчивость к действию механических ударных нагрузок, резких колебаний температур и др. Даже небольшие по размерам повреждения в покрытиях иногда могут привести к выходу из строя дорогостоящих изделий. [c.3]

    И если эпоксидная смола всегда работает во славу эпоксидных противокоррозионных материалов, то о поли-этиленполиамине этого сказать нельзя. Из-за него бывают различные неприятности, например, отверждение композиций проходит слишком медленно или, наоборот, слишком быстро, при этом образуются покрытия с невысокими защитными и механическими свойствами. [c.50]

    Весьма перспективны стальные трубы с защитным покрытием, так как при этом механическая прочность стальной трубы сочетается с антикоррозионными свойствами покрытия. Наиболее широко применяют гуммированные трубы и трубы, защищенные полиэтиленом. Их применяют при температурах до 65—70°С. Они допускают вакуум не более 0,03 МПа, Допускаемое значение внутреннего давления определяется прочностью стальной трубы. В настоящее время осваиваются трубы, защищенные изнутри эмалью, фторопластом, пентапластом -и другими полимерными материалами. [c.256]

    Представленный экспериментальный материал свидетельствует о том, что улучшение защитных и механических свойств электроосажденных покрытий по сравнению с покрытиями, полученными другими методами нанесения, является следствием специфики процесса формирования покрытий. [c.53]

    Покрытия из циклокаучука по защитным и механическим свойствам близки к хлоркаучуковым, но более термостойки и могут эксплуатироваться при температурах до 200° С. Механизм их формирования определяется наличием в циклокаучуке двойных связей, благодаря которым при окислении кислородом воздуха образуется необратимое покрытие с трехмерной структурой. Испарение растворителя является при этом вторичным процессом. Так как отверждение покрытия происходит в результате химической реакции, скорость которой зависит от температуры окружающей среды, циклокаучуковые покрытия целесообразно наносить только при положительных температурах. Наносят покрытия кистью, пневматическим или безвоздушным распылением на хорошо подготовленную поверхность, [c.22]

    Тиокол А применяется для покрытия бетонных резервуароЁ для хранения нефтяного топлива, в качестве защитных покрытий для подводных деталей морских судов — рулей и впнтов. Однако плохие физико-механические свойства вулканизатов, большая деформация при сжатии и неприятный запах ограничивают применение этого тиокола. В настоящее время тиокол А применяется как пластификатор в кислотостойких цементах [7]. [c.570]

    К конструкционному материалу для нефтегазодобывающего оборудования предъявляется широкий комплекс требований наряду с механической прочностью необходимы малая масса, высокая стойкость против коррозии, особенно против специфических видов коррозионного разрушения, стабильность свойств при перепадах температур, стойкость против парафиноотложения и др. Получить материал с оптимальным сочетанием свойств не всегда возможно. Поэтому весьма перспективно нанесение покрытий на стальную основу. При этом достигается экономия дефицитных и дорогостоящих материалов и возможность использования свойств обоих компонентов — высокой защитной способности покрытия и механических свойств основы. Для плакирующего слоя или покрытия могут быть использованы. высоколегированные стали или дефицитные и дорогостояшле металлы (титан, никель и др.), имеющие повышенную коррозионную стойкость. Ввиду того, что толщина плакирующего слоя или защитного покрытия [c.73]

    Механотермический способ является одним из наиболее распространенных способов получения биметаллического материала, производство которого в последние годы постоянно возрастает. Обычно при толщине покрытия, которая составляет 4—10% от толщины листа, сцепление защитного слоя с основным металлом происходит за счет диффузии при одновременном действии температуры и давления. Плакирование защищаемого металла проводят как с одной, так и с обеих сторон защищаемого материала. Механотермический способ применяют обычно для получения листового биметалла, однако возможно получить биметаллический материал также за счет пластического деформирования отлитых заготовок, для чего плакирующий металл заливают в форму с установленной в ней стальной заготовкой. Бн-метал аический прокат нашел большое применение в нефтеперерабатывающей промышленности для корпусов аппаратов, в криогенной технике для снижения массы и повышения сопротивления материала к действию низких температур для вакуумплотного оборудования при транспортировании и хранении сжижженных газов. Представляет интерес биметаллический прокат из сплавов АМг-6+сталь XI8H9T, выпускаемый промышленным способом при толщинах до 10 мм. Полученные биметаллические листы имеют следующие механические свойства Ов = 550—640 МН/м, От = 400—500 МН/м, 0=15— 20%, прочность сцепления слоев 100 МН/м, Стср = =50 МН/м. . Высокое относительное удлинение обеспе- [c.80]

    Различают прямые и косвенные коррозионные потери. Под прямыми потерями понимают стоимость замены (с учетом трудозатрат) прокорродировавших конструкций и машин или их частей, таких как трубы, конденсаторы, глушители, трубопроводы, металлические покрытия. Другими примерами прямых потерь, могут служить затраты на перекраску конструкций для предотвращения ржавления или эксплуатационные затраты, связанные с катодной защитой трубопроводов. А необходимость ежегодной замены нескольких миллионов бытовых раковин, выходящих из строя в результате коррозии, или миллионов прокорродировавших автомобильных глушителей Прямые потери включают добавочные расходы, связанные с использованием коррозионно-стойких металлов и сплавов вместо углеродистой стали, даже когда она обладает требуемыми механическими свойствами, но не имеет достаточной коррозионной устойчивости. Сюда относятся также стоимость нанесения защитных металлических покрытий, стоимость ингибиторов коррозии, затраты на кондиционированце воздуха складских помещений для хранения металлического обо рудования. -Подсчитано, что применение соли для борьбы с обле- [c.17]

    Лаки на основе каменноугольной смолы (или пека) обладают высокой водостойкостью и широко используются для защиты подводных сооружений и подземных трубопроводов. Недостаток битумных покрытий — их низкие атмосферостойкость и маслостойкость и относительно быстрое ухудшение физико-механических свойств при старении. Лакокрасочные материалы на основе эпоксидно-пековых смол лишены этих недостатков. Высокие защитные свойства и долговечность эпоксидно-пековых покрытий, особенно в условиях воздействия морской и пресной воды, можно объяснить тем, что при введении в эпоксидный состав битума не только повышается адгезия при соответствующем снижении внутренних напряжений, водонабухаемости, водопроницаемости, но за счет ряда соединений, входящих в состав каменноугольной смолы, обеспечивается дополнительное защитное действие. [c.78]

    Действие на покрытие физико-химических факторов связано с наличием почвенного электролита и воздуха. На химическую стойкость защитного покрытия влияют солевой состав и pH электролита, воздухо- и влагонасыщенность грунта, концентрации кислорода, углекислоты, жизнедеятельность микроорганизма и другое. Под действием окружающей электролитической и биологической среды происходит так называемый процесс старения, который проявляется, например, в снижении электросопротивления покрытия. Замеры переходного сопротивления битумного покрытия толщиной 3 мм 31а газопроводе Дашава — Киев показали, что за семь лет эксплуатации оно составило 200—9000 Ом м , при начальном сопротивлении 10 ООО Ом м . Аналогичным образом влияет на процессы старения и катодная поляризация изолированного трубопровода. В процессе эксплуатации прежде всего наблюдаются насыщение влагой и механические повреждения покрытия, в то время как физико-механические свойства изоляционного материала существенно не изменяются. [c.51]

    По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях. [c.48]

    Одно из основных направлений в отечественной и зарубежной практике строительства трубопроводов большого диаметра - нанесение противокоррозионных покрытий на трубы непосредственно на металлургических заводах и изоляционноч варочных базах. Это позволяет повысить качество защитных покрытий, исключить влияние погодных условий на выполнение изолящюнных работ, снизить трудоемкость трассовых работ при изоляции труб. Основные изолирующие материалы - это полиэтиленовые и поливинилхлоридные по стабильности механических, химических и защитных свойств предпочтение отдается полиэтиленовым покрытиям, которые при толщине 100 мкм способны обеспечить защиту трубопроводов от коррозии в условиях подземной прокладки на срок эксплуатации не мёнее 20 лет. [c.136]

    По назначению покрытия подразделяются на защитные, декоративные и специальные. Защитные покрытия защищают основной металл от агрессивного действия окружающей среды в реальных условиях эксплуатации. Декоративные покрытия применяют для придания изделиям необходимого внешнего вида, цвета. Специальные покрытия обеспечивают необходимые физико-механические свойства (износостойкость, проводимость, отражательную способность, термо-стойность, электропроводность, повышенную способность к пайке и др.). При этом достигается экономия дефицитных и дорогостоящих металлов, а полученный материал сочетает свойства основы и покрытия. [c.50]

    Учитывая специфичность агрессивной грунтовой среды и многообразие факторов действующих на изолированный трубопровод, задача правильной оценки способности изоляции длительно выполнять свои защитные-функции в конкретных условиях эксплуатации может быть решена только при комплексном подходе. Он заключается прежде всего в рассмотрении трехкомпонентной системы стальная труба — изоляционное покрытие— грунтовая среда, с позиций механики грунтов, почвоведения и прежде всего физико-химической механики материалов, так как последняя позволяет наиболее полно установить взаимосвязь механических свойств материалов (прочности, долговечности, деформируемости), а также кинетики протекающих в них процессов деформации и разрушения с физико-химическими свойствами и структурой этих материалов, разно как и тех сред, в которых эти процессы развиваются. [c.5]

    На магистральных нефтепродуктонроводах в качестве пассивной защиты применяют полимерные, битумно-резиновые и битумно-полимерные покрытия. Требования к физико-механическим свойствам полимерных липких лент, битумно-полимерных мастик, битумно-минеральных мастик и других материалов, входящих в состав пассивной защиты, регламентированы требованиями ГОСТ 9.015-74. Защитные покрытия будут эффективны, если точно соблюдаются технология их изготовления, транспортировки и укладки трубопроводов в траншею и засылки их грунтом. Поэтому особенно важным является действенный контроль качества изоляционных работ н всех стадиях строительства. [c.161]

    Основными критериями пригодности покрытий, предназначенных для защиты трубопроводов, эксплуатирующихся при повышенных температурах, является теплоустойчивость и термовлагостойкость этих покрытий, оцениваемые изменением их физико-механических свойств в процессе термостарения. Показатели этих свойств после испытаний в течение 2000 ч должны быть такими же, что и для покрытий холодных трубопроводов. Приведенные критерии пригодности защитных покрытий требуют уточнения путем корреляции результатов лабораторных и производственных испытаний на действующих трубопроводах. Методы лабораторных испытаний основаны на определении срока службы и эффективности покрытий путем изучения кинетики изменения их свойств под воздействием факторов, имеющих место в реальных усла виях эксплуатации защищаемого трубопровода. Прочность сцепления покрытия с металлом при сдвиге, прочность при ударе, изгиб, УОЭС определяются на образцах в процессе их длительного выдерживания при 160 °С.,  [c.23]

    Очевидно, физико-механические свойства а рмобитэпа позволяют считать его одним из наиболее перспективных материалов для использования в конструкциях защитных покрытий трубопроводов. В 1974 г. на Опытном рубероидном заводе в г. Минеральные Воды была выпущена опытная партия армо-битэпа. чСтоимость 1 м составила 0,75—0,8 руб. [c.42]

    Состояние поверхности труб является одним из важнейших факторов, определяюш,их надежность нефте- и газопроводов. Технологическая наследственность изготовления труб, механические воздействия при погрузочно-разгрузочных транспортных и монтажных операциях, некачественная очистка перед нанесением защитных покрытий обусловливают гетерогенность (неоднородность) физикомеханических и физико-химических свойств поверхностного слоя, что снижает сопротивление трубопроводов коррозионно-усталост-ному разрушению в условиях циклического изменения нагрузок и воздействия активных сред. [c.252]


Смотреть страницы где упоминается термин Защитные покрытия механические свойства: [c.5]    [c.73]    [c.111]    [c.227]    [c.83]    [c.93]   
Коррозия и защита от коррозии (1966) -- [ c.616 , c.618 , c.620 ]




ПОИСК





Смотрите так же термины и статьи:

СВОЙСТВА ЗАЩИТНЫХ ПОКРЫТИИ

Свойства защитные



© 2024 chem21.info Реклама на сайте