Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойные полярные

    В процессе адсорбции на металле заряженных или склонных к поляризации молекул моюще-диспергирующих присадок образуется двойной электрический слой, обладающий экранирующим действием и препятствующий образованию отложений. Алкилсалицилаты кальция образуют наименьшие мицеллы, несущие наибольший электрический заряд [227]. Такие мицеллы обладают наиболее высоким собственно моющим действием за счет создания на поверхности металла двойного электрического слоя из жестких диполей. Сульфонатные присадки обладают несколько меньшей полярностью, но большей поляризуемостью и гибкостью. Они мало чувствительны к природе катиона и значительно легче (по сравнению с алкилсалицилатными присадками) перестраивают свои мицеллы. Собственно моющее действие сульфонатных присадок ниже, чем у алкилсалицилатных. Сукцинимиды, отличаясь высокой поверхностной активностью, не обладают собственно моющим действием, поскольку не способны образовывать двойной электрический слой на поверхности металла. [c.214]


    Молекула О3 диамагнитна, имеет угловую форму ( 000 116,5°) и обладает некоторой полярностью ([х == 0,17 10 Кл м). Длина связи оо( 0,128 нм) является промежуточной между длиной одинарной (0,149 нм) и двойной связи (0,1207 нм). Поэтому считают, что в молекуле О3 порядок связи 1,5. Строение молекулы О3 можно передать следующей структурной формулой  [c.320]

    Одним из первых технических методов получения изопрена является синтез на основе ацетилена и ацетона. Этот синтез базируется на так называемой реакции этинилирования — присоединении ацетилена к полярным двойным связям с сохранением тройной связи, под влиянием щелочных агентов. Реакция этинилирования была открыта практически одновременно в самом конце XIX в. Нефом и Фаворским. Последним эта реакция разрабатывалась именно в направлении взаимодействия ацетилена с ацетоном с получением ацетиленового спирта и его превращения в изопрен, благодаря чему весь этот синтез получил название метода Фаворского. [c.380]

    Для присоединения двуокиси серы в положение 1,4 к сопряженным двойным связям диена был предложен полярный механизм, аналогичный механизму для присоединения малеинового ангидрида в реакции Дильса-Альдера [12]  [c.349]

    Внутреннее строение и физико-химические свойства полимеров. Свойства полимеров зависят от особенностей их внутреннего строения и в" первую очередь от вида структурной единицы полимера, степени полимеризации, строения цепей, а также от характера и интенсивности взаимодействия между ними. Структурные единицы, составляющие данный полимер, могут содержать полярные группировки атомов, что усиливает взаимное притяжение между цепями и, в частности, при наличии гидроксильных или имино-групп (ОН, МН) приводит к образованию между ними водородных связей. Структурные единицы могут содержать двойные связи, что облегчает образование химических связей между цепями. Наличие боковых ответвлений, их размеры и характер расположения вдоль цепи влияют на взаимодействие между цепями, а также на степень кристалличности и т. д. [c.566]

    Динамическое электронное смещение способно распространяться по длине молекул аналогично индукционным эффектам, прежде всего в случае сопряженных систем с двойными связями. При этом поляризация может не затухать, а сопровождаться образованием чередующихся зарядов. На практике в молекуле присутствуют группы атомов, действие которых на полярность и поляризуемость проявляется одновременно. Это наглядно показано в табл. 4.3. [c.200]

    Потенциал нулевого заряда является важной электрохимической характеристикой электродов. При потенциалах, близких к п. н. з., некоторые свойства металлов достигают предельных значений велика адсорбция ПАВ, максимальна твердость, минимальна смачиваемость растворами электролитов и др. Исследования двойного электрического слоя позволили более широко рассмотреть вопрос о природе скачков потенциала на границе раздела фаз. Скачок потенциала на границе металл — раствор обусловлен в основном переходом заряженных частиц из одной фазы в другую. Однако существенную роль здесь играет также адсорбция ионов и полярных молекул. Гальвани-по-тенциал между фазами L и М можно рассматривать как сумму трех разнородных потенциалов  [c.475]


    Поступающие по жиле кабеля импульсы двойной полярности (положительные ГК и отрицательные НГК) подаются на вход усилителя Л1. Далее импульсы проходят по двум раздельным каналам измерителей скорости счета ГК и НГК. В каждом канале имеются селекторный каскад, мультивибратор, выход-яая лампа и интегрирующая ячейка. [c.106]

    НЫХ восстанавливающих агентов (природа которых связана с природой замедленной стадии выделения водорода на данном металле) позволяет истолковать значительное число опытных данных. В частности, она дает возможность объяснить существование избирательного электровосстановления (см. табл. 21.1). По-видимому, восстановление органических соединений на платиновых и никелевых катодах совершается за счет адсорбированных атомов водорода, присоединяющихся к неполярным связям (типа двойных или тройных связей) между углеродными атомами. На катодах из ртути и свинца восстановление совершается за счет ионов водорода, присоединяющихся с большей легкостью к отрицательным полярным группам (типа карбонильных или карбоксильных групп). [c.441]

    Бирадикальный механизм находится в соответствии с общей нечувствительностью реакции к растворителям и катализаторам. Он также правильно предсказывает течение реакции в случаях возможного образования двух изомеров, основываясь на двух факторах, которые более детально обсуждаются в разделе, посвященном сополимеризации. Одним из них является ожидаемая тенденция, что такая реакция идет через образование наиболее резонансно стабильного радикала [например, один непарный электрон, конъюгированный с карбонильной группой в реакции 15)]. Другим фактором является способность полярных резонансных структур повышать стабильность переходного состояния радикалов, это ведет к образованию того же изомера, что и предсказанный на основе полярного механизма. Отмечалась также близкая аналогия между радикальным механизмом и термическим инициированием процесса, наблюдающихся в некоторых случаях реакции полимеризации [36]. В качестве аргумента против такого механизма было выставлено то, что инициаторы радикалов, подобные перекиси бензоила, не ускоряют реакцию Дильса-Альдера. Однако это фактически не относится к обсуждаемому вопросу, так как реакция включает стадию (15), являющуюся процессом термического образования бирадикала, который в большей степени, чем любой другой процесс, мог бы быть инициирован присоединением посторонних радикалов по двойной связи. [c.181]

    Таким образом, обычная а-связь может вызвать появление у молекулы полярности за счет / -эффекта. В молекулах с двойными и тройными связями (я-связями) может существовать статическое электронное смещение Ез, называемое иногда также мезомерным (М-эффект) либо таутомерным (/-эффект) эффектом. Обычно смещение Ев бывает небольшим и полярность молекулы почти исключительно зависит от Л-эффекта [217]. [c.200]

    На основании определения изотопного эффекта и спектров поглощения систем ВРз —олефин сделан вывод о том. что при низких температурах комплексы образуются лишь с полярными олефинами (бутен-1, цис-бутен-2). Сохранение в УФ-спектрах полос поглощения, указывающих на присутствие двойной связи, [c.67]

    При этом ионные двойные слои на электродах всегда таковы, что э.д.с. электрохимического элемента соответствует суммарному процессу в этом элементе. Например, адсорбция полярных молекул на электродах изменяет контактный потенциал между электродами 1 2, но при этом изменяются и потенциалы ионного слоя на электродах ф1 и фг, так что э.д.с. остается той же, что и в отсутствие адсорбции молекул иа электродах. [c.536]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]

    Избирательная адсорбция заряженных или полярных частиц одной фазы на поверхности другой с образованием двойного [c.149]

    Ориентированная адсорбция незаряженных полярных или поляризуемых частиц на границе раздела фаз с образованием двойного электрического слоя в пределах одной фазы адсорбция молекул воды (рис. 106, э) на металле ориентация дипольных молекул у поверхности раздела жидкость —газ (рис. 106, и) — адсорбционный потенциал. [c.150]

    Рассмотрим для примера молекулы СО2 и СЗа- Две двойные связи углеродного атома располагаются на одной прямой и расстояния обоих одинаковых атомов от углеродного равны между собой , т. е. молекулы эти обладают вполне симметричным строением (рис. 20). Поэтому хотя каждая из связей С = 0 и С = 8 обладает некоторой полярностью, но вследствие полной взаимной [c.78]


    Эффект специфической адсорбции наблюдается и на незаряженной поверхности металла, т. е. в тех условиях, когда обмен ионами между металлом и раствором отсутствует. Адсорбированные ионы и соответствующие противоионы образуют двойной электрический слой, расположенный в непосредственной близости к металлу со стороны раствора. Ориентированные около поверхности металла адсорбированные полярные молекулы (ПАВ, растворителя) также создают двойной электрический слой. Скачок потенциала, отвечающий двойному электрическому слою при незаряженной поверхности металла, называется потенциалом нулевого заряда (п. н. 3.). Его значение принято выражать по водородной шкале (табл. 26).  [c.475]

    Полярная природа озона была установлена Льюисом п Смитом [8, 12]. Они предположили, что средний атом кислорода поляризован положительно, поэтому для озона чаще всего принимается такая структура, в которой три атомй кислорода образуют тупой угол с положительно заряженным кислородным атомом в вершине его. Под влиянием полярной молекулы озона двойная связь поляризуется таким образом, что я-элек-троны присоединяются к положительно заряженному атому кислорода в молекуле озона. Механизм такой реакции может быть. представлен следующим образом  [c.348]

    Пусть электрическое поле будет переменным. В некоторый момент времени оно меняет свою полярность на противоположную. При этом поляризация капель также сменится на обратную (см. рис. 1.4, б). Сила притяжения между ними останется прежней, так как она не зависит от направления поля, а зависит только от квадрата его величины [см. (1.29)]. Если поле изменяется с некоторой частотой (рис. 1.6, а), то сила притяжения капель станет изменяться с двойной частотой (рис. 1.6, б). Такое соответствие будет соблюдаться до тех пор, пока скорость процессов пере- [c.20]

    Силы взаимодействия между полярными и неполярными молекулами (индукционный эффект). В этом случае притяжение возникает в результате поляризации неполярных молекул под действием силового поля полярных молекул. Поляризация неполярных молекул происходит за счет смеш,ения внешней электронной оболочки (электронного облака) относительно атомного ядра. В масляном сырье больше всего поляризации подвержены углеводороды, в молекулах которых имеются двойные связи, т. е. ароматические и непредельные. Поляризация не. зависит от молекулярного движения и, следовательно, не зависит от температуры, [c.70]

    В некоторых из исследуемых систем обнаружено наличие незначительных по величине f-потенциалов различных знаков (у ТУ-1—отрицательного, а у ТУ-3 — положительного). Его возникновение автор объясняет присутствием ПАВ смолистой и иной природы, которые при диспергировании твердой фазы участвуют в образовании двойного электрического слоя. Отмечается, что в неполярных средах частицы имеют положительный заряд, если 6/ < бд, и отрицательный, если 6/ > е , и это находится в соответствии с правилом Кена (в случае полярных жидкостей такое соответствие не наблюдается). [c.29]

    Незначительная величина f-потенциала или его практическое отсутствие определяет необходимость искусственного создания последнего за счет введения ПАВ, что особенно важно для систем, не содержащих смол (например, ТУ-2, ТУ-6). Введение присадок (0,1 %) позволяет оценить их эффективность по переходу двойного электрофореза или межэлектрод-ной циркуляции в однонаправленный электрофорез, по снижению Е (до 300-600 В/см в неполярных и до 50-200 В/см в полярных растворителях) и по величине f-потенциала. [c.30]

    Скорость вращения обычно составляет 1450 об мин (двигатель с 4 полюсами) нов орговои се и имеются эл двигате и с двойной полярностью (с 4 и 8 полюсами), имеющими две рабочие скорости 1450 и 725 об мин ч о позволяет изменять ве ичинухо оди ьнои мощности [c.116]

    Влияние материала электрода иногда приписывают только величине перенапряжения водорода на нем. Действительно, на металлах с высоким водородным перенапряжением реакции восстановления часто идут полнее. Кроме того, на таких электродах легче могут быть достигнуты потенциалы, при которых происходит носстановление трудно восстанавливаемых соединений. Однако в общем случае прямого параллелизма между водородным перенапряжением на электродном материале (его катодным потенциалом) и его активностью по отношению к реакциям электровосстановления не существует. Более того, оказывается, что некоторые соединения лучше восстанавливаются на катодах с низким перенапряжением и хуже или даже вообще не восстанавливаются на металлах с высоким водородным перенапряжением. Такое избирательное электровосстановление органических соединений представляет собой распространенное явление (Л. И. Антропов, 1951). Примеры избирательного восстановления приведены в табл. 21.1. На катодах с низким перенапряжением — платине и никеле (особенно в форме черни или губки) —преимущественно восстанавливаются изолированные ненасыщенные связи в органических соединениях жирного ряда и двойные связи в бензольном кольце. В то же время эти связи практически ке гидрируются на катодах, обладающих высоким водородным перенапряжением, таких, например, как ртуть или свинец. Напротив, полярные группы — карбонильная и карбоксильная — восстанавливаются на катодах с высоким перенапрям ением водорода и не затрагиваются на катодах с низким перенапряжением. Исключение составляют нитро- и нитрозо- [c.432]

    Производство электролитического водорода основано на электролизе воды постоянным током в электролизных ваннах (электролизерах) различных конструкций. В качестве электролита обычно используется водный раствор едкого кали или едкого натра. Электролизеры в зависимости от расположения электродов и способа подведения к ним элёктротока подразделяются на моно-полярные и биполярные. Наиболее распространены открытая мо-нополярная ванна с двойными плоскими металлическими электродами, подвешенными в стальном ящике (кожухе) ванны параллельно один другому и погруженными в электролит, и фильтр-прессные биполярные ванны, состоящие из ряда соединенных одна с другой электролитических ячеек с размещенными между ними электродами. [c.59]

    В хлорной воде присоединение хлора идет достаточно медленно для того, чтобы почти количественно образовывался этиленхлоргидрин (см. стр. 370). Реакции олефинов с хлором и бромом в жидкой фазе идут обычно исключительно быстро 130], и применение растворителя, как правило, сказывается благоприятно. Этилен легко хлорируется при низких температурах в дихлорэтаповом растворе, как это применяется в промышленности. Хлориды элементов, образующих с хлором соединения высшей и низшей валентностей, как сурьма, железо, селен, являются эффективными катализаторами присоединения хлора к этилену. Присутствие полярных веществ можот катализировать присоединение галоидов например, реакция брома с этиленом в гааовой фазе сильно ускоряется, если стенки реактора покрыты стеариновой кислотой, но скорость реакции приближается к нулю, если стенки покрыты парафином [64]. Степень замещения хлором при реакции олефинов с хлором, как показано в табл. 3, поразительно велика [80]. Реакция замещения часто сопровождается перемещением двойной связи. [c.364]

    Уитмор показал [85], что правило Марковникова зависит от так называемой пространственной поляризации двойной связи. В неактивной форме олефипа две электронные пары, образующие двойную связь, равномерно распределены в поле притяжения двух атомов углерода, а в реакционноспособной форме одна из этих пар, очевидно, смещается по направлению к одному из атомов углерода. Выражая правило Марковникова в электронных представлениях, это смещение л -электропов происходит по направлению к наименее экранированному атому углерода. Таким образом, в символах полярности реакционноспособная форма пропилена должпа иметь такой вид  [c.367]

    Скорость изомеризации значительно возрастает при введении полярного растворителя (ацетона, этилового спирта, диметоксиэта-на) и зависит от структуры олефина. Как правило, чем сильнее экранирована двойная связь, тем ниже скорость реакции. Особенно заметно скорость уменьшалась при переходе от цис-а- к ц с-р-олефинам, а далее уменьшение происходит в ряду  [c.107]

    Известно, что реакции ионного тина происходят в тех случаях, когда встуш.ющая в реакцию двойная связь уже поляризована в результате соответствующего несимметричного замещения или поляризуете) под влиянием поляризующего действия реактива или катализатора. Поляризации способствует обычно присутствие раств( рител с ростом полярности растворителя его влияние усилизается. [c.195]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    На границе соприкосновения различных фаз (например, металл -электролит) возникает пространственное распределение электрических зарядов в виде так называемого двойного электрического рлоя. Разделение зарядов может вызываться различными причинами переходом ионов из электрода в раствор (или наоборот) - ионный двойной электрический слой специфической адсорбцией ионов на поверхности электрода - адсорбционный слой ориентацией полярных молекул растворителя и поверхности электрода - ориентационный слой. Во всех случаях двойной слой электронейтрален. [c.36]

    Высокая полярность молекул воды является одной из важнейших причин ее высокой активности при многих химических взаимодействиях. Она же служит причиной и электролитической диссо-ииации в воде солей, кислот и оснований. С ней связана также и растворимость электролитов в воде. В табл. 6 приведены значения дипольных моментов некоторых веществ. В углеводородах, содержащих двойную нли тем более тройную связь, также может не [c.80]

    Соединения ВРз с олефинами не прочны. Считают, что двойная связь в СпНг -BFJ под влиянием полярной молекулы акти вируется, что вызывает реакцию алкилирования. [c.20]

    Выразив двойной итеграл в полярных координатах в плоскости г/ г (см. рис. 5.14), получим непосредственно формулу (5.56). [c.133]

    Недавно Лестц и Гроув [168] поставили под сомнение применимость метода для определения В, так как В определяется двойным интегрированием, и поэтому 5 необходимо определять очень точно. Однако, поскольку речь идет об информации по межмолекулярным силам, следует отметить, что 5 так же полезно, как и 5, и может быть определено из скорости звука с такой же точностью, как и В из р—V—Г-измерений. Это недавно показали Коттрелл, Макферлайн и Рид [169] для сильно полярных газов ЫНз и НСН. Хорошие результаты по В для Не и Не при очень [c.112]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]

    Особенно интересно явление движения капли прямой эмульсии после выключения электрического поля или при перемене его полярности, которое до сих пор не было описано в литературе. Общеизвестно, что движение заряженных частиц дисперсной фазы в дисперсионной среде возникает только при деформации двойного ионного слоя. Время восстановления равновесия после устранения источника возмущающих полей (электрического или гравитационного поля, поля сил давления) обычно измеряется долями секунд, поэтому стадии восстановления ионной сферы и ее влияние на движение частиц сравнительно мало. Если время релакса1№и г составляет минуты, а для некоторых систем часы, например для дисперсий в слабополярных и вязких средах, то избыток противоионов с одной стороны частицы и недостаток - с другой будут сохранять действие диффузионных сил на частицу в течение некоторого времени. Поэтому в дисперсных системах с больщими частицами и высокой вязкостью дисперсионной среды движение частиц может продолжаться знатательное время. Например, в касторовом масле с коэффициентом диффузии ионов О = 10 см /с капли ПМС-5 диаметром 2а = 1 мм после снятия поля напряженностью 2 кВ/см двигались в течение 3—5 мин. Время релаксации подобной капли составляет несколько десятков часов и знащпельно превыщает время ее движения. [c.23]

    При отсутствии природных ПАВ (ТУ-2) в неполярных средах наблюдалось одновременное невихреобразное перемещение частиц как к катоду, так и к аноду. Такое явление было названо двойным электрофорезом (его не следует путать с диэлектрофорезом, т. е. движением поляризованных незаряженных частиц в неоднородном поле). Для частиц полярной среды этой же природы характерна межэлектродная циркуляция, сопровождаемая агрегацией. Двойной электрофорез и межэлектродная циркуляция связаны с поляризацией материала твердой фазы и свойственны нейтральным частицам или частицам, находящимся в иэоэлектрическом состоянии с мозаичным распределением участков с различными знаками заряда [11]. По-видимому, природа материала дисперсной фазы (различная длина и разветвленность углеводородной цепи) в данном случае не влияют на поведение дисперсий в электрическом поле. [c.29]


Смотреть страницы где упоминается термин Двойные полярные: [c.223]    [c.267]    [c.331]    [c.236]    [c.540]    [c.332]    [c.153]    [c.54]    [c.191]    [c.66]    [c.64]    [c.37]   
Физическая химия. Т.1 (1980) -- [ c.527 ]




ПОИСК





Смотрите так же термины и статьи:

Гельмгольцев двойной слой так Группы полярные Полярные

Гельмгольцев двойной слой так Группы полярные Полярные же электрический двойной слой группы

Двойная связь полярное галогеноводорода

Нуклеофильные реакции полярных двойных связей

Полярное присоединение по двойной связи

Полярные реакции присоединения по месту двойной этиленовой связи

Присоединение нуклеофильное к полярным двойным связям

Присоединение нуклеофильное к полярным двойным связям альдольное

Присоединение нуклеофильное к полярным двойным связям бензоиновое

Присоединение нуклеофильное к полярным двойным связям к винилогам карбонильных соединений

Присоединение нуклеофильное к полярным двойным связям по Михаэлю

Присоединение нуклеофильное к полярным двойным связям реактивов Гриньяра к кетона

Силы диполь-дипольные Двойные кристаллы Полярные связи Валентность Силы ван-дер-Ваальса

Углерод-углеродная двойная полярная двойная связь



© 2024 chem21.info Реклама на сайте