Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды полициклические выделение

    Ароматические углеводороды, имеющие 10 углеродных атомов и больше, идентифицированы в различных нефтях или в виде многоядерных ароматических углеводородов или в форме высших гомологов бензола. 1,2,3,4-тетрагидронафталин, нафталин и многочисленные производные моно-, ди- и триметил- (этил) алкилы этих углеводородов найдены в различных нефтях США, Европы и Азии. В нефтях, по-видимому, преобладает конденсированная структура полициклических ароматических углеводородов. Фенилциклопентан до сих пор является единственным неконденсирован-ным дициклическим ароматическим углеводородом, выделенным из нефти Понка (с неполной идентификацией). Дифенил и 3-метилдифенил были выделены и идентифицированы из сырой нефти Западного Эдмонда [1]. [c.23]


    В работах [14, 16] сообщалось также об оценке экспериментальных исследований, как нативной нефти, так и различных групп углеводородов, препаративно выделенных из нее адсорбционно-хроматографическим методом (по результатам тестов на бактерицидные свойства, выделительную функцию почек, состав крови и различные виды обмена веществ в организме животных). Наиболее эффективным биологическим действием обладали нафтеновые углеводороды. Смолы и полициклические ароматические углеводороды проявляли токсичность. [c.19]

    Эти же методы исследования были использованы для анализа гидрогенизатов смол. Так, при помощи хроматографического метода определен групповой состав жидкофазного гидрогенизата низкотемпературной смолы из черемховского угля состав асфальтенов 1, выделенных из угольного гидрогенизата. Из жидкофазного гидрогенизата бурого угля удалось выделить 8 парафиновых углеводородов, 6 полициклических углеводородов, 20 азотсодержащих соединений, 9 фенолов. Подробно исследован состав низкотемпературного гидрогенизата (процесс ТТН) буроугольной смолы. [c.164]

    По данным [56, 57], в крекинг-остатке содержится значительное количество дистиллятных фракций, представляющих собой полициклические ароматические углеводороды. Однако выделение их на имеющемся оборудовании установок термического крекинга невозможно, поэтому их извлекали при вакуумной разгонке. С увеличением средней температуры кипения 50-градусных фракций с 285 до 450 °С содержание парафино-нафтеновых углеводородов в них снижается с 20 до 3 %. Одновременно возрастает содержание ароматических соединений с 78,2 до 91,8% в основном за счет полициклических, количество которых [c.53]

    В табл. 4 приводятся данные, показывающие действие депрессатора АзНИИ на масла различного происхождения и на отдельные группы углеводородов, выделенные из этих масел. Приемистость к депрессатору неодинакова не только у масел и дистиллятов, но и у парафино-нафтеновых углеводородов, выделенных из различных нефтей. Тем не менее четко обозначена хорошая приемистость для парафино-нафтеновых углеводородов и парафинистых масляных дистиллятов присутствие смол и ароматических углеводородов (особенно полициклических) почти полностью подавляет депрессорную способность присадки. Поэтому применение депрессорных присадок необходимо сочетать с исследованием углеводородного состава масляных фракций и с подбором оптимальной степени их очистки. [c.149]


    Выделение же и определение ароматических углеводородов осуществляются вполне удовлетворительно благодаря их специфической способности реагировать с крепкой серной кислотой или водородом. Развитие хроматографических методов позволило с достаточной точностью разделять не только парафиновые и циклопарафиновые углеводороды, но и нормальные парафиновые и изопарафиновые углеводороды, а также моноцикли-ческие и полициклические циклопарафиновые и ароматические углеводороды. [c.27]

    В последние 10—15 лет, благодаря использованию комплекса методов физико-химического анализа, удалось значительно расширить представление о принципах химического строения веществ, входящих в состав гудронов и битумов. Сочетанием хроматографического и хроматомасс-спектроскопического методов анализа были выделены углеводороды из тяжелых нефтяных остатков (>550°С), идентичные по строению углеродного скелета углеводородам, входящим в газойлевую часть нефти. Это к-алканы и изоалканы с числом углеродных атомов от 30 до 40—45 и полициклические соединения типа стерана (тетрациклические) и гопана (пентациклические). Полициклические соединения могут быть полностью насыщенными (полициклонафтены) или содержать одно или два ароматических кольца. В молекулах таких углеводородов полициклическая часть имеет ряд метильных заместителей и один длинный, часто разветвленный, алкильный заместитель (С4—С12). Помимо доказательства строения отдельных индивидуально выделенных углеводородов, проводились исследования характерных структурных параметров соединений, входящих в относительно узкие (хроматографические) фракции. На основании экспериментальных данных о структурных параметрах расчетным путем (интегральный структурный анализ) строились среднестатистические гипотетические формулы веществ, составляющих данную фракцию. Известно, что несмотря на большое разнообразие нефтей даже в смолах и асфальтенах колебания в содер-274 [c.274]

    Один из методов основан на выделении фракции 345—535 и на измерении поглощения этой фракцией па 360 т/г. Ото поглощение вызывается полициклическими ароматическими углеводородами, с которыми связана [c.290]

    В сложной многокомпонентной системе, какой является нефть,, нет резких переходов между полициклическими углеводородам и смолами, между смолами и асфальтенами, что объясняется небольшой разницей между размерами и типами их молекул. Поэтому в определенных условиях возможен процесс перехода смол в асфальтены. При осаждении асфальтенов из нефти более высокомолекулярные смолы, близкие по строению, тоже осаждаются в тех или иных количествах, поэтому для более надежного выделения асфальтенов их переосаждают. [c.9]

    Эта реконструкция позволяет избежать длительных операций, связанных с выделением и концентрированием полициклических алканов нефтей. На рис. 90 в качестве примера приведены такие реконструкции, выполненные путем хромато-масс-спектрометрии насыщенных углеводородов с т. кип. >400° С двух нефтей Старогрозненского месторождения. Несмотря на совершенно различный химический тип этих нефтей (одна — типа А , вторая — тина Б ), распределение гопанов в них близкое, что указывает на единый источник их образования. [c.254]

    Бэджер с сотрудниками [27—30] показал, что при пиролизе не только непредельных углеводородов (бутадиена, фенилбутадиена, З-винил-циклогексена), но и бензола и его гомологов (толуола, этил-бензола, пропилбензола, бутилбензола) образуется более 40 представителей конденсированных полициклических ароматических углеводородов. Среди выделенных из продуктов пиролиза и идентифицированных углеводородов были бифенил, нафталин, антрацен, фе-нантрацен, пирен, хризен, 3,4-бензпирен и др. [c.282]

    Бестужев [108] изучал химическую природу сераорганических соединений, выделенных из двух высокосернистых нефтей Среднгто-Врстока. Оп показал, что по углеводородному скелету сераорганические соединения сходны с соответствующими циклическими углеводородами. Среди выделенных и исследованных сераорганических соединений более половины составляют полициклические конденсированные системы, в которых содержится 2—3 ароматических и несколько циклопарафиновых колец. Эти данные согласуются с результатами, полученными нами при исследовании химической природы сераорганических соединений, содержащихся в высокомолекулярной части девонской нефти Ромашкинского месторождения. [c.345]

    Влияние температуры экстракции на растворимость химических компонентов сырья различного молекулярного строения в неполярных растворителях обсуждалось в 6.2.3. Как видно из рис. 6.4, при пониженных температурах (50 — 70 °С) пропан проявляет высокую растворяющую способность и низкую избирательность и является преимущественно осадителем асфальтенов. При повышенных температурах экстракции (85 °С и выше) у пропана, наобо — рот, низкая растворяющая способность и повышенная избирательность, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при предкритических температурах, благодаря действию дисперсионных сил извлекают из дисперсионной среды низкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата, но снижая его выход. Антибатный характер зависимости растворяющей способЕюсти и избирательности пропана от температуры можно использовать для целей регулирования выхода и качества деасфальтизата созданием определенного тем — перагурного профиля по высоте экстракционной колонны повышенной температуры вверху и пониженной — внизу. Более высокая температура в верхней части колонны будет способствовать повы — шению качества деасфальтизата, а пониженная температура низа колонны будет обеспечивать требуемый отбор целевого продукта. [c.230]


    Если угли легко изменяются под влиянием нагрева даже до относительно невысокой температуры, то нефть значительно стабильнее даже длительный нагрев фракций нефти до температуры 300° С обычно не вызывает заметного разложения. Можно сказать, что возможные превращения материнского вещества нефти в основном уже закончились. Это подтверждается и полным пли почти полным отсутствием в нефтях непредельных углеводородов, в то время как углеводороды битума, выделенного, например, экстрагированием из верхнесилезского каменного угля, на состояли из непредельных соединений и только на 29 /о из предельных (полициклических нафтенов). [c.5]

    Поверхностно-активные вещества, способные изменять форму процесса кристаллизации парафина, содержатся в тех или иных количествах в большинстве сырых нефтей. Эти вещества, называемые иногда естественными депрессаторами, относятся к категории высокомолекулярных высококипящих соединений и при разгонке нефти не перегоняются с дистиллятными фракциями, а концентрируются в остатке от перегонки. В литературных источниках такими естественными депрессаторами считаются асфальтены и смолы. Мы полагаем, что этими веществами являются главным образом высокомолекулярные полициклические углеводороды, возможно, с конденсированными кольцами, как ароматическими, так и нафтеновыми, имеющие длинные алкильные цепи, а также высокомолекулярные кислородсодержащие, а возможно, и серусодержащие соединения, тоже обладающие длинными алкильными цепями. Наличие у этих веществ алкильной цепи обусловливает их адсорбируемость на поверхности кристаллизующегося парафина, а имеющиеся у них полярные или циклические группы образуют защитный слой, препятствующий выделению твердой кристаллической фазы (парафина) на поверхности ранее выкристаллизовавшегося парафина. [c.72]

    Высокое содержание ароматических углеводородов полициклического строения (40—60%) делает газойли каталитического крекинга ценным источником получения индивидуальных ароматических углеводородов (нафталина, фенантрена), одновременно фракцию 280—420 °С применяют для выделения из нее высокоаро-матизированного концентрата — сырья для производства сажи. Для этой цели применяют селективный растворитель — фурфурол (см. 67, 69), разделяя фракцию 280—420 °С на деароматизиро-ванный рафинат, направляемый в дизельное топлйво и экстракт, который и является сырьем для производства сажи. [c.230]

    При высаживании асфальтенов из раствора наблюдается увлечение вместе с ними некоторого количества углеводородов и смол, растворимых в данном растворителе при температуре высаживания, причем часть из них захватывается механически, а часть удерживается внутри агрегированных мицелл вследствие частичной сорбции вместе со смолами. Дрисутствие углеводородов в мицеллярной оболочке можно объяснить дисперсионными силами, возникающими между молекулами смол и углеводородо-в. На поверхности мелкодисперсных твердых частиц асфальтенов смолы сорбируются таким образом, что полярная часть их молекул обращена в сторону ядра коллоидной мицеллы, а неполярная — в сторону дисперсионной среды. В то же время вследствие упорядоченности неполярных частей молекул смол и влияния дисперсионных сил между ними встраиваются молекулы углеводородов. Так как в остатках нефтей содержится больше смол, чем необходимо для пептизации асфальтенов, вероятно образование поли-молекулярных мицеллярных оболочек, в результате чего углеводороды прочно удерживаются между чередующимися молекулярными слоями полярных соединений (смол). Извлечь эти углеводороды можно, полностью разрушая молекулярные оболочки коллоидных мицелл растворением смол многократной коагуляцией или отмывкой. Выше КТРг вследствие ограниченной растворяющей способности пропана по отношению к смолам происходит их выделение из раствора. Выделяющиеся смолы растворяют полициклические ароматические углеводороды и, таким образом, относительно раствора углеводородов выполняют роль селективного растворителя, несмешивающегося с пропаном. [c.67]

    Поскольку хлористый алюминий способен вызывать конденсацию углеводородов с выделением водорода, то он был предложен в качестве катализатора для деструктивной гидрогенизации полициклической ароматики [55]. Применение хлористого алюминия для этой цели обусловлено его способностью активно катализировать расщепление, а также его свойствами как конденсирующего и дегидрогенизирующего агента. Он-не только расщепляет углеводороды в непредельные соединения, являющиеся акцепторами водорода, но вызывает также выделение водорода, способствуя конденсации, сопровождающейся дегидрированием. При применении хлористого алюминия в качестве катализатора гидрогенизация может иметь место даже без воздействия водорода под высоким давлением [56]. [c.663]

    Полное количественное отделение полициклических ароматических углеводородов от неуглеводородных компонентов не может быть осуществлено ни одним из известных физических и химических методов. По этой причине ароматика в газойлях и смазочных маслах включает ароматические углеводороды и неуглеводородныс компоненты, выделенные вместе с углеводородами. Несомненно, что неуглеводородные компоненты, присутствующие в высококипящих продуктах, являются по существу ароматическими, т. е. атомы кислорода, серы или азота в этих соединениях связаны с ароматическим, возмоншо полициклическим кольцом. С этой точки зрения термин ароматпка>> в применении к тяжелым нефтяным фракциям, по-видимому, является законным. [c.27]

    Плотность и коэффициент преломления ароматических углеводородов, выделенных из тяжелого нефтяного сырья, а также обеспарафиненных циклопарафинов, свободных от ароматики, вообще высоки и намного больше, чем плотность и коэффициент преломления производных бензола и моноциклических циклопарафинов, кипящих в тех же пределах, что и сырье. Кроме того, плотность и коэффициент преломления быстро возрастают с увеличением температуры кипения тяжелых нефтяных фракций. Эти факты приводят к выводу о том, что циклопарафины и ароматические углеводороды тяжелого нефтяного сырья являются преимущественно полициклическими и что полициклический характер этих углеводородов усиливается с увеличением пределов выкипания фракций. Число колец в полицикли-ческих углеводородах различно для разных нефтей. Тяжелый газойль и масляные фракции из пенсильванской нефти содержат меньше полициклических углеводородов, чем эти же фракции из калифорнийской нефти. [c.30]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]

    Парафино-нафтеновые углеводороды, полученные при адсорбционном разделении на силикагеле (АСК), отличаются высоким числом симметрии по-р.ядка 150) и низким значением интерцеита рефракции"(г,- 1,0327—1,0388), ято, доказывает присутствие значительного количества би- и полициклических нафтеновых углеводородов. Парафино-нафтеновые углеводороды, выделенные из фракций валенской нефти, отличаются низко температурой застыпапия (значительно более низкой, чем у других исследованных нефтей), ири этом иара-фино-нафтеновые углеводороды, выделенные из фракций валенской нефти, имеют, в отличие от углеводородов из других нефтей, более низкую температуру застывания, чем исходные фракции. Но самое основное отличие нарафино-нафте-новых углеводородов, полученных из фракций валенской нефти, заключается а следующем они не образуют комплекс с карбамидом. Это свидетельствует о том, что фракции валенской нефти практически не содержат парафиновых углеводородов нормального строения. [c.410]

    Предполагалось, что нейтральные смолы представляют собой вещества, образующиеся в результате окислительной конденсации ароматических и нафтеновых углеводородов. Однако более глубокое изучение свойств естественных искусственных смолистых продуктов опровергает предположение об их тождественности [40]. Анализируя результаты собственных исследований и имеющиеся литературные данные, С. Р. Сергиенко говорит [19, с. 468—470] о большой доле циклических элементов структуры в молекулах нефтяных смол. В состав циклических элементов входят ароматические, циклопарафиновые и гетероциклические кольца, они соединены между собой алифатическими цепочками и имеют алкильные боковые цепи. В последних могут находиться и циклические заместители. Конденсированные структурные элементы молекул смол, не подвергавшихся термической обработке, обычно содержат 2—3 кольца. Поликонденсированные структурные элементы если и присутствуют, то в очень незначительном количестве. В смолах, выделенных из тяжелых нефтяных дистиллятов и остатков, подвергавшихся термическому воздействию, содержится значительное колшество полициклических структур. [c.31]

    Повышение температуры процесса в области, близкой к критической температуре пропана, приводит к последовательному снижению растворимости лрупя компонентов, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при высоких температурах, благодаря действию дисперсионных сил извлекают из раствора в пропане визкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата. Таким образом, при температурах в области предкритического состояния пропана имеют место процессы фракционирования сырья пропаном и селективной экстракции, где роль избирательного рас- [c.76]

    Гидрирующий катализатор должен быть селективным, т. е. он должен ускорять гидрирование би- и полициклических ароматических углеводородов, но быть умеренно активным по отношению к ценным моноциклическим ароматическим углеводородам. В продуктах гидрокрекинга содержание парафиновых углеводородов изостроения выше, чем должно быть по термодинамическому равновесию Это является следствием того, что расщеплению сырья предшествует его глубокая изомеризация на катализаторах гидрокрекинга. Новые катализаторы гидрокрекинга позволили уменьшить удельные капиталовложения при сооружении установок в среднем на 20%. Внесено много технологических и инженерных усовершенствований применяются большие реакторы диаметром до 4,5 м, улучшены их конструкции, удешевлена аппаратура за счет применения биметаллов, упрощены отделения дистилляции и выделения Единичные мощности установок выросли до 12,7 тыс. м в сутки, т. е. —4,5 млн. т в год Было разработано несколько модификаций гидрокрекинга, из которых наиболее распространенными стали процессы изомакс , разработанный фирмами UOP и hevron, и юникрекинг , разработанный фирмами Union Oil п Esso. Суммарная мощность установок гидрокрекинга в настоящее время быстро растет. Если в 1960 г. она составляла только 159 в сутки, то к началу 1970 г. — более 180 тыс. в сутки Очень быстро развиваются и другие процессы гидрогенизации. [c.12]

    Теоретические основы. Процесс основан на избирательном выделении полярных поверхностно-активных компонентов сырья — смолистых веществ, кислород- и серусодержащпх соединений, полициклических ароматических углеводородов на развитой пористой поверхности адсорбента. Высокая адсорбируе-мость полярных компонентов сырья на активном высокопористом адсорбенте обусловлена ориентационным и индукционным взаимодействием активных центров, находящихся на поверхности адсорбента, с полярными и поляризуемыми компонентами сырья. [c.244]

    Основные реакции гидроочистки протекают с выделением тепла. В процессах гнцроочистки избирательно гидрируются непредельные и ароматические углеводороды. Наиболее быстро гидрируются диены с сопряженными связями, затем олефины. Ароматические углеводороды гидрируются наиболее трудно, особенно бензольное кольцо. Полициклические ароматические углеводороды менее стабильны происходит насыщение водородом одного из колец до нафтенового, что благоприятно влияет на гидрогенолиз. [c.171]

    Повышение температуры при данном давлении утяжеляет состав жидкой фазы, но одновременно для данного растворителя снижает растворимость асфальтенов. Для тяжелых остатков нефти, содержащих много полициклических ароматических углеводородов и смол, являющихся хорошими растворителями асфальтенов, повышение температуры примерно до 500 °С не переводит их в плохие , и коксообразование при концентрации ниже пороговой не происходит. Если же сырье малоароматизованное, содержит много парафиновых углеводородов, то повышение температуры приводит к выделению асфальтенов из раствора и образуется кокс. [c.125]

    Исследование строения полициклических нафтенов проводится двумя путями. Первый из них заключается в определенна и характеристике нафтенов как индивидуальных соединений (при этом не обязательно выделение их из нефтей в чистом виде) второй путь претендует лишь на определение ряда структурногрупповых характеристик строения этих углеводородов. [c.352]

    Подъем температуры внутри куба выше 400° идет значительно медленнее, и скорость выделения дистиллятов резко уменьшается при этом в сырье интенсивно протекают реакции уплотнения, ведущие к образованию кокса. Последние по ходу, так называемые хвостовые погоны, являются весьма тяжелой фракцией. Она представляет собой смесь высокод Олекулярных полициклических углеводородов с высокими температурами плавления. Во избежание закупорк конденсатора хвостовые погоны обычно выводят из куба, минуя конденсатор, через отдельный трубопровод в специальную емкость. [c.315]

    Очистка с помощью избирательных растворителей наиболее широко применяется в производстве смазочных масел. Современная технология получения масел из параф1-пнстых, смолистых и сернистых нефтей восточных районов нашей страны включает несколько процессов очистки с применением с( лективных растворителей удаление смолисто-асфальтеновых веществ деасфальтизацией гудрона выделение полициклических ароматических углеводородов с короткими цепями и смолистых соединений при так называемой селективной очистке масел очистку от твердых алканов (депара-фннизацню). [c.323]

    П1п<раты ароматических углеводородов представляют собой твердые кристаллические вещества желтого цвета, имеющие четкие температуры плавления. Каждому полициклическому углеводороду соответствует пикрат с определенной температурой плавления. Комплексообразование с пикриновой кислотой используется как метод выделения и идентификации полициклических аро 1атическпх углеводородов. [c.72]

    Для выделения смол из обычных товарных то плнв требуется немного адсорбента, но необходимое количество его зависит не только от содержания смол в топливе, но и от адсорбируемости граничных с ними углеводородов. Наирнмер, для выделения смол из дизельных топлив требуется больше адсорбента, чем для выделения их из относительно легких реактивных топлив, где сложные полициклические ароматические углеводороды практически отсутствуют. Существует несколько различных вариантов определения адсорбционных смол в топливах все они принципиально не отличаются. [c.168]

    Специально проведенные в лаборатории Института нефти АН СССР исследования по выяснению условий образования конденсированных систем ароматических углеводородов показали, что во время нагревания в течение 30—40 ч ири 300—350° С идут в весьма заметной степени процессы образования конденсированных ароматических систем. Полициклические конденсированные ароматические соединения в этих условиях образовались из гомологов бензола, из метилнафталинов и из фракций бициклических ароматических углеводородов, выделенных из различных нефтей Советского Союза (ромашкинская, гюргянская, сагайдакская, радченковская, хаудагская и др.). При термической переработке нефти, особенно ее высокомолекулярной части, идут процессы разрушения перифе- [c.14]


Смотреть страницы где упоминается термин Углеводороды полициклические выделение: [c.290]    [c.821]    [c.788]    [c.199]    [c.52]    [c.65]    [c.157]    [c.371]    [c.13]    [c.34]    [c.65]    [c.99]    [c.101]    [c.115]   
Полициклические углеводороды Том 1 (1971) -- [ c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение полициклических углеводородов из каменноугольной смолы

Выделение углеводородов

Полициклические



© 2025 chem21.info Реклама на сайте